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Abstract— We describe a new series pneumatic artificial
muscle (sPAM) and its application as an actuator for a soft
continuum robot. The robot consists of three sPAMs arranged
radially around a tubular pneumatic backbone. Analogous to
tendons, the sPAMs exert a tension force on the robot’s pneu-
matic backbone, causing bending that is approximately constant
curvature. Unlike a traditional tendon driven continuum robot,
the robot is entirely soft and contains no hard components,
making it safer for human interaction. Models of both the
sPAM and soft continuum robot kinematics are presented and
experimentally verified. We found a mean position accuracy of
5.5 cm for predicting the end-effector position of a 42 cm long
robot with the kinematic model. Finally, closed-loop control
is demonstrated using an eye-in-hand visual servo control law
which provides a simple interface for operation by a human.
The soft continuum robot with closed-loop control was found
to have a step-response rise time and settling time of less than
two seconds.

I. INTRODUCTION

Soft robots are characterized by their continuously de-

formable structures that are compliant and can withstand

large deformations during normal operation [1]. Though their

flexibility and compliance make precise, high bandwidth

control more challenging than their rigid counterparts, soft

robots have desirable properties such as conformability to

their environment ingrained in their mechanical structures.

Because of this, soft robots are increasingly being developed

for use in cluttered and unstructured environments such as

search and rescue operations [2], manipulation [3], [4], and

human-centered tasks [5], [6].

Soft robots require complementary actuation that is soft

and light. Because pneumatic artificial muscles (PAMs)

are usually soft reinforced membranes that both bulge and

contract when inflated with compressed gas [7], they are a

natural actuation choice for soft robots [8]. Different PAM

variants have been developed, including McKibben Muscles

[9], pouch motors [10], pleated PAMs [7], and inverse PAMs

[11], all of which are contractile actuators that transform the

energy of compressed gas into mechanical work [12].

Like soft robots, continuum robots are flexible, and there-

fore have the potential for greater conformability to the en-

vironment than rigid robots [13]. However, many continuum
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Fig. 1. Soft continuum robot with series pneumatic artificial muscles
(sPAMs) attached.

robot designs have not been soft. These include the tendon-

driven manipulators of Camarillo et al. [14] and Gravagne

and Walker [15], which use hard end-plates to route the

cables. Pneumatically actuated continuum robots such as the

Slime Robot [16] and the Bionic Handling Assistant [17]

have also included hard components such as shells, springs,

and cables. Examples of soft continuum robots include the

fluidic elastomer driven robot by Marchese et al. [18], the

Stiff-Flop arm [19], the octopus inspired arm of Laschi et

al. [20], and the hybrid pneumatic-tendon actuated arm of

Stilli et al. [21].

To create an entirely soft robot arm, we introduce a new

series pneumatic artificial muscle (sPAM) that is capable

of actuating such a soft robot. Inspired by pouch motors

[10], the sPAM consists of multiple PAMs in series (Fig. 2)

and are easily fabricated from thin sheets of polyethylene

that require no casting or molding. Unlike pouch motors,

sPAMs are axisymmetric and as a result, have a larger

stroke than pouch motors, particularly in the thin aspect

ratios that are necessary for continuum robot actuation. As

seen in Fig. 1, our continuum robot is made almost entirely

from low-density, thin-walled polyethylene tubing and has no

hard components aside from a miniature camera at its end.

Because of this, the robot has lower inertia and is therefore

safer. The robot body is also simple to construct from low

cost and readily available materials and requires no casting

or molding.

This paper first describes the design and fabrication of the

sPAM actuator and robot body. Next we develop a model

for the sPAM actuator that describes both its contraction and



Fig. 2. Thin-walled polyethylene tubing (a) deflated and (b) inflated. An
sPAM is a length of polyethylene tubing with o-rings spaced at regular
intervals (c) deflated and (d) inflated. l0 is unchanged during inflation.

force-displacement behavior. Building on the sPAM actuator

model, we develop a kinematic model for the soft continuum

robot. We conclude with a demonstration of control of the

robot using an eye-in-hand visual servo control law and use

it for a pick-and-place task. Such a robot has potential for use

in manipulation tasks of light-weight objects in environments

where safety is a concern.

II. DESIGN AND FABRICATION

The soft continuum robot presented in this paper has a

body that is unique due to its ease of construction from

low cost, off-the-shelf materials. We describe the design of

sPAMs, the continuum robot body that uses the sPAMs as

actuators, and of the peripheral components used to control

the robot in this work. These include electronic regulators

and a vision system. Less expensive peripherals may be used

in hobby applications.

A. sPAM Design

A sPAM is made from a thin rectangular sheet of polyethy-

lene tube that is sealed (heat bonded) on one end so that

it inflates. When deflated, the sheet is W wide by L long

and has a wall thickness of t (Fig. 2(a)). The length and

width are design parameters whose effects are explored

in Section III-A. When inflated, the polyethylene tubing

becomes cylindrical in shape with length L and diameter

Dtube = 2W/π (Fig. 2(b)). In our construction, L = 42 cm,

W = 3.8 cm and t = 0.051 mm.

Rubber o-rings (4.46 mm OD) spaced at regular intervals

along the length of the sPAM (3.5 cm in this work) cause

the profile of each actuator segment to become bulged when

compared to its deflated state (Fig. 2(c)). Assuming the

material does not stretch a significant amount, the actuator

will contract when inflated (i.e. its length will be reduced),

due to its bulged profile (Fig. 2(d)).

B. Robot Design and Fabrication

The continuum robot is composed of a pneumatic back-

bone and three actuators arranged radially around the back-

bone (Fig. 1). As explained in Section III-B, the pneumatic

backbone may be thought of as a cantilevered beam whose

stiffness is derived from its internal pressure. Similar to a

tendon-driven continuum manipulator [14], the sPAMs exert

Fig. 3. Overview of robot control architecture. An eye-in-hand visual servo
controller running at camera acquisition rates, 30 Hz, generates pressure
set points for the pneumatic backbone and three sPAMs. A lower-level
pressure controller running at approximately 500 Hz maintains these desired
pressures in the four tubes.

moments on the pneumatic backbone to cause bending of the

robot.

Each sPAM is attached to the pneumatic backbone by

first heat bonding a strip of polyethylene to the side of

the pneumatic backbone at regular intervals to match the

spacing of the rubber o-rings. The polyethylene strips are

then cut in regular intervals between the heat seals and a

hole is punched through each newly created tab. The deflated

sPAM is then threaded through the holes and plastic tubing

is sealed inside the open end of the sPAM. Once all three

sPAMs are attached, a final length of tubing is sealed inside

the pneumatic backbone and the loose ends are run to the

pneumatic system explained below.

C. Pneumatic System

To control both the bending stiffness of the pneumatic

backbone as well as the bending of the continuum robot,

pressure in the main tube and each of the three sPAMs is

regulated. Fig. 3 provides a high-level block diagram of the

robot control architecture, in which the pneumatic system

operates to regulate pressure. Pressure set-points for the

pneumatic backbone and three sPAMs are regulated at 500

Hz by the pressure controller and commanded at 30 Hz

by a visual servo controller (Section II-D). The pressure

controller operates the pneumatic system, which consists

of electronic proportional valves (EV-P-20-6050, Clippard

Incorporated, Cincinnati, OH), that control air flow rates

and analog pressure sensors (MPX5100DP-ND, Freescale

Semiconductor, Austin, TX) from which pressure in the four

chambers is measured for use in the pressure control loop.

D. Vision System

An eye-in-hand visual servo control law [22] is used to

control the pose of the robot end-effector. Visual features

are observed using a 170◦ field-of-view miniature camera

mounted at the tip of the continuum robot (Fig. 11(b))

and measured by an image processing system (Sightline

Applications Incorporated, Hood River, OR) at 30 Hz. The

visual servo control law attempts to drive the location of a



Fig. 4. (a) A sPAM segment starts as a thin sheet of length l0 and width
W , which inflates to a Dtube = 2W/π diameter cylinder. (b) Adding an o-
ring to the deflated actuator reduces its width to 2R through wrinkling and
folding. (c) When it is inflated, the profile of the actuator bulges between
the o-rings, causing it to contract to length l and exert a tension force, F .
(d) A parallel circular cross-section of the sPAM, inflated by a pressure,
p. It will satisfy zero parallel stress condition (σ = 0) if D < Dtube. (e)
sPAMs attached to the pneumatic backbone, exerting forces F1, F2.

feature to a particular point in the camera’s field of view (e.g.

the image center). This enables a human operator to control

the robot via a simple interface in which he or she selects a

visual feature in the camera’s field of view at which to point

the continuum robot.

III. MODELING

A. sPAM Model

In this section we present a model for the sPAM (Fig. 4).

The purpose of this model is two-fold: (i) to establish a

relationship between force and contraction, which is used

in the robot’s kinematic model (Section III-B) and (ii) to

understand what parameters are important for maximizing

the contraction of the actuator. The main results are that

the relationship between tension force and contraction ratio

is approximately linear and that o-ring spacing and o-ring

diameter must be appropriately chosen to maximize actuator

performance.

sPAMs use pressurized air to do work by changing the

volume of the actuator [23]. This behavior is described by

the load to length relation [24]

F = −p
dV

dL
, (1)

which shows that the tension force of the actuator is pro-

portional to actuator pressure (p) and the change in volume

(dV ) per unit change in length (dL).

As described in Section II-A, sPAMs are constructed from

a thin sheet of polyethylene tubing of length L, and width

W , which inflates to a cylinder of diameter Dtube = 2W/π
and length L. To create an sPAM with N segments, N + 1
o-rings of radius R are slid over the length of the actuator

at regularly spaced intervals of length L/N = l0, we create

N segments that contract when inflated (Fig. 4(a)-(b)). We

model each of the N segments of the actuator as a modified

Fig. 5. (a) sPAM with o-ring spacing too large. Regions highlighted in
red are where pleated PAM model predicts bulge radius larger than Dtube,
and hence they do not contribute to contraction. (b) sPAM without inactive
regions.

pleated PAM (PPAM) which were analyzed by Dearden et

al. in [23].
The defining characteristic of a PPAM is that as it inflates,

its membrane radially unfurls, rather than stretches. This

means that each parallel cross-section of the PPAM mem-

brane has zero parallel stress (Fig. 4(d)) in all states of infla-

tion. sPAMs also satisfy the zero parallel stress condition (i.e.

they are effectively a series of PPAMs) when the diameter of

the largest parallel cross section in the middle of the actuator

is less than the diameter of the polyethylene tubing, Dtube.

This is because expansion in the radial direction will occur

as a result of unwrinkling and unfolding of its membrane.

However, if the bulge radius of any of the sPAM sections

exceeds Dtube, the sPAM no longer behaves as a PPAM

as these sections have material stretching (Fig. 5). Here we

explore the conditions under which the sPAM behaves like

a PPAM.
1) Pleated PAM model validity: First we provide a pro-

cedure to check whether a sPAM with a given set of dimen-

sions, l0, R, and W will behave like a PPAM (zero-parallel

stress condition). For a given contraction ratio, ε = 1− l/l0,

and assuming an inelastic material, the diameter of the largest

cross-section can be computed from [7] as

Dε =
2R

cosφR
(2)

where φR and m are constants that are defined by the

following system of equations⎧⎪⎪⎨
⎪⎪⎩

E(φR\m)√
m cosφR

=
l

R
(1− ε

2
)

F (φR\m)√
m cosφR

=
l

R

(3)

where F ( \ ), E( \ ) are the incomplete elliptic integrals of

the first and second kind, respectively.
The diameter of a bulge of an sPAM increases monotoni-

cally with contraction, therefore we need to only check that

the bulge diameter at maximum contraction is less than Dtube.

To find εmax, we look at the tension force in the PPAM model

[23]

Fε = πpR2 1− 2m

2m cos2 φR
(4)

where φR and m are defined by the system in Equation 3.

When Fε = 0 (zero-tension), the actuator is at maximum

contraction. To summarize, we can calculate whether the

zero-stress condition is met by: (i) Calculating zero-tension

contraction, εmax using Equation 4 and (ii) checking that

Dεmax < Dtube using Equation 2.



Fig. 6. (a) PPAM model predicts that a slender aspect ratio is optimal for maximizing contraction. (b) However, bulge diameter increases with actuator
slenderness until Dbulge = Dtube (Fig. 5). Bulge diameter curves are plotted for several values of R. (c) sPAM model for contraction as function of sPAM
actuator radius. Contraction increases as sPAM becomes more slender, until Dbulge = Dtube (vertical dotted lines). Zero tension contraction is plotted for
several values of R. (d) Actuator contraction vs. normalized tension force. PPAM behaves like a spring except when near full extension.

2) Actuator parameters: The goal of this section is to

find the o-ring spacing that maximizes sPAM contraction,

εmax. Calculated using Equation 4, Fig. 6(a) shows that for

a PPAM, a slender actuator aspect ratio maximizes zero-

tension contraction. However, the bulge diameter of the

PPAM model increases as the actuator becomes more slender

(Fig. 6(b)) until Dbulge = Dtube. When this happens, the

sPAM diverges from the PPAM model. In particular, a por-

tion of the actuator will become inactive and not contribute to

contraction (Fig. 5). This occurs at the vertical dotted lines in

Fig. 6(c). Therefore, zero-tension contraction is maximized

when l0 is chosen so that Dbulge = Dtube. Practically, the plots

in Fig. 6(a)-(c) may be used to maximize actuator contraction

as follows: Assuming Dtube is set, o-ring diameter should be

chosen as small as is practical. Finally, Fig. 6(c) may be used

to find the optimal spacing between the sPAM o-rings.

3) Actuator tension force: Using Equation 4, a tension

force-displacement curve can be calculated for the sPAM.

Fig. 6(d) shows the normalized force-displacement curve for

a fixed actuator aspect ratio. We can see that the force-

displacement curve is nearly linear except when the sPAM

is near full extension. This allows us to approximate the

actuator as a linear spring, which is used in the robot’s

kinematic model (Section III-B).

B. Soft Continuum Robot Kinematic Model

Here we derive a forward kinematic model for the soft

continuum robot. We make a simplifying assumption that the

soft continuum robot bends in a constant curvature arc [13]

and that the sPAMs act as linear springs. The forward

kinematic model is a function of the three sPAM pressures

p1, p2, p3 and the output of the model is the position of the

end effector (tip of the continuum robot), �xef ∈ R
3:

�xef = f(p1, p2, p3) (5)

Our kinematic model is developed in two steps: (i) first we

use constant curvature continuum robot length kinematics

to relate tendon lengths, l1, l2, l3, to arc space parameters:

backbone length, l, bending plane angle, φ, and pneumatic

backbone radius of curvature, r (Fig. 7). (ii) Second, we

use static equilibrium force conditions of the soft continuum

robot to develop relationships between the sPAM pressures

and robot end effector position using the constant curvature

constraints from part (i).

1) Constant curvature geometric kinematics: Here we

review the work of Jones et al. [25] on the geometry

of constant curvature continuum robots with direct control

over tendon lengths, which computes arc-space parameters

from side lengths. These will be used in step (ii). We

assume that the positions of the actuators on the robot’s end

piece, ψ1, ψ2, ψ3, which are specified in angles, are known

(Fig. 7(d)). First we introduce three intermediate variables,

which relate the positions of the actuators to the (unknown)

position of the bending plane (Fig. 7(e)).

φi = ψi − φ for sPAM i = 1, 2, 3 (6)

Using this definition, the robot tip geometry can be used to

relate the (unknown) radii of curvatures of the three actuators

to the (unknown) radius of curvature of the pneumatic

backbone (Fig. 7(c)):

ri = r − (Dtube/2) cosφi for sPAM i = 1, 2, 3 (7)

Multiplying Equation 7 by θ (which is unknown) and using

the relation li = θri we get

li = θ(Dtube/2) cosφi − l for sPAM i = 1, 2, 3 (8)

This yields three equations in our three unknown arc-space

parameters, which can be solved.

2) Static force analysis: Here we use static force balance

to relate our input pressures, p1, p2, p3, to arc space param-

eters, l, φ, r: ∑
F(p1, p2, p3, l, φ, r) = 0 (9)∑
M(p1, p2, p3, lφ, r) = 0 (10)

where F,M are the moments and forces acting on the robot.

In turn, the arc space parameters can be used to calculate �xef.

The pneumatic backbone has stiffness that resists both

bending and compression. To model these characteristics,

we discretize the robot along its length into N rigid arc

elements, each of which subtends an angle θ/N as shown in

Fig. 7(a). The pneumatic backbone’s resistance to bending is



Fig. 7. (a) Kinematic model of constant curvature continuum robot. Cross-
section in the bending plane of the continuum robot is shown. sPAMs are
modeled as springs with stiffness controlled by actuator pressure. (b) End
piece of spring system with forces acting on it. (c) Interior piece of spring
system with forces acting on it. Sum of forces is always zero, independent
of l and θ. (d) Head-on view of robot’s tip. Actuators are arranged radially
around tip center at angles ψ1, ψ2, ψ3. (e) Head on view showing bending
plane angle, φ and radii of curvatures of backbone and sPAM arc.

captured as a series of torsion springs between each backbone

segment with torsion spring constant, κ(N) and its resistance

to axial compression is captured as a series of linear springs,

each with stiffness K(N) and equilibrium length leq
N . We

assume there is an underlying stiffness of the pneumatic

backbone that is related to pressure and has an associated

torsion and linear spring constant associated with it, κ and

K, respectively. We relate the underlying stiffnesses to the

discretized stiffnesses by the following scaling laws

K(N) = NK κ(N) = Nκ (11)

as is standard with discrete spring models [26].

Next, we consider the sPAMs. Because the force-

displacement curves of our sPAMs are approximately linear

(Fig. 6(d)), we incorporate them into our model as linear

springs. Each sPAM has a spring constant that scales linearly

with pressure (Equation 1):

Ki = piki for i = 1, 2, 3 (12)

and an associated equilibrium length, leq
i . To incorporate

our actuators into the distributed spring model, we break

our actuators into N springs in series. Following the same

convention as the main tube, we relate the N spring constants

and equilibrium lengths to the actuator’s spring constant by

the following scaling law

K
(N)
i = NKi for i = 1, 2, 3 (13)

l
(N)eq
i = leq

i /N for i = 1, 2, 3 (14)

With all elements of the system defined, we consider

equilibrium conditions of the system. Internal pieces of the

spring system (Fig. 7(c)) are in equilibrium regardless of

the kinematic parameters, therefore they are not considered.

For an end-piece of the spring system (Fig. 7(b)) to satisfy

equilibrium, we must have the sum of forces equal to zero:(
3∑

i=1

Fi + F

)
ẑ =

(
3∑

i=1

−Ki(li − leq
i )−K(l − leq)

)
ẑ = 0

(15)

as well as the sum of moments:

3∑
i=1

Mi +M =

=

(
−

3∑
i=1

Dtube

2
Ki(li − leq

i )Rz(ψi)− κθRz(φ)

)
x̂ = 0

(16)

where Rz( · ) is a rotation about the z-axis by a specified

angle.

The force and moment balance relations

(Equations 15 and 16) reduce to three scalar equations

in six unknowns (φ, θ, l, l1, l2, l3). Including the geometric

equations relating side lengths to l, φ, r (Equation 8)

provides three more constraints, yielding a solvable system

of six equations in six unknowns.

Finally, with l, φ, r computed, the end-effector position

can be found. We define a coordinate system whose origin

is at the base of the robot’s backbone curve. The coordinate

system’s z-axis, ẑ, is tangent to the backbone curve and

points to the tip of the robot, and x̂ and ŷ are chosen

arbitrarily to define a right-handed coordinate system. With

this coordinate system definition, we write �xef as

�xef = r(cos(θ)− 1)ŵ + r sin(θ)ẑ (17)

ŵ = [cos(φ) sin(φ) 0]� (18)

IV. EXPERIMENTAL VALIDATION

In this section, we describe validation experiments of

both the sPAM model (Section III-A) and continuum robot

kinematics (Section III-B).

A. sPAM Model Validation

To verify our sPAM model for contraction and force,

experimental curves were generated for both the zero tension

contraction ratio versus deflated length and force versus

contraction.

1) Contraction experiments: Zero tension contraction is

an important property of the sPAM that influences the

maximum curvature of our soft continuum robot. To obtain

a contraction curve, we varied the deflated length, l0, of the

sPAM by varying the spacing of the sPAM o-rings. Deflated

length and actuator radius (held constant) were measured

using calipers. Zero tension contraction, εmax, was measured

by inflating the sPAM, then measuring the length, l, between

the actuator o-rings using calipers. εmax was calculated as

1− l/l0.

Fig. 8(a) compares the sPAM model to experimental con-

traction data. For the experiment, the sPAM radius and width

were held constant and measured to be 0.25 cm, and 4.44

cm respectively. As predicted, we found that contraction

increases as l0/W increases, in agreement with both the

sPAM and PPAM models. As l0/W increases beyond ap-

proximately 1.5, the bulge diameter becomes greater than

Dtube = 2W/π, and the sPAM diverges from the PPAM

model. As expected, the contraction ratio falls off as 1/l0
because extra length does not contribute to contraction.



Fig. 8. (a) Contraction predicted by sPAM model vs experimentally measured contraction, shown as a function of spacing between o-rings. A maximum
contraction ratio of 0.4 is achieved experimentally. (b) Experimentally measured pouch motor contraction ratio, shown as a function of actuator width
(Fig. 9). Pouch motor model predicts constant contraction because it ignores edge sealing. (c) Experimental force-displacement curve vs. predicted force-
displacement curve.

Fig. 9. Comparison of (a) model of inflated pouch motor presented
in [10] and (b) physical realization of inflated pouch motor with same
dimensions. A pouch motor’s ends are sealed (red and blue contours),
which means that they will overlap. The sealed ends reduces the maximum
contraction attainable by a physical pouch motor and this effect becomes
less pronounced as D0 increases.

For the parameters used in the experiment, a maximum

contraction ratio of approximately 0.45 was predicted and

a maximum contraction ratio of 0.4 was measured.

Fig. 8(b) shows experimental contraction data we col-

lected for pouch motors [10] of comparable size to the

sPAMs used in this work. Pouch motors were constructed

from two polyethylene sheets that were 0.0508 mm thick

and sealed on four sides. Deflated length, l0, was held

constant at l0 = 5 cm. Actuator width, D, was varied.

These parameters are depicted in Fig. 9. For each actuator

width, the inflated length, l, was measured using calipers

at in the middle of the pouch motor. The contraction curve

demonstrates that the width of the pouch motor influences

the maximum contraction ratio of the pouch motor despite

the pouch motor model predicting a constant contraction

ratio of approximately 0.36. We experimentally measured

a maximum contraction ratio of 0.34, and the pouch motor

approaches maximum contraction when the width to length

ratio is approximately 1.

2) Force Displacement Experiments: To verify the force

model of the sPAM, we experimentally generated a force-

displacement curve for the sPAM. sPAM pressure, radius,

and deflated length were held constant at 10.34 kPA, 2

cm, and 2.5 mm for the duration of the experiment. One

side of the sPAM was rigidly attached to a scale (M4-

50, Mark-10 Corporation, Copiague, NY). A linear servo

motor (Firgelli L16, Actuonix Motion Devices Incorporated,

Victoria, B.C., Canda) was used to incrementally stretch the

sPAM and its tension force was measured and recorded from

the scale. Additionally, the sPAM was incrementally returned

to maximum contraction (zero tension) and the tension force

was measured and recorded during the return process.

Fig. 8(c) shows the sPAM force-displacement data that

was collected using the procedure. We found the model to

be accurate in predicting the force-displacement curve of

the sPAM during the stretch phase of the experiment. As

predicted, the sPAM was found to have a relatively linear

force-displacement curve. During the return phase of the

cycle, the sPAM’s forces were lower due to hystersis caused

by actuator friction.

B. Kinematic Model Verification

Our forward kinematic model described in Section III-B

maps low-level control inputs (sPAM pressures, p1, p2, p3)

to robot end-effector position, �xEF. To verify the model,

an electromagnetic tracker (Ascension Model 800, Northern

Digital Incorporated, Waterloo, ON, Canada) was attached

near the tip of the continuum robot that was approximately

42 cm in length. We commanded 50 random sPAM pressure

triples (p1, p2, p3) and recorded the pose of the robot end

effector once it reached steady state. These 50 end effector

poses are shown in Fig. 10 and provides a sense of the

workspace of the robot.

Actuator positions, ψi were measured by command-

ing a displacement in each of the primary directions

([p1 = P, p2 = 0, p3 = 0]�, [p1 = 0, p2 = P, p3 = 0]� and

[p1 = 0, p2 = 0, p3 = P ]�). In addition, a parameter identifi-

cation was performed to find actuator and main tube equilib-

rium lengths, pressure spring constant factor (Equation 12),



Fig. 10. Results of the kinematic model verification. Measured end-
effector positions for 50 random pressure triples are displayed as solid
circles. System identification was performed to determine parameters that
best fit the measured positions. The resulting workspace is shown in dark
grey and was calculated using the kinematic model. The light grey region
was calculated by reducing torsion spring stiffness in the kinematic model,
which corresponds to reducing pneumatic backbone pressure. As expected,
the robot’s workspace is expanded.

and main tube linear and torsion spring constants. The

parameter identification was solved by finding the aforemen-

tioned parameter values that minimized the discrepancy be-

tween the predicted end-effector positions and measured end-

effector positions. This was implemented using MATLAB’s

fmincon routine.

With the parameter identification complete, we compared

the predicted and measured robot end-effector position for

each pressure triple. The circles in Fig. 10 show the mea-

sured positions of the robot’s end-effector. We found a mean

discrepancy of 5.5 cm between prediction and measurement,

which is slightly larger than the pneumatic backbone’s

diameter (4.8 cm). Fig. 10 shows the robot’s approximate

workspace in dark-grey. It was calculated by determining

the end-effector position for randomly sampled pressure

triples using the kinematic model and identified parameters.

The light-grey region was calculated in the same way, but

by reducing the main tube torsion spring constant. This

corresponds to reducing main tube pressure. As expected,

the robot’s workspace is enlarged.

V. EYE-IN-HAND CONTROL DEMONSTRATION

Fig. 11 provides an overview of the eye-in-hand visual

servo control law [22] that was used in the demonstration.

A camera is attached to the end of the continuum robot

and a visual feature is designated (Fig. 11). The visual

servo control law is responsible for generating the actuator

pressures necessary to reorient the robot so that the robot is

pointed toward the feature.

The visual servo control law uses an image

Jacobian that maps changes in actuator inputs

(in our case pressures) δ�p = [δp1, δp2, δp3]
� to

Fig. 11. (a) Camera at end of continuum robot. Directions of tip movement
are indicated by colored arrows. (b) Schematic of tip camera view. A visual
servo controller drives image feature error δp (indicated by black arrow)
to zero. Physically this corresponds to pointing the soft robot at the feature
in track box. Image Jacobian, J , is visualized as an ellipse. Individual
actuator directions are depicted as colored arrows (c) Step response pixel
error of the visual servo controller during point-to-point tracking maneuver.
(d) Commanded sPAM pressures for the step response.

image feature displacements δ�x = [δx, δy]�

δ�x ≈ Jδ�p (19)

For simplicity, we use an image Jacobian that is computed

using a calibration procedure at the continuum robot’s zero

actuator pressure configuration (straight up). We found that

this image Jacobian is reasonably accurate throughout the

entirety of its configuration space.

Fig. 11(c)-(d) show data taken from a point-to-point track-

ing maneuver. At time t = 0, a new feature is designated,

providing a step input to the controller. As is seen from

Fig. 11(c), the controller drives the image feature error to

below 5% within 2 seconds, resulting in a rise and settling

time of under 2 seconds. Rise time and settling time are

limited by the maximum flow rate of the proportional valves

used in this work (Section II-C).

Fig. 12 demonstrates the potential of our soft robot to ma-

nipulate objects through a simple pick and place experiment.

We attached a vacuum gripper to the end of the robot and

oriented the robot so that the gripper came into contact with

a 50 gram box with visual servo control (Fig. 12(a)). By

pressurizing the pneumatic backbone, the robot is able to

apply enough vertical force to pick the box up (Fig. 12(b))

and place it at another location (shown in Fig. 12(c) just after

release). Because the vacuum gripper was attached through

the center of the tip of the robot, no torsional moments

about the robot’s backbone were generated by the weight

of the lifted object. The maximum weight the robot can lift



Fig. 12. Pick and place maneuver. (a) The robot was oriented so that
the vacuum gripper comes into contact with a box via visual servo control.
(b) Pressurizing the pneumatic backbone results in the robot lifting the box
upward. (c) Robot is maneuvered to place box in another location, shown
here just after releasing the box.

is limited by transverse buckling of the robot’s backbone.

This critical load to cause transverse buckling of an inflated

beam is known to be F = πPR3/L, where F is the

buckling force, R is the robot backbone radius, and P is

the internal pressure of the robot [27]. Using the parameters

of the robot, we found the maximum weight the robot can

lift is approximately 200 grams. However it should be noted

that lighter objects are used as controllability of the robot

diminished with increasing object weight.

VI. CONCLUSION AND FUTURE WORK

This paper presented the design and fabrication of a new

series pneumatic artificial muscle (sPAM) that was used as a

soft tendon analog in a continuum robot. It was shown that

as long as the sPAM’s deflated length is not too large, it is

well modeled as a pleated PAM, which has been thoroughly

analyzed in past work [7]. A static equilibirum kinematic

model was presented and experimentally verified for the soft

continuum robot that uses past work on geometric kinematics

for constant curvature continuum robots. Finally, a proof-

of-concept demonstration of control using an eye-in-hand

visual servo control law was presented, showing the robot’s

promise for real-time control. Future work includes adding

additional degrees of freedom to the continuum robot, either

through novel mechanisms or by stacking multiple constant

curvature sections together, as well as developing a dynamic

model of the robot’s motion and considering the effect of

environmental contact on movement of the robot.
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