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Abstract—A 3-D analytical model is presented for a Halbach
axial magnetic coupling. The field and torque are determined by
first solving a 2-D field problem at the radial location in which
the radial flux density is assumed zero. The solution to the 2-D
problem is then incorporated into a 3-D magnetic charge sheet
model so as to enable the complete 3-D fields and torque to be
accurately computed. The presented model is compared with a
3-D finite element analysis model. The new 3-D field and torque
analysis approach can be extended to model other 3-D axial mag-
netic devices.
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I. INTRODUCTION

A permanent magnetic coupling (PMC) provides a means
of spatially transmitting torque without physical contact. It
enables components to be isolated and thereby can minimize
or eliminate mechanical vibration through magnetic
damping [1]. A PMC can act as a torque limiter that can
isolate loads when subjected to over torque conditions [2]. A
PMC also allows one to insert a mechanical barrier between
the drivers allowing torque to be transmitted between separate
environments under different pressure differentials [3].

As the PMC is capable of continuously operating at a high
sustained magnetic shear stress the study of the mass and
volumetric torque densities of PMCs provides insight into the
upper performance bound at which other magnetic devices,
such as magnetic gearboxes [4, 5] are able to achieve.

There are two main types of PMCs, axial and radial
topologies [6]. This paper focuses on deriving exact closed
form 3-D torque and field equations for an axial Halbach rotor
coupling. The fields in an axial magnetic coupling (AMC) are
highly dependent on radial position and therefore in order to
accurately model the field profile and consequently torque a
full 3-D model is needed. Lubin et. al. [7, 8] demonstrated
that if only 2-D AMC models are used the error can be up to
30% [7, 8].

Wang et. al. [9], Shin ez. al. [10] and Yao et. al. [11]
utilized the 3-D finite element analysis (FEA) method to study
the performance of an AMC. While Dolisy ez. al. created a
3-D analytic model of a magnetic coupling by ignoring the
curvature effects [12, 13]. This approach was shown to be
quite accurate when the air-gap is not large. Furlani [14] and
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Waring et. al. [15] computed the 3-D field and torque due to
two magnetic rotor couplings surrounded by air. In order to
create the model the field contributions were discretized by
subdividing the individual segments into magnetic charge
regions and then summing up the contributions of each
surface. Such an approach is highly accurate [11, 14] but the
approach is laborious and the final equation is hard to
interpret. Furlani’s formula results in the need to evaluate a
torque expression that contains six embedded summation
terms [14]. Such an approach cannot be extended to problems
that contain magnetic steel. Thompson etz. al. [16, 17] used a
similar approach. Thompson derived the 3-D field for an axial
Halbach rotor by summing up the individual field
contributions from individual surface current sheets on each
magnet surface. This approach required the evaluation of
many double integrals as well as summation terms and the
approach also cannot be generalized to model problems that
contain magnetic steel.

This paper presents a different type of analytic approach to
that presented previously [7, 8, 12-17]. In this paper the 3-D
field and consequently torque created by a Halbach AMC is
determined by using two primary steps:

(a) The axial field for one rotor is solved in 2-D at radius
r=0,+1)/2 ©)
(b) The field solution from (a) is then used as the magnetic
charge source term for an equivalent magnetic charge
disc model. The equations are then solved using an
integral approach.

By following the above two steps it is shown in this paper
that highly accurate 3-D field and torque equations for a
magnetic coupling can be determined. The resulting torque
equation is easy to compute as it only needs one integral to be
evaluated. Although the approach presented here is for a
Halbach AMC the presented approach could be extended to
model AMCs that contain magnetic steel [7, 8, 12, 13].

II. 2-D ANALYTICAL MODEL

The model of an axial Halbach rotor is shown in Fig. 1. It
has an inner radius, r;, an outer radius, 7, and an axial length
d;. The rotor magnets are magnetized along the axial direction
as shown. The field created by the Halbach rotor is first solved
at radius r.. It is assumed that at radius 7. the radial field is



zero (due to symmetry). Therefore at »=r. the magnetic field is
assumed to be fully described by
B(r,,0,z) =0r+ B, (r.,0,2)8+ B.(1.,0,2)z 2)
Therefore the field B will exist only on a 2-D cylindrical
surface as illustrated in Fig. 2. Surface regions Q; and Q;y are
non-magnetic regions and surface region Q; contains the axial
magnetized Halbach magnets. By solving for the field in this
2-D model the magnetic charge value necessary to model the
3-D field can be obtained (as discussed in section III).
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Fig. 1. An axial Halbach rotor.

Fig. 2. The 2-D cylinderical
surface region for the 2-D
analytical model.

A. Governing Equations

Maxwell’s equations for a magnetostatic current-free
problem are given by [18]:

V-B=0 3)
VxH=0 “)
The constitutive equation when a magnetization vector M
is presented is given by:

B=yp H+ uM (5)
Substituting (5) into (3) and assuming linearity gives
uV-H=-V-M (6)

From (4) the magnetic field intensity is related to the magnetic
scalar potential by

H=-V¢ (7
Therefore
1 0¢
H,=——— 8
Ay ®)
o9
H =-—"/ 9
. €]
Substituting (7) into (6) yields
1 o°¢" 0%¢" V-M .
2 892 aZZ = > 1 QI[ (10)
In the non-magnetic regions M = 0 and so (10) becomes:
1 0°¢ 6 ¢
_2892 82 _Oan (11)
1 a ¢IH 62¢HI )
r_2 06> + P =0,in Q,, (12)

B. Magnetization Vector

The magnetizing distribution in region Q; can be expressed by
the Fourier series
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M =M ()z+ M, (0)0 (13)
=S a, cos(np, 02+ > b, sin(np,0  (14)
where " "
% f M_(6)cos(np,0)d6 (15)
_4 /f M, (0)sin(np,0)d6 (16)

and p; = pole-pairs, 7=2n/p;. The Halbach rotor is made up
three different magnet types: (1) axially magnetized (2)
angular magnetized and (3) angular and axially magnetized
magnets. Type (3) magnets are modeled using a superposition
of type (1) and (2) magnets. This is illustrated in Fig. 3.
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Fig. 3. The superposition of M. and M, Halbach magnetized magnets.

Referring to Fig. 3 equation (15) can be written as:

3 3z

8p, 3[’/ \/5
a, I M cos(np,0)d0 + I —Mcos(np,H)d@
3/’/
T K2
3!’1

- j QMcos(nplﬁ)dﬁ j M cos(np,0)do (17)

8p; Pr 3}71

where M= B,/u, and B, = residual magnetic flux density. Such
an approximation was used by Xia ef al. [19] and provides an
accurate result when the Halbach magnets are highly segment-

ed. Evaluating (17) and simplifying yields:

=M G (n D2 -2 cos(nE) 142 cos(n )] (18)
nrw 2 8 8
Similarly evaluating (16) one obtains:
b, =a,sin(nr/2) (19)
Therefore |a,[=|b,|. Substituting (19) into (14) gives
M = Za [cos(np,0)Z + sin(n —) sin(np, 60)6] (20)

n=1
The harmonics terms for the case when p; = 4 are shown in
Fig. 4. The fundamental has the magnitude of
la|=c,M =cB, | 1, 1)
where ¢; = 0.9745. If only the fundamental is considered then
after substituting (20) into (10) and utilizing (21) one obtains



1 o’¢" o*¢" B, .
= 6;2 + 6z¢2 =—p, ———cos(p,0),inQ, (22)
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Fig. 4. Magnitude of different harmonics
C. Boundary Conditions
The boundary conditions at I";, are given by:
o4 (0.2)|  _ 104" (6.2)| _aB,cosp0) )y
Oz | _4 0z =4 Hy
2
1 1
o4'0.2)|  _2¢"(6.2)] 24
00 | 4 00 |4
2 2
and the boundary conditions at ', are given by:
wog" 0.2 _aBeos(p0) 24" 0.5
82 z:,ﬁ /uO aZ zzfdfl
2 2
04" (0.2)|  _ 29" (6,2)| 26)
06 d, 06 d,

z=—7" z=—7"

The outer boundaries at +d, are assumed to be sufficiently far
away such that

H,'(6.d,)=0
H," (0,~d,)=0

27)
(28)

D. General Solution
By using the separation of variables method, the general
solution to (11) and (12) are:

dr
2

Pri.

]

#' (1..0,2) = Ccos(p,0)c (29)

Pr d,
2L, Ar
7, (= 2 )

©

¢" (r.,0,z)=Gcos(p,0)e
where C and G are unknowns that need to be determined.
The general solution of (22) is obtained by determining the
homogeneous and particular solution of (22). By using the
superposition principal one obtains [20]

4
+De"" 2

(30)

i

+FeT(

A

rcclBr 2

¢II(VC’9’Z) =[
ll’lrll'lop[

where D and F are unknowns that need to be determined
Substituting (29)-(31) into (23)-(26) enables the four un-
known terms in (29)-(31) to be determined as

C 2¢,Br, el ( o+ (e —e ™)
H,pp [ (u, +1) = (u, =1)]

)]COS(pI 0) (1)

(32)
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2¢,B i —1)( —e
G — Cl rrc Zke (lur 5 )(eizk e ) - (33)
yp; [e7 (u +1)"—e ™ (u, —1)7]
ki, 2 ko _k
poabn o ety
Hobte Py [ & (p, +1) =€ (1, -1)' |
p_aBrn " L& (=1 =" (u, 1)’ (35)
Hott,pr [ € (u, +1) =€ (u, = 1) ]
where
d d
k,=p, 2_1 =D ! (36)
l"C VO + l’;
Substituting (32) into (29) and utilizing (8)-(9) gives:
24
B'(r.,0,z) = B, [sin(p,0)8+cos(p,O)z]e " * * (37)
where
1 ki k; _ —k;
B =2cp, — HetDe (e —e ) (38)

e () e (1)

III. 3-D ANALYTICAL MODEL

The 2-D model in the previous section does not consider
the radial length of the rotor. To take into account the field
variation along the radial length a magnetic charge disc is
utilized. The charge disc has inner radius ; and outer radius 7,
as shown in Fig. 5. The disc is located axially at z; = dj/2.

(r.0,z2)

Fig. 5. 3-D axial charge disc model. The magnetic charge is only present
between 7; and r,.

A. General Solution

The magnetic scalar potential due to the surface magnetic
charge disc can be computed from

21,
$r.0,2) = —— | IMQdeG, (39)
A, " R,
where
R(r,z)=r? +12=2rr. cos(0—0,)+(z—z,)  (40)

and the charge distributed over the disc is described by charge
function p.,(6;). Substituting (39) into (7) the magnetic flux
density created by the magnetic charge sheet disc is:

2

ﬁ—pmf;)R r.dr.do,

0 1

B(r,0,z) = 4L 41)
v

where
R =[r—r cos(6—6,)|r +[r.sin(0-6,)]6+(z—d, /2)Z (42)



B. Charge Function

The boundary interface condition at the location of the
charge sheet is defined as [18]
p,(6,)=(B'~B") -z (43)
where superscripts / and /7 denote the field terms just above
and below the magnetic charge sheet respectively. As all the
external field emanates normally from the charge sheet the
field above and below the charge disc, at the boundary, must
be equal and opposite:

B" z2=-B' -z (44)
Substituting (44) into (43) gives [21]
p,(6,)=2B"(r.,0,d,/2)-z (45)

From (37) the value of B’ at (r,0,z) =

fined. Substituting (37) into (45) gives
P.0;) = 2Br1n cos(p, ;) (46)

The magnitude value in (46) is assumed constant across the

surface of the charge disc.

C. Field Solution

Substituting (46) and (42) into (41) gives the magnetic flux
density field values as

(re,0,d2) is de-

B! (r,0,z) = B—] Jiri[ )]cos(p,0,)dr.dO, (47)
B)(r,0,z) = B, T 0,)dr.do, (48)
B!(r,0,z) = (| 6,)dr.d6, (49)

The integral terms in (47) (49) can be evaluated along the ra-
dial direction resulting in the need to numerically evaluate
only one integral. For instance, the evaluation of (49) yields

2z 2 _ 2 _ _
:l(z—i)B;J[r +(z—d,/2)* —rr, cos(0—6))
T 2 0 R (r,,d,/2)
_r2+(z—d,/2)2_rr,.cos(6?—6?,) cos(p,0,) 46, (50)
R (r,d,/2) N(@,6,,z,d,/2)
where
N(0,6,z,z,)=[r’ cos(2(0—6,))—r* —=2(z—z,)’] (51)

Similarly substituting (46) into (39) the magnetic scalar
potential is

3 2B! "% cos(p,6,)
9002 = | J J rd,/2)

Evaluating (52) along the radlal d1rect10n yields:

¢'(r,0,2) = 231 f{COS(Pﬂ MR (7,.d,12) = R,(r;,d, /2)]

Hoy
log[r, —rcos(60—6,)+ R (r,,d,/2)]
log[r, —rcos(8—6,)+ R (r,,d,/2)]
Defining a new integration variable:
0,=0-06,
allows (53) to be written as:

r.dr.do,

(52)

(53)

+rcos(60—-0,)

1do

1

(54)
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#(r,0,5)= B, | <52 0=0)

0

][Rz (’} s d[ /2)_R2 (ro > d[ /2)]d9
27,

1, 27

T 2;;0 J cos[(p, (0 -6,)]cos(6,)
o r,—rcos(d,)+R,(r,d,/2) d0 (55)
8 rcos0)+ R,(rd, 12) |

where:
Ry(r,,2,) = \Jr* +1.7 =27, cos(8,) + (zz, )’

(56)

IV. MAGNETIC FIELD VALIDATION

The analytical magnetic flux density equations were com-
pared with the field computed using a 3-D JMAG FEA model
and a magnetic charge sheet model developed in COMSOL.
The parameters for the axial rotor are shown in TABLE 1. The
flux density was compared at (r,z) = (24.5,20) mm. The Simp-
son’s rule was used to calculate the integral terms. The com-
parison is shown in Fig. 6 and Fig. 7. It can be seen that good
agreement was achieved between the analytic and numerical
models. The significant field changes with respect to radial
position are clearly apparent when looking at the field plots
shown in Fig. 8 - Fig. 11.

TABLE I
AXIAL ROTOR PARAMETERS

Description Value | Unit
Outer radius, 7, 30 mm
Inner radius, 7; 20 mm
Axial length, d; 30 mm
Pole pairs, p;=p 4 -
Magnetic permeability, 4, 1.05 -
Remnant flux density, B, 1.27 T
Density of magnet material | 7600 | kg/m?

0.5;

[ Analytical|

Flux density B [T]

180 240 300
f [degrees]
Magnetic flux density comparison between the analytical model and

3-D JMAG model.

120

60 360

Fig. 6.

— Analytical |

0.5
" COMSOL | 4

Flux density 5 [T]

240 360

120

60 300

180
f [degrees]
Fig. 7. Magnetic flux density comparison between the analytical model and
COMSOL charge sheet FEA model.
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Fig. 8. (a) Surface and (b) contour plot for the scalar potential function evalu-
ated at z =20 mm.
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Fig. 9. (a) Surface and (b) contour plot for the B, magnetic field component
evaluated at z =20 mm.
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Fig. 10. (a) Surface and (b) contour plot for the By magnetic field component
evaluated at z =20 mm.
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Fig. 11. (a) Surface and (b) contour plot for the B, magnetic field component
evaluated at z =20 mm.

V. COUPLING TORQUE

Utilizing the equations given in the previous section one
can compute the torque resulting from the interaction of two
Halbach AMCs. Consider the problem shown in Fig. 12(a) in
which a second axial Halbach rotor is placed above the first.
The rotors are separated by a gap g. The two rotors have the
same inner radius and outer radius. Rotor /7 has an axial length
of dyy and py pole-pairs. In order to generate non-zero average
torque the two rotors’ pole-pairs are equal p=p; = pu.

In order to compute the torque, the two rotors are replaced
with two fictitious magnetic charge discs, as shown in Fig.
12(b), that are axially located at z;= dy/2 and zi=d;/2+g.
The magnetic charge function for rotor /7 is defined as

Py (0)=2B, cos[p(6-06,)] (57)
where
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1 ki ki _ —ky
B, =2¢B, 2k(lur+ )ez (efzk ¢ 2 (58)
e (p )" —e ™ (u, 1)
d
ky=p B _'I_Ir (59

and 6, is an initial angular position of the field on disc /1.
z zZ

1 +
i
H
H

Disc II

(2) (b)
Fig. 12. (a) The model of a Halbach axial magnetic coupling separated by gap
g and (b) the equivalent fictitious magnetic charge disc model.

The magnetic energy contained within the problem region
can be computed from [22]

277y

W= [¢'.0.2,)p) O)rdrdo (60)

where ¢’ is defined in (55). The torque on the surface of rotor
11 can then be calculated from the magnetic energy by [22]

T = G_W 61)
80 q}l = constant
Substituting (60) into (61) one obtains
27 t, apII (0)
_ 7 m
T= ! j #(r,0,2,) =2 = rdrdo (62)

Then substituting (55) and (57) into (62) and evaluating the
integral with respect to @ one obtains

) IBII 27t
T(6,) =sin(pb,) 'L = p_[ jcos(pﬁd)RS(r,Hd)
0 07
+cos(p8,)cos(8,)log[R, (r,0,)]r’drdd, (63)
where
R(r,0,) = Jr,} +1* +g* —2rr, cos(6,)
—\/};2 +r7 + g —2rr cos(d,) (64)
- O+ Jr +ri+g> =2 0
R.(r0,) = r,—rcos(d,) \/ro r+g rr, cos(6,) 65)

r,—rcos(6,)+ \/rl.z +r’+g° =2 cos(6,)
The radial integral term in (63) can be evaluated but its solu-
tion is too long to be included in this paper.

VI. TORQUE VALIDATION

The parameters used to model each axial rotor are the
same and are given in TABLE I. The torque obtained from (63)
is calculated as a function of &, and compared with the 3-D
JMAG model and COMSOL charge sheet FEA model when
the air-gap g=1mm is used. The comparison is shown in Fig.
13. The discrepancy at the peak value between the analytical



and JMAG model is within 2% and the discrepancy between

the analytical model and COMSOL is within 0.02%.

30 — Analytical L |~ Analytical

20 IMAG 20 ™, | » COMSOL| /™,
—_ fooA / A — / \
z / ) y ) / )
Ew \ A Ew0 ; /
z 0 / ! = 0 f i
E3-1() \\ \\ g.l[} \ y J

i/ v /
20} %, " 200 8 S
30
0 180 3[)0 180

60 1 60 120
5’ [degrees] # [degrees]

(a) (b)
Fig. 13. Torque comparison between (a) the analytical model and 3-D IMAG
model and (b) the analytical model and the COMSOL charge sheet model.

VII. PARAMETER ANALYSIS

Using the parameters shown in Table I, the axial length of
the two rotors, di and diy were both varied while keeping other
parameters constant. The calculated results are shown in Fig.
14, it can be seen that the maximum mass torque density oc-
curs when the axial length of the outer and inner rotors are
equal. Therefore, in the following analysis di= dir.

?1,70 . r,=70mm
2 e
E | ~ r,=50mm
565 Bl
E
=
] ——_r=30mm
= 60 T
g .
55
4 -3 -2 -1 0 1 2 3 4

Difference of axial length, d, - d” [mm)]
Fig. 14. Mass torque density with different axial lengths.

With the outer radius r, fixed, the inner radius 7; and axial
length d were varied to obtain the maximum mass torque den-
sity and volumetric torque density. An example of the plot
showing the maximum torque point for the case when
7o =55 mm and p = 4 is shown in Fig. 15. It can be seen that
the peak mass and volumetric torque density occur at different
locations. The peak mass torque density occurs when (r;,d) =
(28,18) mm and peak volume torque density occurs at (7;,d) =
(0,18) mm

The peak mass and volumetric torque density for different
outer radii and pole-pairs was calculated and the resulting plot
for the case when g = 1 mm and for g = 10mm is shown in
Fig. 16 and Fig. 17. Fig. 16 shows that extremely high torque
densities can be created at a very small air-gap and the torque
density keeps increasing as the number of pole-pairs increase
At the small air gap the torque density is more dependent on
pole-number than outer radius. In contrast, Fig. 17 shows that
with an increased air-gap the outer radius has a bigger impact
on torque density and the increased pole number decreases
torque density (due to the larger flux leakage).

Defining the radius ratio

L=r/r, (66)
the value of I" as a function of pole-pair and outer radius that
yields the peak mass torque density for g=1mm and g= 10
mm was computed. The resulting values are shown in Fig. 18.
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It can be seen that I" is not a constant ratio as some have stated
in the past.

Using a Dell PowerEdge T410 the calculation time for the
analytic based and numerical models are compared in Table II.

2 & = %
= = =} =}

(=11

Mass torque density [Nm/kg]

50

o 60
Inner radius 7, [mm]100 0

w
=)
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400

- o W
e & o
o S & &

Volume torque density [Nm/L]

50 o

Inner radius r, [mm]m(-)-i-u - VA-xia[ 1
(®)

Fig. 15. (a) Mass torque density and (b) volumetric torque density as a func-
tion of axial length and inner radius when r, = 55mm, g = lmm, p = 4.
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Fig. 16. (a) Peak mass torque density and (b) volumetric torque density as a
function of outer radius 7, and pole pairs when g = 1 mm.
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Fig. 17. (a) Peak mass torque density and (b) volumetric torque density as a
function of outer radius r, and pole pairs when g = 10 mm.
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Fig. 18. Radius ratio for achieving peak mass torque as a function of outer
radius 7, and pole pairs when (a) g =1 mm and (b) g = 10 mm.

60

TABLE II
RUN-TIME FOR TORQUE CALCULATION
Description Analytical | JMAG | COMSOL | Unit
Run-time 3 252 143 s

VIII. CONCLUSION

This paper has presented a new technique for computing
the torque and fields for an AMC. The approach was demon-
strated for a Halbach rotor coupling. The benefit of using the
presented approach lies in the ability to accurately derive the
3-D field and torque equations from the magnitude of the field
determined from a 2-D solution. A very good agreement was
achieved between the analytical and FEA models. It was also
shown that when the AMC air-gap is small, the pole-pairs
have a larger influence on the torque density. While when the
AMC air gap is large, the outer radius has a more dominant
influence on torque.
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