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Abstract—A 3-D analytical model is presented for a Halbach 
axial magnetic coupling. The field and torque are determined by 
first solving a 2-D field problem at the radial location in which 
the radial flux density is assumed zero. The solution to the 2-D 
problem is then incorporated into a 3-D magnetic charge sheet 
model so as to enable the complete 3-D fields and torque to be 
accurately computed. The presented model is compared with a 
3-D finite element analysis model.  The new 3-D field and torque 
analysis approach can be extended to model other 3-D axial mag-
netic devices. 

Keywords—axial coupling; magnetic charge; Halbach rotor  

I. INTRODUCTION  
A permanent magnetic coupling (PMC) provides a means 

of spatially transmitting torque without physical contact. It 
enables components to be isolated and thereby can minimize 
or eliminate mechanical vibration through magnetic 
damping [1]. A PMC can act as a torque limiter that can 
isolate loads when subjected to over torque conditions [2].  A 
PMC also allows one to insert a mechanical barrier between 
the drivers allowing torque to be transmitted between separate 
environments under different pressure differentials [3].   

As the PMC is capable of continuously operating at a high 
sustained magnetic shear stress the study of the mass and 
volumetric torque densities of PMCs provides insight into the 
upper performance bound at which other magnetic devices, 
such as magnetic gearboxes [4, 5] are able to achieve.  

There are two main types of PMCs, axial and radial 
topologies [6].  This paper focuses on deriving exact closed 
form 3-D torque and field equations for an axial Halbach rotor 
coupling.  The fields in an axial magnetic coupling (AMC) are 
highly dependent on radial position and therefore in order to 
accurately model the field profile and consequently torque a 
full 3-D model is needed.  Lubin et. al. [7, 8] demonstrated 
that if only 2-D AMC models are used the error can be up to 
30% [7, 8].   

Wang et. al. [9], Shin et. al. [10] and Yao et. al. [11] 
utilized the 3-D finite element analysis (FEA) method to study 
the performance of an AMC. While Dolisy et. al. created a 
3-D analytic model of a magnetic coupling by ignoring the 
curvature effects [12, 13]. This approach was shown to be 
quite accurate when the air-gap is not large.  Furlani [14] and 

Waring et. al. [15] computed the 3-D field and torque due to 
two magnetic rotor couplings surrounded by air. In order to 
create the model the field contributions were discretized by 
subdividing the individual segments into magnetic charge 
regions and then summing up the contributions of each 
surface. Such an approach is highly accurate [11, 14] but the 
approach is laborious and the final equation is hard to 
interpret.  Furlani’s formula results in the need to evaluate a 
torque expression that contains six embedded summation 
terms [14].  Such an approach cannot be extended to problems 
that contain magnetic steel.  Thompson et. al. [16, 17] used a 
similar approach. Thompson derived the 3-D field for an axial 
Halbach rotor by summing up the individual field 
contributions from individual surface current sheets on each 
magnet surface. This approach required the evaluation of 
many double integrals as well as summation terms and the 
approach also cannot be generalized to model problems that 
contain magnetic steel.     

This paper presents a different type of analytic approach to 
that presented previously [7, 8, 12-17]. In this paper the 3-D 
field and consequently torque created by a Halbach AMC is 
determined by using two primary steps: 

(a) The axial field for one rotor is solved in 2-D at radius  
 ( ) / 2c o ir r r� �   (1) 

(b) The field solution from (a) is then used as the magnetic 
charge source term for an equivalent magnetic charge 
disc model. The equations are then solved using an 
integral approach.  

By following the above two steps it is shown in this paper 
that highly accurate 3-D field and torque equations for a 
magnetic coupling can be determined. The resulting torque 
equation is easy to compute as it only needs one integral to be 
evaluated. Although the approach presented here is for a 
Halbach AMC the presented approach could be extended to 
model AMCs that contain magnetic steel [7, 8, 12, 13]. 

II. 2-D ANALYTICAL MODEL 
The model of an axial Halbach rotor is shown in Fig. 1. It 

has an inner radius, ri, an outer radius, ro and an axial length 
dI. The rotor magnets are magnetized along the axial direction 
as shown. The field created by the Halbach rotor is first solved 
at radius rc.  It is assumed that at radius rc the radial field is 
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zero (due to symmetry). Therefore at r=rc the magnetic field is 
assumed to be fully described by  
           ( , , ) 0 ( , , ) ( , , )c c z cr z B r z B r z�� � �� � �B r z((((( ,( z��           (2) 

Therefore the field B will exist only on a 2-D cylindrical 
surface as illustrated in Fig. 2. Surface regions ΩI and ΩIII are 
non-magnetic regions and surface region ΩII contains the axial 
magnetized Halbach magnets. By solving for the field in this 
2-D model the magnetic charge value necessary to model the 
3-D field can be obtained (as discussed in section III).   

  
Fig. 1. An axial Halbach rotor. Fig. 2.  The 2-D cylinderical 

surface region for the 2-D 
analytical model. 

 

A. Governing Equations  
Maxwell’s equations for a magnetostatic current-free 

problem are given by [18]: 

 0�� �B   (3) 
 0�� �H   (4) 

The constitutive equation when a magnetization vector M 
is presented is given by: 
 0 0r� � �� �B H M   (5) 
Substituting (5) into (3) and assuming linearity gives 
 r� �� � 	��H M   (6) 
From (4) the magnetic field intensity is related to the magnetic 
scalar potential by  
 
� 	�H   (7) 
Therefore 

 1

c

H
r�



�

�
� 	

�
     (8) 

 zH
z

�

� 	
�

  (9) 

Substituting (7) into (6) yields 
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2 2 2

1 , in
II II

II
rcr z


 

��

� � � �
� � �

� �
M   (10) 

In the non-magnetic regions M = 0 and so (10) becomes:   

 
2 2

2 2 2

1 0, in
I I

I
cr z


 

�

� �
� � �

� �
  (11) 

 
2 2

2 2 2

1 0, in
III III

III
cr z


 

�

� �
� � �

� �
  (12) 

B. Magnetization Vector  
The magnetizing distribution in region ΩII can be expressed by 
the Fourier series  

                     ( ) ( )zM M�� �� �M z ( )( )��                                    (13) 

                         
1 1

cos( ) sin( )n I n I
n n

a np b np� �

 


� �

�� �z sisi



��� �          (14) 

where 

 
/

0

4 ( )cos( )
Ip

n z Ia M np d
T

�

� � �� �   (15) 

 
/

0

4 ( )sin( )
Ip

n Ib M np d
T

�

� � � �� �   (16) 

and pI = pole-pairs, T=2π/pI. The Halbach rotor is made up 
three different magnet types: (1) axially magnetized (2) 
angular magnetized and (3) angular and axially magnetized 
magnets. Type (3) magnets are modeled using a superposition 
of type (1) and (2) magnets. This is illustrated in Fig. 3.  

 
Fig. 3. The superposition of Mz and Mθ Halbach magnetized magnets. 

 

Referring to Fig. 3 equation (15) can be written as: 
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	 	 �
�
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� �         (17) 

where M= Br/μo and Br = residual magnetic flux density.  Such 
an approximation was used by Xia et al. [19] and provides an 
accurate result when the Halbach magnets are highly segment-
ed. Evaluating (17) and simplifying yields: 

       2 3sin( )[(2 2)cos( ) 2 cos( )]
2 8 8n

Ma n n n
n

� � �
�

� 	 �        (18) 

Similarly evaluating  (16) one obtains: 
                             sin( / 2)n nb a n��                                     (19) 
Therefore |an|=|bn|.  Substituting (19) into (14) gives 

 
1

][cos( ) sin( )sin( )
2n I I

n
a np n np�� �




�

� �M z + ]
�sin(sin(sin( ��   (20) 

The harmonics terms for the case when pI = 4 are shown in 
Fig. 4.  The fundamental has the magnitude of  
 1 1 1 /r oa c M c B �� �   (21) 

where c1 = 0.9745. If only the fundamental is considered then 
after substituting (20) into (10) and utilizing (21) one obtains  

1449



2 2
1

2 2 2

1 cos( ), in
II II

r
I I II

o r cc

c Bp p
rr z


 
 �
� ��

� �
� � 	 �

� �
(22)

 
Fig. 4. Magnitude of different harmonics 

C. Boundary Conditions 
The boundary conditions at II�  are given by: 

 1

0
2 2

( , ) cos( )( , )
I I

III
r r I

d dz z

z c B pz
z z

� 
 � �
 �
�

� �

��
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� �
  (23) 
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z z

z z
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 �
� �

� �

� �
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  (24) 

and the boundary conditions at III�  are given by: 

       1

0
22

( , ) cos( ) ( , )
II

II III
r r I

dd zz

z c B p z
z z

� 
 � � 
 �
�

�	�	

� �
	 �
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  (25) 

 
2 2

( , ) ( , )
I I

II III

d d
z z

z z
 � 
 �
� �

�	 �	

� �
�

� �
  (26) 

 
The outer boundaries at ±do are assumed to be sufficiently far 
away such that 
 ( , ) 0I

oH d� � �   (27) 
 ( , ) 0III

oH d� � 	 �   (28) 

D. General Solution  
By using the separation of variables method, the general 
solution to (11) and (12) are:  

 
( )

2( , , ) cos( )
I I

c

p dz
rI

c Ir z C p e
 � �
	 	

�   (29) 

 
( )

2( , , ) cos( )
I I

c

p dz
rIII

c Ir z G p e
 � �
�

�   (30) 
where C and G are unknowns that need to be determined. 

The general solution of (22) is obtained by determining the 
homogeneous and particular solution of (22).  By using the 
superposition principal one obtains [20] 

2 21( , , ) [ ]cos( )
I I I I

c c

p d p d
z z

r rII c r
c I

r o I

r c B
r z De Fe p

p

 � �

� �

	� � � �� 	� � � �
� � � �� � �   (31) 

where D and F are unknowns that need to be determined 
Substituting (29)-(31) into (23)-(26) enables the four un-

known terms in (29)-(31) to be determined as 

 1
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where  
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i

I
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Substituting (32) into (29) and utilizing (8)-(9) gives: 

       ! 2( , , ) sin( ) cos( )
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c

p d
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III. 3-D ANALYTICAL MODEL  
The 2-D model in the previous section does not consider 

the radial length of the rotor. To take into account the field 
variation along the radial length a magnetic charge disc is 
utilized. The charge disc has inner radius ri and outer radius ro 
as shown in Fig. 5. The disc is located axially at zI = dI/2. 

 
Fig. 5.  3-D axial charge disc model.  The magnetic charge is only present 

between ri and ro. 

A. General Solution 
The magnetic scalar potential due to the surface magnetic 

charge disc can be computed from  

 
2

0 10

( )1( , , )
4

o

i

r
m I

c c I
r

r z r dr d
R

� " �

 � �

��
� � �   (39) 

where 

 2 2 2
1( , ) 2 cos( ) ( )c I c c I IR r z r r rr z z� �� � 	 	 � 	   (40)   

and the charge distributed over the disc is described by charge 
function ρm(θI). Substituting (39) into (7) the magnetic flux 
density created by the  magnetic charge sheet disc is: 

 
2

3
10

( )1( , , )
4

o

i

r
m I

c c I
r

r z r dr d
R

� " �
� �

�
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where  
 !  !cos( ) sin( ) ( / 2)c I c I Ir r r z d� � � �� 	 	 � 	 � 	R r zd((((  i ( i ( sin( sin( z�   (42) 
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B. Charge Function
The boundary interface condition at the location of the 

charge sheet is defined as [18] 
 ( ) ( )I II

m I" � � 	 �B B zz   (43) 
where superscripts I and II denote the field terms just above 
and below the magnetic charge sheet respectively.  As all the 
external field emanates normally from the charge sheet the 
field above and below the charge disc, at the boundary, must 
be equal and opposite: 
 II I� � 	 �B z B zIz B zI� 	 �� 	   (44) 
Substituting (44) into (43) gives [21] 
 ( ) 2 ( , , /2)I

m I c Ir d" � �� �B zz   (45) 
From (37) the value of I

zB  at (r,θ,z) = (rc,θ,dI/2) is de-
fined. Substituting (37) into (45) gives 
 ( ) 2 cos( )I

m I m I IB p" � ��   (46) 
The magnitude value in (46) is assumed constant across the 
surface of the charge disc. 

C. Field Solution 
Substituting (46) and (42) into (41) gives the magnetic flux 
density field values as  

2

3
10

( , , ) [ cos( )]cos( )
2

o

i

rI
I m c
r c I I I c I

r

B r
B r z r r p dr d

R

�

� � � � �
�

� 	 	� �  (47) 

 
2 2

3
10

( , , ) sin( )cos( )
2

o

i

rI
I m c

I I I c I
r

B r
B r z p dr d

R

�

� � � � � �
�

� 	� �             (48) 

2

3
10

( , , ) ( ) cos( )
2 2

o

i

rI
I m cI
z I I c I

r

B rdB r z z p dr d
R

�

� � �
�

� 	 � �                  (49) 

The integral terms in (47)-(49) can be evaluated along the ra-
dial direction resulting in the need to numerically evaluate 
only one integral. For instance, the evaluation of (49) yields 
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  where  
      2 2 2( , ) [ cos(2( ), ) 2( ) ]I I I IN rz z r zz� �� �� 	 	 	 	         (51) 

Similarly substituting (46) into (39) the magnetic scalar 
potential is  
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Evaluating (52) along the radial direction yields: 
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Defining a new integration variable: 
 d I� � �� 	   (54) 
allows (53) to be written as: 
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where: 
          2 2 2

2 ( , ) 2 cos( ) ( )c I c c d IR r z r r rr z z�� � 	 � 	   (56) 

IV. MAGNETIC FIELD VALIDATION 
The analytical magnetic flux density equations were com-

pared with the field computed using a 3-D JMAG FEA model 
and a magnetic charge sheet model developed in COMSOL.  
The parameters for the axial rotor are shown in TABLE I. The 
flux density was compared at (r,z) = (24.5,20) mm. The Simp-
son’s rule was used to calculate the integral terms. The com-
parison is shown in Fig. 6 and Fig. 7.  It can be seen that good 
agreement was achieved between the analytic and numerical 
models.  The significant field changes with respect to radial 
position are clearly apparent when looking at the field plots 
shown in Fig. 8 - Fig. 11. 

 

TABLE I  
AXIAL ROTOR PARAMETERS 

Description Value Unit 
Outer radius, ro 30 mm 
Inner radius, ri 20 mm 
Axial length, dI 30 mm 
Pole pairs, pI = p 4 - 
Magnetic permeability, μr 1.05 - 
Remnant flux density, Br 1.27 T 
Density of magnet material 7600 kg/m3 

 

 
Fig. 6.   Magnetic flux density comparison between the analytical model and 

3-D JMAG model.  

 
Fig. 7. Magnetic flux density comparison between the analytical model and 

COMSOL charge sheet FEA model.  
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(a)                 (b) 

Fig. 8. (a) Surface and (b) contour plot for the scalar potential function evalu-
ated at z = 20 mm. 

 

 
(a)                 (b) 

Fig. 9. (a) Surface and (b) contour plot for the Bz magnetic field component 
evaluated at z = 20 mm.  

 

  
(a)                 (b) 

Fig. 10. (a) Surface and (b) contour plot for the Bθ magnetic field component 
evaluated at z = 20 mm. 

 

  
(a)                 (b) 

Fig. 11. (a) Surface and (b) contour plot for the Br magnetic field component 
evaluated at z = 20 mm. 

  

V. COUPLING TORQUE 
Utilizing the equations given in the previous section one 

can compute the torque resulting from the interaction of two 
Halbach AMCs.  Consider the problem shown in Fig. 12(a) in 
which a second axial Halbach rotor is placed above the first.  
The rotors are separated by a gap g. The two rotors have the 
same inner radius and outer radius. Rotor II has an axial length 
of dII and pII pole-pairs. In order to generate non-zero average 
torque the two rotors’ pole-pairs are equal p=pI = pII. 

In order to compute the torque, the two rotors are replaced 
with two fictitious magnetic charge discs, as shown in Fig. 
12(b), that are axially located at zI = dI/2 and zII=dI/2+g. 
The magnetic charge function for rotor II is defined as  
                        ( ) 2 cos[ ( )]II II

m m tB p" � � �� 	                    (57) 
where 

 2 221 2
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                       II
II

o i

k
r r

dp�
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                                      (59) 

and θt is an initial angular position of the field on disc II. 

 
   (a)                                                     (b) 

Fig. 12. (a) The model of a Halbach axial magnetic coupling separated by gap 
g and (b) the equivalent fictitious magnetic charge disc model. 

 
The magnetic energy contained within the problem region 

can be computed from [22]  

                 
2

0

( , , ) ( )
o

i

r
I II

II m
r

W r z rdrd
�


 � " � �� � �                         (60) 

where I
  is defined in (55). The torque on the surface of rotor 
II can then be calculated from the magnetic energy by [22] 
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Substituting (60) into (61) one obtains 
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Then substituting (55) and (57) into (62) and evaluating the 
integral with respect to θ one obtains  
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The radial integral term in (63) can be evaluated but its solu-
tion is too long to be included in this paper.   

VI. TORQUE  VALIDATION 
The parameters used to model each axial rotor are the 

same and are given in TABLE I.  The torque obtained from (63) 
is calculated as a function of θt and compared with the 3-D 
JMAG model and COMSOL charge sheet FEA model when 
the air-gap g=1mm is used. The comparison is shown in Fig. 
13.  The discrepancy at the peak value between the analytical 
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and JMAG model is within 2% and the discrepancy between 
the analytical model and COMSOL is within 0.02%.   

  
(a) (b) 

Fig. 13. Torque comparison between (a) the analytical model and 3-D JMAG 
model and (b) the analytical model and the COMSOL charge sheet model.  

VII. PARAMETER ANALYSIS 
Using the parameters shown in Table I, the axial length of 

the two rotors, dI and dII were both varied while keeping other 
parameters constant. The calculated results are shown in Fig. 
14, it can be seen that the maximum mass torque density oc-
curs when the axial length of the outer and inner rotors are 
equal.  Therefore, in the following analysis dI = dII. 

 
Fig. 14.  Mass torque density with different axial lengths. 

 
With the outer radius ro fixed, the inner radius ri and axial 

length d were varied to obtain the maximum mass torque den-
sity and volumetric torque density. An example of the plot 
showing the maximum torque point for the case when 
ro = 55 mm and p = 4 is shown in Fig. 15. It can be seen that 
the peak mass and volumetric torque density occur at different 
locations. The peak mass torque density occurs when (ri,d) = 
(28,18) mm and peak volume torque density occurs at (ri,d) = 
(0,18) mm  

The peak mass and volumetric torque density for different 
outer radii and pole-pairs was calculated and the resulting plot 
for the case when g = 1 mm and for g = 10mm is shown in 
Fig. 16 and Fig. 17.  Fig. 16 shows that extremely high torque 
densities can be created at a very small air-gap and the torque 
density keeps increasing as the number of pole-pairs increase 
At the small air gap the torque density is more dependent on 
pole-number than outer radius. In contrast, Fig. 17 shows that 
with an increased air-gap the outer radius has a bigger impact 
on torque density and the increased pole number decreases 
torque density (due to the larger flux leakage).    

Defining the radius ratio  
                                /i or r� �                                           (66) 

the value of Г as a function of pole-pair and outer radius that 
yields the peak mass torque density for g = 1 mm and g = 10 
mm was computed. The resulting values are shown in Fig. 18. 

It can be seen that Г is not a constant ratio as some have stated 
in the past. 

Using a Dell PowerEdge T410 the calculation time for the 
analytic based and numerical models are compared in Table II. 
 

   
(a) 

 
(b) 

Fig. 15.  (a) Mass torque density and (b) volumetric torque density as a func-
tion of axial length and inner radius when ro = 55mm, g = 1mm, p = 4. 

 
(a) 

 
(b) 

Fig. 16. (a) Peak mass torque density and (b) volumetric torque density as a 
function of outer radius ro and pole pairs when g = 1 mm.  

 
(a) 
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(b) 

Fig. 17. (a) Peak mass torque density and (b) volumetric torque density as a 
function of outer radius ro and pole pairs when g = 10 mm. 

 

 
(a) 

 
(b) 

Fig. 18. Radius ratio for achieving peak mass torque as a function of outer 
radius ro and pole pairs when (a) g = 1 mm and (b) g = 10 mm. 

 
TABLE II 

RUN-TIME FOR TORQUE CALCULATION 
Description Analytical JMAG COMSOL Unit 
Run-time  3 252 143 s 

 

VIII. CONCLUSION 
This paper has presented a new technique for computing 

the torque and fields for an AMC. The approach was demon-
strated for a Halbach rotor coupling. The benefit of using the 
presented approach lies in the ability to accurately derive the 
3-D field and torque equations from the magnitude of the field 
determined from a 2-D solution. A very good agreement was 
achieved between the analytical and FEA models. It was also 
shown that when the AMC air-gap is small, the pole-pairs 
have a larger influence on the torque density. While when the 
AMC air gap is large, the outer radius has a more dominant 
influence on torque. 
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