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A B S T R A C T

This paper presents methods for the realization of 2 × 2 translational compliance matri-
ces using serial mechanisms having only revolute joints, each with selectable compliance.
The link lengths of the mechanism and the location of the compliant frame relative to the
mechanism base are arbitrary but specified. The realizability of a given compliant behavior
is investigated, and necessary and sufficient conditions for the realization of a given compli-
ance with a given mechanism are obtained. These realization conditions are interpreted in
terms of geometric relationships among the joints. We show that, for an appropriately sized
3R serial mechanism, any single 2 × 2 compliance matrix can be realized by properly choos-
ing the joint compliances and the mechanism configuration. Requirements on mechanism
geometry to realize every particle planar elastic behavior at a given location just by changing
the mechanism configuration are also identified.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In order for robots to achieve human-like dexterity in manipulation tasks, a means for regulating interaction force is needed,
especially when geometric conflict exists between the robot and its environment. One approach to force regulation is to select or
control the robot passive compliance. Passive compliance allows for high speed interaction. Desirable robot passive compliance
can be attained by: 1) designing compliant end-of-arm tooling, or 2) designing compliance into the arm itself.

Any desired compliant behavior can be realized through the proper design of an end-effector mounted compliant wrist. It is
known that for any specified elastic behavior, an infinite number of parallel [1,2] or serial [3,4] mechanisms having springs at
each joint can achieve the desired behavior. Proper compliant wrist design involves selecting the geometry and configuration
of the mechanism and selecting the spring rates at each joint. The limitation of this approach is that the mechanism realizes a
single specified compliance. If the robot task changes or the desired compliance within the task changes, an entirely different
compliant wrist would likely be needed for its realization.

Several strategies exist for designing compliance into the manipulator itself. Series elastic actuators (SEAs) [5], in which pas-
sive compliance is provided between the motor and the connected link, can be used to provide a selected amount of compliance
in each joint. Variable stiffness actuators (VSAs) [6] are similar, but they allow joint compliance to be changed in real time. This
ability is important in robot tasks that require continuously changing compliant behaviors, such as when the nature of the task
changes, the task itself changes, or the task environment changes (especially when people are in the robot workspace).
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VSAs enlarge the space of elastic behavior that can be achieved by a robot by changing each joint stiffness. If the manipulator
is kinematically redundant, the set of achievable elastic behaviors is increased further. A much larger set of compliances can be
attained by adjusting both the joint stiffnesses and the manipulator configuration, without ever changing the endpoint location
of the robot.

In some manipulation tasks, such as turning a crank or opening a door, the interaction torque is not important. Since only
the relationship between force and translation is important, the interaction can be modeled as point contact, and the compliant
behavior can be modeled as an elastically suspended particle, i.e., not an elastically suspended rigid body. This paper presents
methods for the evaluation and realization of planar translational elastic behaviors using serialmechanisms having only revolute
joints, eachwith selectable compliance. An example of the type ofmechanism considered is illustrated in Fig. 1. Themechanisms
considered are arbitrary but have known link lengths.

1.1. Related work

Spatial elastic behavior has been analyzed for more than a century. Screw theory [7–11] and Lie groups [12] have been used
to analyze and characterize spatial linear elastic behavior (represented by a 6 × 6 symmetric stiffness matrix K or compliance
matrix C).

More recent work has addressed the realization of spatial elastic behavior through the design of passive compliant mech-
anisms. Previously, the bounds of elastic behaviors achieved with simple parallel mechanisms [1] and with simple serial
mechanisms [3] have been identified. A simple parallel mechanism contains only line springs and torsional springs, and a simple
serial mechanism contains only prismatic and revolute joints. Synthesis procedures have been developed [1,3,13,14] to realize
any elastic behaviors within these bounds. Geometry based screw theory approaches for the realization of an arbitrary realizable
stiffness matrix have also been developed [15,16].

The synthesis of an arbitrary spatial stiffness matrix with a parallel system has also been addressed [2]. It was shown [2] that
in order to realize an arbitrary stiffness, screw springs that couple the elastic behavior in translation and rotation in the same
direction must be used. The eigen-structure of a stiffness was analyzed using the eigenscrew decomposition of the stiffness
matrix [17]. Based on the eigenstiffness analysis, a procedure to calculate the minimum number of screw springs required to
realize a specified stiffness matrix in a parallel system was identified [18]. A procedure has been developed [19] to realize an
arbitrary spatial stiffness using the minimum numbers of screw springs and simple springs.

This previous work has focused on the realization of a single compliance with a mechanism of unspecified geometry at a
unspecified configuration. When the desired compliance is changed, a different mechanism with a new configuration must be
used. Very little work has addressed: 1) the ability of a single specified mechanism to realize an arbitrary compliance, and 2) the
identification of the space of realizable compliances that can be achieved with a mechanism having specified link lengths.

The inability of a 2R compliant joint manipulator to realize general particle planar compliance was noted in [20]. It was also
noted that, for a 3R manipulator, the surjectivity of the mapping from 2 × 2 Cartesian space to joint space compliance is not
guaranteed. These limitations were identified as motivation for using optimization (using various norms as objective functions)
for approximating the behavior of a targeted Cartesian compliance matrix. More recently, the ability of a manipulator to realize
a specified point planar compliance using 3R serial mechanisms with known link lengths was addressed [21]. Optimization was
used to identify the combination of mechanism configuration and joint stiffnesses that minimizes the deviation of the attainable
Cartesian compliance from a targeted value. The proximity of an optimized compliance to a targeted compliance (measured
using the matrix Frobenius norm) was characterized for a set of configurations of the redundant manipulator and for a set of
compliant behaviors using a “stiffability map.”

The major limitations of using optimization for the realization problem are that: 1) optimization does not ensure that any
specified compliance can be achieved even with a large number of redundant joints; 2) the optimal solution may not preserve
the desired compliant behavior of the original compliance; and 3) the results obtained from optimization provide little physical
insight into the limits of passive compliance realization.

Fig. 1. A 3R serial compliant mechanism with variable stiffness actuators.
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In more recent work [22–24], the realization of isotropic compliance in the Euclidian spaces E(2) and E(3) with robotic
mechanisms has been addressed. Equations relating the Cartesian compliance entries to the joint compliance and the mecha-
nism geometry were developed. In these papers, the joint compliances are calculated by solving these equations. The approach
applies to a general serial mechanism with revolute and prismatic joints. However, the existence of a physical solution (ki ≥ 0)
to the equations is not guaranteed, and, for many configurations, a solution cannot exist. The set of mechanism configurations
for which a solution exists was not identified.

This paper addresses the guaranteed realization of planar translational elastic behaviors with a serial mechanism having
specified link lengths. The serial mechanisms considered have only revolute joints each loaded with a joint compliance. The
compliance behaviors considered are arbitrary in E(2). This work is motivated by the need for a single manipulator to realize any
selected planar compliance at any selected endpoint. The paper presents the theory and methods to design a singlemanipulator
that is able to achieve all compliances by changing its configuration and joint compliances. It also presents the theory and
methods for the selection of mechanism configuration and joint stiffnesses needed to achieve any specified elastic behavior. The
conditions for the realization of a given compliance are interpreted in terms of geometric relationships among the mechanism
joints. The main contributions of the paper are:

1. Necessary and sufficient conditions for a mechanism to realize an arbitrary but given compliance at a given configuration
are identified;

2. Synthesis procedures for the realization of a realizable compliance at a given location are developed;
3. Classes of mechanisms that facilitate compliance realization are identified. Necessary and sufficient conditions on the

mechanism link lengths that ensure that all compliant behaviors can be realized are identified.

1.2. Technical background

Consider a planar serial mechanism having n joints, Ji, with joint compliance ci >0 and joint twists ti. Then the compliance
matrix C at the mechanism endpoint is a symmetric positive semidefinite (PSD) matrix that can be expressed [4] as:

C = c1t1tT1 + c2t2tT2 + · · · + cntntTn (1)

where the twists ti are described relative to the compliance frame (the reference frame where the compliance matrix is
specified). Each compliant joint provides a rank-1 PSD component:

Ci = cititTi . (2)

It is known that decomposition (1) is not unique; different decompositions yield different mechanism geometries and con-
figurations that each realizes the given compliance. Thus, decomposition (1) cannot be applied directly to a given mechanism
with specified link lengths. A new method that considers mechanism geometry (fixed link lengths) to obtain an appropriate
decomposition (1) is needed.

For the mechanism illustrated in Fig. 1, in which the compliance matrix is expressed in the frame at point O, each joint twist
is given as:

ti = ri × k

where ri is the position vector from O to joint i and k is the unit vector perpendicular to the plane. Thus, the joint twist ti is
determined by the position vector ri.

To realize a given compliance with a given mechanism, the mechanism configuration and the joint compliance ci must be
adjusted so that Eq. (1) is satisfied.

For a suspended particle, the compliance is a 2 × 2 PSD matrix. If the position vector for joint-i is:

ri =
[
xi
yi

]
,

then the corresponding joint twist, perpendicular to ri, is:

ti =
[

yi
−xi

]
.

From Eq. (2), it can be seen that ti and −ti yield the same joint compliance Ci. Thus, ti can be obtained by rotating ri either
clockwise or counterclockwise about the coordinate frame origin. Mathematically,

ti = ±Yri (3)
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where Y is a 2 × 2 anti-symmetric matrix associated with a vector cross-product, given as:

Y =
[

0 1
−1 0

]
. (4)

It is known that the space of PSD matrices is a cone. All rank-1 PSD matrices lie on the boundary of the cone. Thus, each joint
compliance matrix Ci in Eq. (2) is a point on the boundary of the PSD cone. If ci is allowed to vary in the range 0 < ci < ∞, Ci

represents a ray in the 2 × 2 PSD space, an edge of the PSD cone.
If a desired 2×2 PSD compliance matrix C is to be realized at the endpoint of a redundant 3R mechanism in which each joint

has selectable compliance (as illustrated in Fig. 1), then, for a specified configuration, the three joint twists ti are known. The
desired C can be realized if and only if there exist non-negative coefficients ci such that

C = c1t1tT1 + c2t2tT2 + c3t3tT3. (5)

For any 2 × 2 symmetric matrix A = [aij], only three entries are independent, therefore, A can be represented by a 3-vector
Â = [a11, a12, a22]T . With this operation, Eq. (5) can be written in vector form as:

Ĉ = c1T̂1 + c2T̂2 + c3T̂3 =
[
T̂1, T̂2, T̂3

] ⎡
⎣ c1
c2
c3

⎤
⎦ ,

where Ĉ is the 3-vector representation of C; and T̂i is the 3-vector representation of titTi . If we denote

T̂ =
[
T̂1, T̂2, T̂3

]
, c = [c1, c2, c3]T ,

then,

c = T̂−1Ĉ. (6)

Thus, C can be realized at the given configuration if and only if c ≥ 0.
In the 2 × 2 PSD space, the condition c ≥ 0 indicates that C must be inside the polyhedral convex cone defined by the

three edges t1tT1, t2t
T
2, and t3tT3 as shown in Fig. 2. Because the manipulator is redundant, many configurations yield the same

manipulator endpoint. When themechanism changes configuration, the edge locations on the PSD cone’s boundary also change.
The solution is tractable because the dimension of the problem is the same as that of the manipulator. Although Eq. (6) can
be used to determine the realizability of C for a given mechanism configuration, it does not provide insight into the geometric
relations among the joints that are required for compliance matrix realization (i.e, to ensure that C is contained within the
polyhedral convex cone bounded by its edges). For example, if J1 and J2 are specified, the space of J3 locations that allows C to
be realized is unknown. Also, Eq. (6) cannot be used to assess whether a mechanism can realize every compliance at a given
location in the workspace.

Fig. 2. Realizable condition for a given compliance C with a 3R mechanism having a specified configuration. C must be inside of a polyhedral cone with edges
t1tT1, t2t

T
2, and t3tT3.
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1.3. Overview

This paper presents means to analyze and realize planar translational elastic behaviors using revolute joint serial mech-
anisms. The means for analysis and synthesis are based on the geometry of the realizable compliance matrix space and the
geometry of the mechanism. This approach provides physical insight into elastic mechanism behavior. The ability of a single
mechanism with specified link lengths to realize all compliance behaviors at a given end-point location is also investigated. In
this paper, we assume that the range of joint compliances is 0 < ci < ∞. Joint compliances can be obtained via one of the fol-
lowing approaches: 1) providing an appropriate (passive) spring at each joint; 2) providing an appropriate stiffness serial elastic
actuator (SEA) at each joint; or 3) providing a variable stiffness actuator (VSA) at each joint.

Section 2 identifies the limits of a 2R mechanism to realize a specified 2 × 2 compliance matrix. A necessary and sufficient
condition for a compliance to be realized by a 2R mechanism is identified. Section 3 presents an approach to realize a given
compliance with a 3R mechanism based on mechanism geometry. The method then is extended to n-R mechanisms. Section 4
addresses the ability of a single mechanism to realize all compliances at a given location just by changing the mechanism con-
figuration and/or joint stiffnesses. A necessary and sufficient condition on the mechanism geometry to realize all compliances is
identified. Synthesis procedures to achieve a realizable compliance are presented in Section 5. A numerical example illustrating
the synthesis procedures for a given mechanism is provided in Section 6. Finally, a brief discussion and summary are presented
in Section 7.

2. Limits of a 2R mechanism

To realize a full-rank 2 × 2 compliance matrix, a mechanism having at least two compliant joints is required. Here, the limi-
tation of a 2R serial mechanism with fixed link lengths and configuration is considered. A necessary and sufficient condition for
a specified compliance to be realized with the mechanism is identified. These results allow the characterization of the realizable
space of compliances in terms of the geometry of the mechanism.

Consider the 2R serial mechanism shown in Fig. 3. The mechanism endpoint O is the location of interest (where the compli-
ance frame is located) and r1 and r2 are the position vectors indicating the locations of joint-1 and joint-2 relative to O. If the
position of O relative to J1 (the location in the workspace) is specified, the configuration of the mechanism cannot change, and
the two position vectors r1 and r2 cannot vary.

The space of realizable elastic behaviors is given by:

Proposition 1. A compliance matrix C can be realized with a 2R mechanism in a given configuration if and only if:

rT1Cr2 = 0. (7)

Proof. If C is realized by the mechanism, then, by Eq. (1), there exist positive constants, the joint compliances, c1 and c2, that
satisfy

C = c1t1tT1 + c2t2tT2.

Since r1 ⊥ t1 and r2 ⊥ t2, then rT1t1 = 0 and rT2t2 = 0. Thus,

rT1Cr2 = rT1
(
c1t1tT1 + c2t2tT2

)
r2

= c1
(
rT1t1

) (
tT1r2

)
+ c2

(
rT1t2

) (
tT2r2

)
= 0,

which proves that Eq. (7) is a necessary condition.

Fig. 3. A 2R mechanism. Each joint twist ti is perpendicular to the position vector ri relative to the compliance frame Oxy.
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To prove that the condition is also sufficient, we show that C can always be expressed by a known positive combination of
t1tT1 and t2tT2 if Eq. (7) is satisfied.

Suppose rT1Cr2 = 0, then Cr2 ⊥ r1. Due to the symmetry of matrix C, rT2Cr1 = 0, and Cr1 ⊥ r2. Using this and Eq. (3), t1 ‖ Cr2
and t2 ‖ Cr1. Thus there exist constants k and b such that kt1 = Cr2, and bt2 = Cr1. Then t1 and t2 can be expressed as:

t1 =
1
k
Cr2, t2 =

1
b
Cr1. (8)

It can be shown that a matrix C̃ constructed as:

C̃ =
k2

rT2Cr2
t1tT1 +

b2

rT1Cr1
t2tT2 (9)

must be equal to C.
This is shown by substituting Eq. (8) into Eq. (9) yielding

C̃ =
1(

rT2Cr2
)Cr2rT2C+

1(
rT1Cr1

)Cr1rT1C, (10)

then multiplying C̃ by r1 from the right yields

C̃r1 =
1(

rT2Cr2
)Cr2rT2Cr1 + 1(

rT1Cr1
)Cr1rT1Cr1

=
1(

rT2Cr2
)Cr2 (

rT2Cr1
)
+

1(
rT1Cr1

)Cr1 (
rT1Cr1

)
= Cr1.

Similarly, we have

C̃r2 = Cr2.

Therefore:

C̃ [r1, r2] = C [r1, r2] .

Since r1 and r2 are two linearly independent vectors, then C̃ = C. Thus, by choosing the joint compliance c1 and c2,

c1 =
k2

rT2Cr2
, c2 =

b2

rT1Cr1
,

the compliance matrix C is realized by the mechanism with the given configuration. Note that ci >0 since C is positive definite.
This completes the proof.

Fig. 4. Realizable space of compliance matrices using a 2R mechanism having variable compliant joints and fixed configuration. The two edges of the subcone
are the rank-1 matrices t1tT1 and t2tT2 associated with vectors r1 and r2.
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Fig. 5. Limitation of the realization of a given compliance with a 2R mechanism. Joint J2 must be on the line l1 ⊥ Cr1 to realize the given compliance C.

Condition (7) is very restrictive. It is known that the collection of all point planar compliancematrices is a cone in the space of
2× 2 symmetric matrices. Eq. (7) represents a plane in this space. The realizable space of PSD matrices is a subcone determined
by the intersection of the PSD cone and the plane defined by Eq. (7) (as shown in Fig. 4). The two edges of the subcone are the
rays determined by t1tT1 and t2tT2 that are associated with the positions of the two joints, J1 and J2. For a given location of the
compliance frame, the position of J1 relative to O, r1, is specified. The ray t1tT1 is constant and lies on the boundary of the PSD
cone. For a given compliance C, the plane passing through both edge t1tT1 and compliance Cmust intersect the PSD cone at a ray.
In order to realize C, the second joint, J2, must be positioned such that its joint compliance matrix is collinear with that ray.

The restriction on the space of realizable elastic behaviors can be described in terms of themechanism geometry as illustrated
in Fig. 5. Because the position of joint J1 relative to point O is specified, r1 is constant. By condition (7), vector r2 must be
perpendicular to vector Cr1. Let l1 be the straight line passing through O that is perpendicular to Cr1. Condition (7) requires that
J2 be on line l1. Thus, line l1 represents the locus of all J2 locations that will allow the given C to be realized by the mechanism.

Since the realizable space of a 2R mechanism is very limited (zero-measure), in order to realize an arbitrary compliance,
serial mechanisms having at least three joints must be considered.

3. Mechanisms with three or more compliant joints

The limits on the space of realizable compliances using a 2-joint mechanism are due to the fact that, once the position
of a suspended particle relative to the base location is specified, the configuration of the mechanism is fixed. In this section,
mechanisms having three or more compliant joints are considered. Since the degree of freedom is increased, the mobility of
the mechanism is no longer zero when the location of O is specified. First, mechanisms having three joints are considered.
Mathematical conditions on a compliance C to be realized with a mechanism having a given configuration are obtained. Next,
the set of joint twists needed to realize a specified compliance are obtained. These conditions are then described in terms of
the mechanism geometry. Alternate procedures to select the joint compliances based on the mechanism configuration are also
provided. Then, the results are extended to mechanisms having more than three joints.

3.1. Conditions for compliance realization

Below, we develop a geometric approach in compliance matrix space that will later be used directly in physical 2-D space to
determine the relationships among the three joints required to realize a specified compliance C.

For joint-1 and the corresponding position vector r1, consider the two vectors defined by

t̃1 = Cr1, r̃1 = YCr1.

Then, by Proposition 1,

rT1Cr̃1 = (Cr1)TY(Cr1) = 0,

and t̃1 and r̃1 can be viewed as being associated with a nonexistent second joint needed to realize C with a 2R mechanism. The
given compliance C can be expressed as the positive combination of t1tT1 and t̃1 t̃T1, which means the compliance C is in the plane
P1 determined by the two rays t1tT1 and t̃1 t̃T1:

P1 =
{
Q ∈ R2×2 : Q = QT , rT1Qr̃1 = 0

}
. (11)
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Fig. 6. Condition to realize a given compliance C. Plane P1 is determined by C and the joint compliance of J1, t1tT1. To realize C, plane P1 must separate the joint
compliances associated with joints J2 and J3, t2tT2 and t3tT3.

As illustrated in Fig. 6, plane P1 is uniquely determined by the position of J1 and the compliance matrix C.
If C is to be realized by a 3R mechanism, C must be within a polyhedral convex cone having edges t1tT1, t2t

T
2, and t3tT3. Hence

C2 = t2tT2 and C3 = t3tT3 must be on opposite sides of P1, which means rT1C2r̃1 and rT1C3r̃1 must have opposite signs, which can
be expressed as:

(
rT1C2r̃1

) (
rT1C3r̃1

)
< 0. (12)

Since YTY = I (identity),

rT1C2r̃1 = rT1
(
t2tT2

)
YCr1 = rT1

(
Yr2rT2Y

T
)
YCr1

= rT1
(
Yr2rT2

)
Cr1.

Similarly,

rT1C3r̃1 = rT1
(
Yr3rT3

)
Cr1.

Thus Eq. (12) can be expressed as:

(
rT1Yr2rT2Cr1

) (
rT1Yr3rT3Cr1

)
< 0.

The above inequality is a necessary condition. In order to obtain sufficient conditions, the compliancematrix edges associated
with the other two joints, t2tT2 and t3tT3, should be considered independently using the same procedure. Thus, the conditions for
the three joints to realize a given C are:

(
rT1Yr2rT2Cr1

) (
rT1Yr3rT3Cr1

)
≤ 0, (13)

(
rT2Yr3rT3Cr2

) (
rT2Yr1rT1Cr2

)
≤ 0, (14)

(
rT3Yr1rT1Cr3

) (
rT3Yr2rT2Cr3

)
≤ 0. (15)

Note that these conditions are not independent. If any two of the three inequalities hold, then the remaining inequality must
be true.
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Fig. 7. Locus of acceptable joint compliance of J3. The compliance associated with joint-3, t3tT3, must lie on the arc between t̃1 t̃T1 and t̃2 t̃T2 (which depend on the
given positions of J1 and J2).

Proposition 2. An arbitrary compliance C can be realized with three compliant joints with positions r1 ,r2 and r3 if and only if any
two inequalities of Eqs. (13)–(15) hold.

3.2. Conditions on configuration for compliance realization

Similar to that for J1 discussed in Section 3.1, consider the two vectors associated with J2 given by:

t̃2 = Cr2, r̃2 = YCr2,

and plane P2 defined by the two rays t2t2 and t̃2 t̃2. Since the compliance matrix C is on both plane P1 and plane P2, it must be at
the intersection of the two planes as illustrated in Fig. 7.

If C is realized by a three joint serial mechanism, plane P1 must separate t2tT2 and t3tT3, and plane P2 must separate t1tT1 and
t3tT3. Inequalities (13) and (14) require that the joint compliance t3tT3 be on the arc between t̃1 t̃T1 and t̃2 t̃T2 as shown in Fig. 7.

Note that joint twist ti and joint position ri have the relationship:

ti = ±Yri, t̃i = ±YCri.

Since the two rays associated with t̃1 t̃T1 and t̃2 t̃T2 set the bounds on t3tT3 in 2× 2 matrix space, the two vectors YCr1 and YCr2
define the bounds on r3 in 2-vector space and can be represented in terms of the mechanism geometry.

In the plane of the mechanism, consider two lines, l1 and l2, passing through the origin O (where the compliance is specified),
defined by l1 ⊥ Cr1 and l2 ⊥ Cr2. The two lines separate the space into four subspaces: SI, SII, SIII, and SIV as shown in Fig. 8.

Fig. 8. The acceptable space of r3 for realizing C. The space of r3 for the realization of C is a zone limited by the two lines l1 and l2, s1 or s2. The space is
identified by the fact: neither r1 nor r2 can be inside of the acceptable space.
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Fig. 9. Necessary and sufficient condition for a compliance to be realized by a 3R mechanism. Position vector r3 is adjacent to l1 and l2; r2 is adjacent to l1 and
l3; and r1 is adjacent to l2 and l3.

It can be seen that if vector r3 satisfies conditions (13)–(14), then −r3 must also satisfy the same conditions. Thus, if
inequalities (13)–(14) are true for SI, they must be also true for SIII.

Denote:

s1 = SI ∪ SIII, (16)

s2 = SII ∪ SIV. (17)

Then, r3 must be either in s1 or in s2 to realize the compliance C. In fact, if any point in s1 satisfies inequalities (13)–(14),
the following must be true:

(i). Every point in s1 satisfies the same conditions;
(ii). No point inside s2 satisfies the same conditions.

The above statements (i) and (ii) can be proved by the fact that, for a given r1 and r2, the expressions on the left side of
inequalities (13)–(14) are continuous functions of r3, and if one inequality changes sign, r3 must cross either line l1 or line l2.

Thus, once the positions of J1 and J2 are specified, the acceptable space for J3 to realize C is a zone with vertical (opposite)
angles and boundaries of l1 and l2, either the space s1 or the space s2 shown in Fig. 8. Although the space can be identified by
testing conditions (13)–(14) using an arbitrary point, the space can also be identified directly by testing the position of J1 or J2.
Neither r1 nor r2 can be in the interior of the space acceptable for r3. This can be proved by setting r3 = r1 in condition (13),
which violates the inequality. Therefore, as shown in Fig. 9, r3 or −r3 must be separated from r1 by l1. By the same reasoning,
r3 or −r3 must be separated from r2 by l2, and r1 or −r1 must be separated from r2 by line l3 ⊥ Cr3. Fig. 9 shows the geometric
relations among position vectors ris and the lines lis for a mechanism configuration that realizes a given compliance C.

In summary, we have:

Proposition 3. Consider a compliance matrix C and a 3R mechanism having joint positions ri. Let li be a line passing through O and
perpendicular to vector Cri (i = 1, 2, 3). Then,

a) If r1 and r2 are specified, the space of r3 that can realize C is the zone s1 that does not contain r1 (or r2) as shown in Fig. 8;
b) If r1, r2 and r3 are specified, C can be realized if and only if: ± r1 is between and adjacent to lines l2 and l3; ± r2 is between and

adjacent to lines l1 and l3; and ± r3 is between and adjacent to lines l1 and l2 as shown in Fig. 9.

Similar to conditions (13)–(15), the three conditions on mechanism configuration in Proposition 3b are not independent. If
any two conditions in Proposition 3b are true, the remaining condition must also be true.

3.3. Example

An application of these results is illustrated in Fig. 10. This 3R mechanism example shows how to determine the range of the
locations of J3 when the locations of the other two joints are specified.
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Fig. 10. Configurations of a 3R mechanism that realizes the example compliance. Joint position vector J3 could be anywhere in the two identified regions
bounded by l1 and l2.

If a desired compliance matrix is given as:

C =
[
2 1
1 4

]
× 10−2m/N,

and the locations of J1 and J2 are specified as:

r1 =
[ −0.2

0

]
m, r2 =

[ −0.1
0.1

]
m.

The two vectors Cr1 and Cr2 are:

Cr1 =
[ −4

−2

]
× 10−3m2/N, Cr2 =

[ −1
3

]
× 10−3m2/N.

The two lines l1 ⊥ Cr1 and l2 ⊥ Cr2 each passing through point O are illustrated in Fig. 10. For this case, r1 is along the x-axis.
The space of acceptable r3 to realize the given C is identified to be the two shaded areas that meet r1 only at the origin O.

Fig. 10 illustrates the locations of the three joints in a mechanism. When J1 and J2 are specified, J3 must be in the shaded
area bounded by l1 and l2 in order to realize the given C. Two possible acceptable configurations J1J2J3 and J1J2J′3 for the given
mechanism are shown.

3.4. Determination of the joint compliances

Below, means for selecting the joint compliance values for a given mechanism configuration and realizable compliance C are
derived. Unlike the calculation of Eq. (6), the matrices are not converted to vectors and a matrix inversion is not required. Only
the compliance matrix and joint locations are needed.

Suppose C is to be realized by a 3R mechanism with joint twists ti, then by Eq. (5),

C = c1t1tT1 + c2t2tT2 + c3t3tT3.

Multiplying C by rT2 from the left and by r3 from the right yields

rT2Cr3 = c1rT2t1t
T
1r3 + c2

(
rT2t2

)
tT2r3 + c3rT2t3

(
tT3r3

)
.

Since rT2t2 = 0 and tT3r3 = 0,

rT2Cr3 = c1rT2t1t
T
1r3.

The value for the compliance of joint-1 is:

c1 =
rT2Cr3

rT2t1t
T
1r3

=
rT2Cr3

rT2Yr1rT1Y
Tr3

.
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Fig. 11. Cross section of the PSD cone containing the compliance C. The vertexes Vi of the polygon are associated with joint compliance titTi . C must be inside
the polygon to be realized with the mechanism.

Repeating the process for the pairs (r1, r3) and (r1, r2) respectively, the equations for coefficients of c2 and c3 are obtained.
Thus, for a given configuration (r1, r2, r3) and a realizable C, the joint compliances are calculated using:

c1 =
rT2Cr3

rT2Yr1rT1Y
Tr3

, (18)

c2 =
rT3Cr1

rT3Yr2rT2Y
Tr1

, (19)

c3 =
rT1Cr2

rT1Yr3rT3Y
Tr2

. (20)

Note that once the configuration is specified, the compliance values are each unique. As stated in Proposition 2, if C is
realizable, then inequalities (13)–(15) must be satisfied. It can be proved that inequalities (13)–(15) ensure that each ci in
Eqs. (18)–(20) is positive. Thus, if C is realizable, the coefficients calculated using Eqs. (18)–(20) are all positive. In fact, ci >0
(i = 1, 2, 3) is also a necessary and sufficient condition for C to be realized with the mechanism at the given configuration.

3.5. Mechanisms with more than three compliant joints

Consider a mechanism having n (n>3) revolute joints. At a configuration, joint i has position ri and joint twist ti, i =
1, 2, . . . ,n. If a compliance C is realized by the mechanism at the configuration, then C must be in the polyhedral convex cone
bounded by the edges (rays) associated with the rank-1 joint compliance titTi , where each edge is on the boundary of the PSD
cone.

Fig. 11 shows a cross section of the PSD cone containing the compliance C. In this plane, the edges (rays) associated with the
joint compliances titTi s are represented by points Vi on the boundary of the PSD cone, and the polygon with vertexes Vi is the
cross section of the polyhedral convex cone of all realizable compliances. It can be seen that the compliance C can be realized
with the mechanism at the configuration if and only if C is within the polygon with vertexes Vi.

Consider the vertex V1 in the plane shown in Fig. 11. If C is in the polygon V1V2 · · ·Vn, there must exist two vertexes Vi and
Vj such that C is the triangle V1ViVj. This means that the compliance can be realized by three compliant joints J1, Ji and Jj. This
statement is valid for any joint. As such we have:

Proposition 4. For an n-Rmechanism having joint positions ri (i = 1, 2, · · · ,n, n>3), a compliance C can be realizedwithmechanism
at the configuration if and only if the following equivalent conditions are true:

a) There exists three joints in the mechanism that realize C;
b) For every joint Ji, there exist two joints Jj and Jk in the mechanism such that the three joints (Ji, Jj and Jk) realize C.

Thus, for an n-R mechanism, to determine whether a given compliance can be realized at a given configuration, condition
4a or 4b can be used. Since only three joints are involved for each test set, conditions (13)–(15) can be used. If the compliance
is realizable, one can always choose just three joints in the mechanism to realize the behavior. The corresponding values of the
three joint compliances can be calculated using Eqs. (18)–(20). It can be seen that for a realizable compliance at a configuration,
the set of joints that realizes the compliance is not unique.
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Note that if compliance is provided at more than three joints, there are an infinite number of solutions for the set of joint
compliances that achieve a realizable compliance. A closed form solution cannot be obtained if no additional constraints are
considered.

As shown above, the kinematics of a mechanism plays a significant role in compliance realization. In the following section,
mechanism geometries that facilitate realization of an arbitrary compliance are identified.

4. Realization of any compliance with a given mechanism

Section 3 addressed the realizability of a single given compliance for a given mechanism configuration. Since an n-R mech-
anism has n degrees-of-freedom, when n ≥ 3, the configuration can change when the position of endpoint O relative to the
mechanism base J1 is specified. A compliance unrealizable with one configuration could be realizable by changing the configu-
ration. Here, the ability of a given n-R mechanism to realize every particle planar compliance at its endpoint without changing
the endpoint location is investigated.

First, mechanisms having three joints are considered. A requirement on the twist spaces associated with joints J2 and J3 is
identified. Next, the requirement on the twist space is converted to geometric conditions on the mechanism. We show that if
a 3R mechanism has appropriate link length ratios (including the distance from J1 to O), all compliances can be realized at the
given endpoint location. Then, the results for 3R mechanisms are extended to n-R mechanisms. A discussion on the workspace
and the space of endpoint locations that ensure the mechanism ability to realize all compliances is presented.

4.1. Realization conditions for every compliance

Consider a 3R serial mechanism in which the endpoint location O relative to the base J1 is specified. The mechanism can be
viewed as a four-bar linkage with J1O grounded. The position of J1 relative to the compliance frame, r1, is constant.

If a compliance matrix C is given, line l1 ⊥ Cr1 is specified. When the configuration of the mechanism changes, two joints,
J2 and J3, change their positions. The position vectors of J2 and J3, r2 and r3, span different ranges depending on the mechanism
geometry. We show that the capability of a mechanism to realize an arbitrary compliance depends on the ranges spanned by r2
and r3. In fact, we have:

Proposition 5. Consider a mechanism having three compliant revolute joints with positions ri, i = 1, 2, 3.

a) A given compliance C can be realized with the mechanism if r2 or r3 can cross line l1 ⊥ Cr1;
b) Every compliance matrix can be realized with the mechanism if and only if the union of spaces spanned by r2 and r3 is no less

than a half plane.

The proof of Proposition 5a is based on the fact that one can always choose a configuration such that r2 or r3 is on line l1. The
compliance can be realized with two compliant joints: either using J1 and J2 with c3 = 0, or using J1 and J3 with c2 = 0. Note
that the realization condition in Proposition 5a is also necessary if link-1 cannot make a full rotation. For such case, the ranges
of r2 and r3 are connected. Thus, the ranges of joint compliances t2tT2 and t3tT3 are connected. If neither r2 nor r3 can cross l1, t2tT2
and t3tT3 must always be on the same side of plane P1 defined in Eq. (11). Thus, the given C cannot be realized at that endpoint
location.

Proposition 5b is sufficient as a direct result of Proposition 3a. If the union of ranges of r2 and r3 continuously spans more
than a half plane, then any straight line is within the range. Thus, for any compliance, one of the two vectors r2 or r3 must be
able to cross line l1. To prove that Proposition 5b also provides a necessary condition to realize all compliances, it can be shown
that all possible joints compliances Ci = cititTi will not fill the boundary of the PSD cone if the union of ranges of r2 and r3 does
not span a half space or more. Thus there are some compliances that are not comprised of a positive combination of t1tT1, t2t

T
2,

and t3tT3 for all possible configurations of the mechanism having the given endpoint, which proves Proposition 5b.
The ability of a 3R mechanism to realize an arbitrary compliance depends on the mobility of the mechanism, especially the

ranges spanned by r2 and r3. It should be noted that while the range of r3 is determined by a single rotation angle (angle of link-
3), the range spanned by r2 is not directly determined by the rotation angle of a single link and is, therefore, more complicated
to calculate. The ability to realize any compliance can be readily assessed by evaluating the rotation range of link-3. If link-3 can
rotate more than 180◦, then any compliance matrix can be realized with the mechanism.

In the following, geometric conditions on a 3R mechanism that ensure a sufficiently large twist space are developed.

4.2. Conditions on the mechanism link lengths

Consider the 3R serial mechanism shown in Fig. 12. If the position of the base J1 relative to the end-point O is specified, the
system is kinematically equivalent to a four-bar mechanism. The geometry of the four-bar mechanism is characterized by the
three link lengths L1, L2, L3 and the distance between the base joint J1 and the endpoint O, L0.
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Fig. 12. A 3R serial mechanism with specified endpoint. If the location of endpoint O relative to base J1 is specified, the system is kinematically equivalent to a
four-bar mechanism.

It is known that if a mechanism satisfies the Grashof criterion, then at least one link is capable of turning a full rotation. For
the mechanism shown in Fig. 12, if L3 or L0 is the shortest link, link-3 can make a full rotation [25]. For this case, any compliance
can be realized with the mechanism.

For a non-Grashof mechanism, none of the links can make a full rotation. Both link-1 and link-3 rock between limits but can
always cross line OJ1 either clockwise or counterclockwise [25]. Due to the restrictions on r1 and r3, the twist spaces associated
with J2 and J3 are limited. However, somemechanism geometries will still allow the space spanned by r2 and r3 to be more than
a half plane. It can be shown that if L2 is the longest link, this condition is satisfied. Thus any compliance can be realized.

As stated previously, if link-3 in a mechanism can rotate more than 180◦, then any compliance can be realized. It is known
that the range of a link in a four-bar mechanism is determined by the dead points (extreme positions) of the link [25]. For the
mechanism shown in Fig. 12, extreme positions of link-3 can be evaluated with minimum and maximum values of h3, h3min and
h3max.

It can be shown that if the following two conditions are satisfied

(L1 + L2)2 ≥ L20 + L23, (21)

|L2 − L1| ≤ |L0 − L3|, (22)

then, h3min ≤ 90◦ and link-3 can rotate more than 180◦ through h3 = 180◦. If the following two conditions are satisfied:

(L1 − L2)2 ≤ L20 + L23, (23)

L1 + L2 ≥ L0 + L3, (24)

then, h3max ≥ 90◦ and link-3 can rotate more than 180◦ through h3 = 0◦.
In summary, we have:

Proposition 6. Consider an arbitrary 3R serial mechanism with specified location of endpoint O relative to the base J1.

a) If the mechanism is Grashof with L3 or L0 being the shortest link, then any compliance matrix can be realized.
b) If the mechanism is non-Grashof with L2 being the longest link, then any compliance matrix can be realized.
c) If the mechanism satisfies conditions (21)–(22) or conditions (23)–(24), then any compliance can be realized.

4.3. Mechanisms with more than three joints

The results obtained for 3R mechanisms can be extended to n-R mechanisms (n>3). Similar to Proposition 5, we have:

Proposition 7. Consider a mechanism having n (n>3) compliant revolute joints. Suppose ri is the position vector of joint Ji,
i = 1, 2, · · · ,n.

a) A given compliance C can be realized with the mechanism if there is a joint Ji that can cross line l1 ⊥ Cr1;
b) Every compliance matrix can be realized with the mechanism if and only if the union of spaces spanned by ris (2 ≤ i ≤ n) is no

less than a half plane.
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Fig. 13. An n-Rmechanism.When themechanism base J1 and the end-point O are specified, themechanism is kinematically equivalent to an (n+1)-bar linkage
with L0 grounded.

Similar to the 3R case discussed in Section 4.2, when the mechanism base and the end-point (where the compliance frame is
located) are specified, an n-R mechanism is kinematically equivalent to an (n+1)-bar linkage. Due to the increase in degrees of
freedom, the description of the space spanned by each ri is much more complicated. However, for some cases, the mechanism
ability to realize all compliances can be assessed by the rotation range of the nth link. If link-n can rotate more than 180◦, then
every compliance can be achieved with themechanism. Below, a necessary and sufficient condition for link-n to have this ability
is obtained using the theory presented in [26].

Consider an n-R mechanism with link length Li as shown in Fig. 13. Suppose that the distance between the base joint J1 and
the end-point O is specified as L0.

Denote:

Li,j = min
(
Li, Lj

)
, Lmax = max(L0, L1, · · · , Ln).

Then, the two adjacent links Li and Lj can revolve relative to each other if and only if the sum of Li,j and Lmax is no greater than
the sum of all remaining link lengths [26]. For the two adjacent links L0 and Ln, the condition can be expressed as:

Lmax +min(Ln, L0) ≤ 1
2

n∑
i=0

Li. (25)

Since L0 is grounded, condition (25) is a necessary and sufficient condition for link-n to make a full rotation. Thus, condition
(25) is a sufficient condition for a mechanism to achieve all compliances.

4.4. Discussion

A 3R serial mechanism is an open chain having 3 DOF. Although it is kinematically equivalent to a four-bar linkage when the
endpoint O (the location of the compliance frame) is specified, the endpoint is clearly not fixed in space. The implications of this
analogy on the manipulator workspace are described below.

Fig. 14 shows, for two different cases of manipulator geometry, both the manipulator workspace and the space of endpoint
locations for which all compliances can be realized.

In Fig. 14a, the link lengths of the manipulator satisfy L1 > L2 > L3 and L2 + L3 > L1. The manipulator workspace is a circle of
radius Rw = L1+L2+L3. It can be proved that if the location of themechanism endpoint is inside of the circle of radius Rc, where

Rc =
√
(L1 + L2)2 − L23,

then any compliance can be realized with the manipulator at that location.
In Fig. 14b, the link lengths of themanipulator satisfy L1 > L2 > L3, but L2+L3 < L1. Themanipulator workspace is an annulus

between the circle of radius Rw = L1 + L2 + L3 and the circle of radius rw = L1 − L2 − L3. It can be proved that if the location of
the endpoint is inside of the annulus between the circle of radius Rc and the circle of radius rc, where

Rc =
√
(L1 + L2)2 − L23,

rc =
√
(L1 − L2)2 − L23,

then any compliance can be realized with the manipulator at that location.
It can be seen that, for both cases, if link-3 is short, the space of endpoint locations for which all compliances can be realized

is close to the mechanism workspace.
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(a) (b)

Fig. 14. The workspace and the space of endpoint locations that ensure the mechanism ability to realize any compliance matrix. (a) Case 1: L1 > L2 > L3 and
L2 + L3 > L1. (b) Case 2: L1 > L2 > L3 and L2 + L3 < L1.

5. Synthesis of a realizable compliance

If it is possible to realize a compliance at a given location with a given mechanism, a procedure for finding an appropriate
configuration and associated joint compliance coefficients is needed. In this section, two types of synthesis procedures for any
given realizable compliance are provided. First, a synthesis procedure for the realization of a compliance using a 3R mechanism
having only two compliant joints is developed. Then, a synthesis procedure for the general case in which all three joints of a 3R
mechanism are compliant is presented.

The synthesis procedures presented in this section for 3R mechanisms can be applied to n-R mechanisms using the results
presented in Section 3.5.

5.1. Synthesis with a mechanism having two compliant joints

Since a non-singular 2×2 compliance C is rank 2, to realize a given C at least two compliant joints are required. Proposition 4
shows that if a compliance C can be realized with a 3R mechanism, C can always be realized with only two compliant joints,
either J1 and J2 or J1 and J3, with the remaining joint having ci = 0. If a mechanism satisfies the conditions in Propositions 6 and
7, then any compliance can be realized with joints J1 and J3 alone. For these mechanisms, adding compliance to the intermediate
joint (joint-2) does not enlarge the realizable compliance space of the mechanisms.

Although loading all three joints with compliance is not necessary to realize a given compliance, mechanisms with three
compliant joints have the advantage that a significant amount of compliances (a large “neighborhood” in the PSD space) can be
reached with the mechanism by just changing the joint compliances while keeping the configuration unchanged. For a mecha-
nism with only two compliant joints, when a compliance varies in the realizable space, both the mechanism configuration and
the joint compliances need to be changed.

Below a synthesis procedure is developed to realize an arbitrary compliance with a 3R mechanism having compliance at
joints J1 and J3. For a given compliance C, the procedure determines the mechanism configuration and the joint compliances.

Consider a given mechanism having link lengths L1, L2, and L3 as shown in Fig. 12. The distance between the base joint J1 and
compliance frame origin is specified as L0.

A 2 × 2 compliance matrix C to be realized is expressed in the coordinate frame Oxy having the form:

C =
[
a b
b d

]
.

In the coordinate frame Oxy, the position of J1 and the corresponding twist are:

r1 =
[ −L0

0

]
and t1 =

[
0
L0

]
.
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The 3-step synthesis procedure is:

1. Decompose C into two rank-1 matrices:

C =
[
a b
b d

]
=

[
0 0
0 d − b2

a

]
+

[
a b

b b2
a

]

= C1 + C3.

Since C is a PSD matrix, a>0, d>0, and

ad − b2 ≥ 0 ⇒ d − b2

a
≥ 0,

and C1 and C3 are PSD matrices.
2. Synthesize C1 with compliant joint J1.

Choose

c1 =
d − b2

a

L20
> 0, (26)

then, C1 = c1t1tT1.
3. Synthesize C3 with compliant joint J3.

Express C3 in dyad form:

C3 =

[
a b

b b2
a

]
=

[ √
a
b√
a

][√
a,

b√
a

]
.

• Calculate angle h3.
The slope of the vector Cr1 is b

a . In order for link-3 to be on line l1 ⊥ Cr1,

h3 = tan−1 b
a

± 90◦. (27)

• Determine the joint compliance c3.
The joint compliance can be calculated by:

c3 =
a+ b2

a

L23
. (28)

Then, C3 = c3t3tT3.

With the final step, the mechanism configuration and joint compliances are determined. It is noted that Eq. (27) yields two
configurations. Each realizes the same compliance C.

5.2. Synthesis with a mechanism having three compliant joints

A synthesis procedure is developed to realize a given compliance C in which all three joints of a 3Rmechanism are compliant.
This development is based on the procedure used for the 2-compliant joint case (described in Section 5.1).

When the position of the endpoint relative to the joint base J1 is specified, the position vector r1 is constant and line l1 ⊥ Cr1
is determined. Since the mechanism has one DOF, the locations of J2 and J3 are related by the geometry of a four-bar linkage. In
order to ensure J3 is in an acceptable position, the process presented in Section 4.1 can be used to estimate the acceptable space
for r3. First, consider the configuration that realizes the given compliance C using two compliant joints J1 and J3. As shown in
4.1, the position of J2, r′

2, and line l′2 ⊥ Cr′
2 are obtained. The two lines l1 and l′2 can be used to estimate the acceptable space of

r3 based on Proposition 3a. A location for J3 can be chosen in the acceptable space.
The 4-step synthesis procedure is:

1. Calculate the vector Cr1 and determine line l1 ⊥ Cr1.
2. Choose an angle of r3 (or a location of J3) such that r3 is in an acceptable zone described in Section 3.2.
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Fig. 15. A specified 3R mechanism having given link lengths L1, L2 and L3. The position of joint base J1 relative to the compliance frame origin O is specified. At
an extreme configuration J1J′2J

′
3O, h3min = 67.98◦ .

The angle h3 can be found through the following:
(a) Evaluate the dead points of link-3 and determine the rotation range of h3.
(b) Calculate the angle h3

′ corresponding to line l1 using Eq. (27).
(c) Calculate the position of J2, r2 ′, assuming h3 = h3

′.
(d) Determine the line l2 ′ ⊥ Cr2 ′.
(e) Choose r3 in the zone bounded by l1 and l′2. The zone is identified using Proposition 3a.
The angle h3 associated with r3 is now determined.

3. Calculate r2 associated with the configuration yielding h3.
4. Determine the joint compliance constants using Eqs. (18)–(20) presented in Section 3.4.

With the final step the configuration and joint compliances of the mechanism are determined. It is noted that when r2 is
obtained in Step 3, line l2 ⊥ Cr2 needs to be constructed to confirm that r3 is between l1 and l2 and satisfies the condition in
Proposition 3a. If the conditions are not satisfied, a new position of r3 closer to l1 should be selected. It is also noted that the
synthesis solution is not unique.

A numerical example is used to to illustrate the synthesis procedures in Section 6.

6. Synthesis procedure examples

An example is provided to illustrate the synthesis procedures presented in Section 5. The compliance matrix to be realized
is the same C used in Section 3.3:

C =
[
2 1
1 4

]
× 10−2m/N.

A manipulator to be used for the realization of C is shown in Fig. 15. The link lengths of the mechanism are given as: L1 =
0.4 m, L2 = 0.3 m, L3 = 0.2 m. The distance between the base joint J1 and the compliance frame origin O is specified as L0 =
0.6 m. Since the mechanism geometry satisfies conditions (21)–(22), any compliance can be realized by the manipulator at this
endpoint location.

With the mechanism geometry, the minimum angle of link-3 is determined to be h3min = 67.98◦. The extreme position of
the mechanism is also shown in Fig. 15.

Since the synthesis of C using all three compliant joints is based on line l1 and line l′2 obtained from the configuration at
which the compliance is realized with two compliant joints J1 and J3, the synthesis of C with these two compliant joints is first
performed. Then, the synthesis of C using all three compliant joints of the mechanism is presented.

6.1. Synthesis of C with two compliant joints

The procedure presented in Section 5.1 is first used to synthesize compliance matrix C.
Using Eq. (26), the joint compliance c1 for J1 is determined:

c1 =
d − b2

a

L20
=

(4 − 1/2) × 10−2

0.62
= 0.0972m/N.

Using Eqs. (27)–(28), the angle h3 and the joint compliance c3 for J3 are determined:

h3 = tan−1 b
a

± 90◦ = 116.6◦or − 63.4◦,

c3 =
a+ b2

a

L23
=

(2+ 1/2) × 10−2

0.22
= 0.625m/N.
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Fig. 16. Configuration of the mechanism: Synthesis of C with two compliant joints J1 and J3. The joint compliances are c1 = 0.0972 m/N, c3 = 0.125 m/N, and
c2 = 0 m/N.

If h3 = 116.6◦ is chosen, the configuration of the mechanism is determined. Using the four-bar kinematic relations, the
angle h1 is calculated to be 52.38◦. The configuration of the mechanism is illustrated in Fig. 16. Line l′2 ⊥ Cr2 associated with the
configuration is also illustrated in the figure. This line is needed in the synthesis with three compliant joints described below.

6.2. Synthesis of C with three compliant joints

Following the procedure presented in Section 5.2, the configuration of the mechanism and joint compliances needed to
realize the compliance are identified.

1. Calculate Cr1 and determine line l1 ⊥ Cr1, as described in Section 5.1.
2. Choose a position of joint-3 such that r3 is in the realizable zone between l1 and l′2. An angle of link-3, h3, can be selected

based on the following conditions:
(a) The extreme position is h3min = 67.98◦.
(b) The angle h3

′ associated with l1 is calculated in Section 6.1 as h3 ′ = 116.6◦.
(c) The position of J2 associated with h3 = 116.6◦ is calculated as r′

2 = [−0.3559 m, 0.3169 m]T.
(d) Line l′2 ⊥ Cr′

2 is determined. The angle between the line and the x-axis is 23.42◦ (shown in Fig. 16).
(e) Choose a position between l1 and l′2 using Proposition 3a that also satisfies kinematics constraints (greater than h3min).

Here, line l′2 is used to estimate the acceptable zone of r3. It can be seen that the configuration h3 = 90◦ satisfies the
above conditions and is therefore chosen to realize the compliance.

3. Determine the positions of the joints.
For h3 = 90◦, the positions of three joints are determined by the kinematics of a four-bar mechanism. The joint positions
are:

r1 =
[ −0.6m

0

]
, r2 =

[ −0.2943m
0.2580m

]
, r3 =

[
0

0.2m

]
.

4. Determine the joint compliance coefficients using Eqs. (18)–(20).

c1 = 0.0794m/N,

c2 = 0.1317m/N,

c3 = 0.2809m/N.

With the final step, the mechanism configuration with h3 = 90◦ and the joint compliances are obtained. The mechanism
configuration is illustrated in Fig. 17. To confirm that the mechanism configuration satisfies the realization conditions, line
l2 ⊥ Cr2 corresponding to the final configuration is also illustrated in the figure.

Note that, when synthesizing a given compliance with two compliant joints J1 and J3, the configuration and joint compliance
of the mechanism are uniquely determined; when synthesizing a given compliance with three compliant joints, the configura-
tion and joint compliance of the mechanism are non-unique. There are an infinite number of configurations and sets of joint
compliances for the given mechanism that realize the same compliance.

7. Discussion and conclusions

The decomposition process presented in the paper is theoretical. For a given Cartesian compliance, the process yields the
mechanism configuration and the joint compliances. In this paper, we assume that any set of joint compliances can be attained
via a conventional (passive) spring at each joint, or SEAs/VSAs. In practical application, the prescribed global compliance matrix
will be influenced by the following factors: 1) gravity or loading of joint compliances, which changes themechanism equilibrium



20 S. Huang, J. Schimmels / Mechanism and Machine Theory 103 (2016) 1–20

Fig. 17. Configuration of the mechanism: Synthesis of Cwith three compliant joints J1, J2, and J3.

and causes non-symmetry of the global compliance; 2) a limited range of the joint spring stiffness or SEA/VSA stiffness, which
would limit the space of global compliances achieved by themechanism. The influence of these factors is negligible if the overall
mechanism stiffness is sufficiently high and the range of joint compliances is sufficiently large.

In this paper, methods to realize an arbitrary 2 × 2 elastic behavior using serial mechanisms having only revolute joints are
presented. The ability of any specified 3R mechanism to realize an arbitrary compliance behavior is characterized. It is shown
that if a mechanism has appropriately sized relative link lengths, every compliance matrix can be realized by the mechanism
at the specified endpoint location. This ability allows one to realize all particle compliant behaviors with a singlemechanism by
properly selecting the joint compliances and the mechanism configuration. Geometric appreciation of compliances associated
with amechanism provides insight into the design of manipulators that realize desired elastic behaviors. In robotic applications,
a time-varying compliance can be achieved with a mechanism with VSAs by properly changing the mechanism configuration
and adjusting the joint compliances.

Acknowledgments

This work is supported by the National Science Foundation under Grant IIS-1427329.

References

[1] S. Huang, J.M. Schimmels, The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel, IEEE Trans. Robot. Autom.
14 (3) (1998) 466–475.

[2] S. Huang, J.M. Schimmels, Achieving an arbitrary spatial stiffness with springs connected in parallel, ASME J. Mech. Des. 120 (4) (1998) 520–526.
[3] S. Huang, J.M. Schimmels, The bounds and realization of spatial compliances achieved with simple serial elastic mechanisms, IEEE Trans. Robot. Autom.

16 (1) (2000) 99–103.
[4] S. Huang, J.M. Schimmels, The duality in spatial stiffness and compliance as realized in parallel and serial elastic mechanisms„ ASME J. Dyn. Syst. Meas.

Control. 124 (1) (2002) 76–84.
[5] G. Pratt, M. Williamson, Series elastic actuators, Proceeding of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1,

Pittsburgh, PA, 1995. pp. 399–406.
[6] R.V. Ham, T.G. Sugar, B. Vanderborght, K.W. Hollander, D. Lefeber, Compliant actuator designs: review of actuators with passive adjustable compli-

ance/controllable stiffness for robotic applications, IEEE Robot. Autom. Mag. 16 (3) (2009) 81–94.
[7] R.S. Ball, A Treatise on the Theory of Screws, Cambridge University Press, London, U.K, 1900.
[8] F.M. Dimentberg, The Screw Calculus and its Applications in Mechanics, Foreign Technology Division, Wright-Patterson Air Force Base, Dayton, Ohio,

1965. Document No FTD-HT-23-1632-67
[9] M. Griffis, Kinestatic control: a novel theory for simultaneously regulating force and displacement, ASME J. Mech. Des. 113 (4) (1991) 508–515.

[10] T. Patterson, H. Lipkin, Structure of robot compliance, ASME J. Mech. Des. 115 (3) (1993) 576–580.
[11] T. Patterson, H. Lipkin, A classification of robot compliance, ASME J. Mech. Des. 115 (3) (1993) 581–584.
[12] J. Loncaric, Normal forms of stiffness and compliance matrices, IEEE J. Robot. Autom. 3 (6) (1987) 567–572.
[13] R.G. Roberts, Minimal realization of a spatial stiffness matrix with simple springs connected in parallel, IEEE Trans. Robot. Autom. 15 (5) (1999) 953–958.
[14] N. Ciblak, H. Lipkin, Synthesis of cartesian stiffness for robotic applications, Proceedings of the IEEE International Conference on Robotics and Automation,

Detroit, MI, 1999. pp. 2147–2152.
[15] K. Choi, S. Jiang, Z. Li, Spatial stiffness realization with parallel springs using geometric parameters, IEEE Trans. Robot. Autom. 18 (3) (2002) 264–284.
[16] M.B. Hong, Y.J. Choi, Screw system approach to physical realization of stiffness matrix with arbitrary rank, ASME J. Mech. Robot. 1 (2) (2009)

0210071–0210078.
[17] S. Huang, J.M. Schimmels, The eigenscrew decomposition of spatial stiffness matrices, IEEE Trans. Robot. Autom. 16 (2) (2000) 146–156.
[18] S. Huang, J.M. Schimmels, A classification of spatial stiffness based on the degree of translational-rotational coupling, ASME J. Mech. Des. 123 (3) (2001)

353–358.
[19] R.G. Roberts, Minimal realization of an arbitrary spatial stiffness matrix with a parallel connection of simple springs and complex springs, IEEE Trans.

Robot. Autom. 16 (5) (2000) 603–608.
[20] A. Albu-Schaffer, M. Fischer, G. Schreiber, F. Schoeppe, G. Hirzinger, oft robotics: what cartesian stiffness can we obtain with passively compliant,

uncoupled joints?, Proceeding of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, 2004. pp. 3295–3301S
[21] F.P. Petit, Analysis and control of variable stiffness robots, ETH Zurich, Zurich, Switzerland, 2014. Ph.D. thesis
[22] N.P. Belfiore, M. Verotti, P.D. Giamberardino, I.J. Rudas, Active joint stiffness regulation to achieve isotropic compliance in the euclidean space, ASME J.

Mech. Robot. 4 (4) (2012) 0410101–04101011.
[23] M. Verotti, P. Masarati, M. Morandini, N. Belfiore, Isotropic compliance in the special euclidean group SE(3), Mech. Mach. Theory 98 (2016) 263–281.
[24] M. Verotti, N.P. Belfiore, Isotropic compliance in E(3), ASME J. Mech. Robot. (2015) http://dx.doi.org/10.1115/1.4032408.
[25] J.M. McCarthy, Geometric Design of Linkages, Springer 2000.
[26] K. Ting, Y. Liu, Rotatability laws for n-bar kinematic chains and their proof, ASME J. Mech. Des. 113 (1) (1991) 32–39.

http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0005
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0010
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0015
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0020
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0025
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0030
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0035
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0040
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0045
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0050
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0055
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0060
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0065
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0070
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0075
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0080
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0085
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0090
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0095
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0100
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0105
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0110
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0115
http://dx.doi.org/10.1115/1.4032408
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0125
http://refhub.elsevier.com/S0094-114X(16)30043-X/rf0130

	Realization of point planar elastic behaviors using revolute joint serial mechanisms having specified link lengths
	1. Introduction
	1.1. Related work
	1.2. Technical background
	1.3. Overview

	2. Limits of a 2R mechanism
	3. Mechanisms with three or more compliant joints
	3.1. Conditions for compliance realization
	3.2. Conditions on configuration for compliance realization
	3.3. Example
	3.4. Determination of the joint compliances
	3.5. Mechanisms with more than three compliant joints

	4. Realization of any compliance with a given mechanism
	4.1. Realization conditions for every compliance
	4.2. Conditions on the mechanism link lengths
	4.3. Mechanisms with more than three joints
	4.4. Discussion

	5. Synthesis of a realizable compliance
	5.1. Synthesis with a mechanism having two compliant joints
	5.2. Synthesis with a mechanism having three compliant joints

	6. Synthesis procedure examples
	6.1. Synthesis of Cwith two compliant joints
	6.2. Synthesis of Cwith three compliant joints

	7. Discussion and conclusions
	Acknowledgments
	References


