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1. Introduction

In order for robots to achieve human-like dexterity in manipulation tasks, a means for regulating interaction force is needed,
especially when geometric conflict exists between the robot and its environment. One approach to force regulation is to select or
control the robot passive compliance. Passive compliance allows for high speed interaction. Desirable robot passive compliance
can be attained by: 1) designing compliant end-of-arm tooling, or 2) designing compliance into the arm itself.

Any desired compliant behavior can be realized through the proper design of an end-effector mounted compliant wrist. It is
known that for any specified elastic behavior, an infinite number of parallel [1,2] or serial [3,4] mechanisms having springs at
each joint can achieve the desired behavior. Proper compliant wrist design involves selecting the geometry and configuration
of the mechanism and selecting the spring rates at each joint. The limitation of this approach is that the mechanism realizes a
single specified compliance. If the robot task changes or the desired compliance within the task changes, an entirely different
compliant wrist would likely be needed for its realization.

Several strategies exist for designing compliance into the manipulator itself. Series elastic actuators (SEAs) [5], in which pas-
sive compliance is provided between the motor and the connected link, can be used to provide a selected amount of compliance
in each joint. Variable stiffness actuators (VSAs) [6] are similar, but they allow joint compliance to be changed in real time. This
ability is important in robot tasks that require continuously changing compliant behaviors, such as when the nature of the task
changes, the task itself changes, or the task environment changes (especially when people are in the robot workspace).
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VSAs enlarge the space of elastic behavior that can be achieved by a robot by changing each joint stiffness. If the manipulator
is kinematically redundant, the set of achievable elastic behaviors is increased further. A much larger set of compliances can be
attained by adjusting both the joint stiffnesses and the manipulator configuration, without ever changing the endpoint location
of the robot.

In some manipulation tasks, such as turning a crank or opening a door, the interaction torque is not important. Since only
the relationship between force and translation is important, the interaction can be modeled as point contact, and the compliant
behavior can be modeled as an elastically suspended particle, i.e., not an elastically suspended rigid body. This paper presents
methods for the evaluation and realization of planar translational elastic behaviors using serial mechanisms having only revolute
joints, each with selectable compliance. An example of the type of mechanism considered is illustrated in Fig. 1. The mechanisms
considered are arbitrary but have known link lengths.

1.1. Related work

Spatial elastic behavior has been analyzed for more than a century. Screw theory [7-11] and Lie groups [12] have been used
to analyze and characterize spatial linear elastic behavior (represented by a 6 x 6 symmetric stiffness matrix K or compliance
matrix C).

More recent work has addressed the realization of spatial elastic behavior through the design of passive compliant mech-
anisms. Previously, the bounds of elastic behaviors achieved with simple parallel mechanisms [1] and with simple serial
mechanisms [3] have been identified. A simple parallel mechanism contains only line springs and torsional springs, and a simple
serial mechanism contains only prismatic and revolute joints. Synthesis procedures have been developed [1,3,13,14] to realize
any elastic behaviors within these bounds. Geometry based screw theory approaches for the realization of an arbitrary realizable
stiffness matrix have also been developed [15,16].

The synthesis of an arbitrary spatial stiffness matrix with a parallel system has also been addressed [2]. [t was shown [2] that
in order to realize an arbitrary stiffness, screw springs that couple the elastic behavior in translation and rotation in the same
direction must be used. The eigen-structure of a stiffness was analyzed using the eigenscrew decomposition of the stiffness
matrix [17]. Based on the eigenstiffness analysis, a procedure to calculate the minimum number of screw springs required to
realize a specified stiffness matrix in a parallel system was identified [18]. A procedure has been developed [19] to realize an
arbitrary spatial stiffness using the minimum numbers of screw springs and simple springs.

This previous work has focused on the realization of a single compliance with a mechanism of unspecified geometry at a
unspecified configuration. When the desired compliance is changed, a different mechanism with a new configuration must be
used. Very little work has addressed: 1) the ability of a single specified mechanism to realize an arbitrary compliance, and 2) the
identification of the space of realizable compliances that can be achieved with a mechanism having specified link lengths.

The inability of a 2R compliant joint manipulator to realize general particle planar compliance was noted in [20]. It was also
noted that, for a 3R manipulator, the surjectivity of the mapping from 2 x 2 Cartesian space to joint space compliance is not
guaranteed. These limitations were identified as motivation for using optimization (using various norms as objective functions)
for approximating the behavior of a targeted Cartesian compliance matrix. More recently, the ability of a manipulator to realize
a specified point planar compliance using 3R serial mechanisms with known link lengths was addressed [21]. Optimization was
used to identify the combination of mechanism configuration and joint stiffnesses that minimizes the deviation of the attainable
Cartesian compliance from a targeted value. The proximity of an optimized compliance to a targeted compliance (measured
using the matrix Frobenius norm) was characterized for a set of configurations of the redundant manipulator and for a set of
compliant behaviors using a “stiffability map.”

The major limitations of using optimization for the realization problem are that: 1) optimization does not ensure that any
specified compliance can be achieved even with a large number of redundant joints; 2) the optimal solution may not preserve
the desired compliant behavior of the original compliance; and 3) the results obtained from optimization provide little physical
insight into the limits of passive compliance realization.

Base

Fig. 1. A 3R serial compliant mechanism with variable stiffness actuators.
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In more recent work [22-24], the realization of isotropic compliance in the Euclidian spaces E(2) and E(3) with robotic
mechanisms has been addressed. Equations relating the Cartesian compliance entries to the joint compliance and the mecha-
nism geometry were developed. In these papers, the joint compliances are calculated by solving these equations. The approach
applies to a general serial mechanism with revolute and prismatic joints. However, the existence of a physical solution (k; > 0)
to the equations is not guaranteed, and, for many configurations, a solution cannot exist. The set of mechanism configurations
for which a solution exists was not identified.

This paper addresses the guaranteed realization of planar translational elastic behaviors with a serial mechanism having
specified link lengths. The serial mechanisms considered have only revolute joints each loaded with a joint compliance. The
compliance behaviors considered are arbitrary in E(2). This work is motivated by the need for a single manipulator to realize any
selected planar compliance at any selected endpoint. The paper presents the theory and methods to design a single manipulator
that is able to achieve all compliances by changing its configuration and joint compliances. It also presents the theory and
methods for the selection of mechanism configuration and joint stiffnesses needed to achieve any specified elastic behavior. The
conditions for the realization of a given compliance are interpreted in terms of geometric relationships among the mechanism
joints. The main contributions of the paper are:

1. Necessary and sufficient conditions for a mechanism to realize an arbitrary but given compliance at a given configuration
are identified;

2. Synthesis procedures for the realization of a realizable compliance at a given location are developed;

3. Classes of mechanisms that facilitate compliance realization are identified. Necessary and sufficient conditions on the
mechanism link lengths that ensure that all compliant behaviors can be realized are identified.

1.2. Technical background

Consider a planar serial mechanism having n joints, J;, with joint compliance ¢; > 0 and joint twists t;. Then the compliance
matrix C at the mechanism endpoint is a symmetric positive semidefinite (PSD) matrix that can be expressed [4] as:

C=ctith + tat] + - - + cutyt] (1)

where the twists t; are described relative to the compliance frame (the reference frame where the compliance matrix is
specified). Each compliant joint provides a rank-1 PSD component:

C = Cit,‘t;r. (2)

It is known that decomposition (1) is not unique; different decompositions yield different mechanism geometries and con-
figurations that each realizes the given compliance. Thus, decomposition (1) cannot be applied directly to a given mechanism
with specified link lengths. A new method that considers mechanism geometry (fixed link lengths) to obtain an appropriate
decomposition (1) is needed.

For the mechanism illustrated in Fig. 1, in which the compliance matrix is expressed in the frame at point O, each joint twist
is given as:

tt=r;xk

where r; is the position vector from O to joint i and Kk is the unit vector perpendicular to the plane. Thus, the joint twist t; is
determined by the position vector r;.

To realize a given compliance with a given mechanism, the mechanism configuration and the joint compliance c¢; must be
adjusted so that Eq. (1) is satisfied.

For a suspended particle, the compliance is a 2 x 2 PSD matrix. If the position vector for joint-i is:

Iy = ,
Yi

then the corresponding joint twist, perpendicular to r;, is:

From Eq. (2), it can be seen that t; and —t; yield the same joint compliance C;. Thus, t; can be obtained by rotating r; either
clockwise or counterclockwise about the coordinate frame origin. Mathematically,

ti = +0r; (3)
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where Q is a 2 x 2 anti-symmetric matrix associated with a vector cross-product, given as:

n:[_ol(l)] (4)

It is known that the space of PSD matrices is a cone. All rank-1 PSD matrices lie on the boundary of the cone. Thus, each joint
compliance matrix C; in Eq. (2) is a point on the boundary of the PSD cone. If ¢; is allowed to vary in the range 0 < ¢; < oo, C;
represents a ray in the 2 x 2 PSD space, an edge of the PSD cone.

If a desired 2 x 2 PSD compliance matrix C is to be realized at the endpoint of a redundant 3R mechanism in which each joint
has selectable compliance (as illustrated in Fig. 1), then, for a specified configuration, the three joint twists t; are known. The
desired C can be realized if and only if there exist non-negative coefficients c; such that

C=citit] + cotot] + cstst]. (5)

For any 2 x 2 symmetric matrix A = [qg;], only three entries are independent, therefore, A can be represented by a 3-vector
A = [a11,a12, ax 7. With this operation, Eq. (5) can be written in vector form as:

(5]
C=ah+ah+alz= [Tl.Tz.Te,] Q|
C3

where C is the 3-vector representation of C; and T} is the 3-vector representation of t;t]. If we denote
T= [fl.fz,@] €= [c1, 02,63,
then,
c=T1"1C. (6)

Thus, C can be realized at the given configuration if and only if ¢ > 0.

In the 2 x 2 PSD space, the condition ¢ > 0 indicates that C must be inside the polyhedral convex cone defined by the
three edges t1t{, t,t!, and t3t§ as shown in Fig. 2. Because the manipulator is redundant, many configurations yield the same
manipulator endpoint. When the mechanism changes configuration, the edge locations on the PSD cone’s boundary also change.
The solution is tractable because the dimension of the problem is the same as that of the manipulator. Although Eq. (6) can
be used to determine the realizability of C for a given mechanism configuration, it does not provide insight into the geometric
relations among the joints that are required for compliance matrix realization (i.e, to ensure that C is contained within the
polyhedral convex cone bounded by its edges). For example, if J; and J, are specified, the space of J; locations that allows C to
be realized is unknown. Also, Eq. (6) cannot be used to assess whether a mechanism can realize every compliance at a given
location in the workspace.

O

Fig. 2. Realizable condition for a given compliance C with a 3R mechanism having a specified configuration. C must be inside of a polyhedral cone with edges
tt], o], and t3t].
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1.3. Overview

This paper presents means to analyze and realize planar translational elastic behaviors using revolute joint serial mech-
anisms. The means for analysis and synthesis are based on the geometry of the realizable compliance matrix space and the
geometry of the mechanism. This approach provides physical insight into elastic mechanism behavior. The ability of a single
mechanism with specified link lengths to realize all compliance behaviors at a given end-point location is also investigated. In
this paper, we assume that the range of joint compliances is 0 < ¢; < oo. Joint compliances can be obtained via one of the fol-
lowing approaches: 1) providing an appropriate (passive) spring at each joint; 2) providing an appropriate stiffness serial elastic
actuator (SEA) at each joint; or 3) providing a variable stiffness actuator (VSA) at each joint.

Section 2 identifies the limits of a 2R mechanism to realize a specified 2 x 2 compliance matrix. A necessary and sufficient
condition for a compliance to be realized by a 2R mechanism is identified. Section 3 presents an approach to realize a given
compliance with a 3R mechanism based on mechanism geometry. The method then is extended to n-R mechanisms. Section 4
addresses the ability of a single mechanism to realize all compliances at a given location just by changing the mechanism con-
figuration and/or joint stiffnesses. A necessary and sufficient condition on the mechanism geometry to realize all compliances is
identified. Synthesis procedures to achieve a realizable compliance are presented in Section 5. A numerical example illustrating
the synthesis procedures for a given mechanism is provided in Section 6. Finally, a brief discussion and summary are presented
in Section 7.

2. Limits of a 2R mechanism

To realize a full-rank 2 x 2 compliance matrix, a mechanism having at least two compliant joints is required. Here, the limi-
tation of a 2R serial mechanism with fixed link lengths and configuration is considered. A necessary and sufficient condition for
a specified compliance to be realized with the mechanism is identified. These results allow the characterization of the realizable
space of compliances in terms of the geometry of the mechanism.

Consider the 2R serial mechanism shown in Fig. 3. The mechanism endpoint O is the location of interest (where the compli-
ance frame is located) and ry and r; are the position vectors indicating the locations of joint-1 and joint-2 relative to O. If the
position of O relative to J; (the location in the workspace) is specified, the configuration of the mechanism cannot change, and
the two position vectors r; and r, cannot vary.

The space of realizable elastic behaviors is given by:

Proposition 1. A compliance matrix C can be realized with a 2R mechanism in a given configuration if and only if:
riCr, = 0. (7

Proof. If C is realized by the mechanism, then, by Eq. (1), there exist positive constants, the joint compliances, c; and c;, that
satisfy

C= C]tlt.{ + Cztztg.
Sincer; Lty andr, L t;, thenrlt; = 0and rlt, = 0. Thus,
l'{cl'z = l'.lr (C1t1 t{ + Cztztg) r
=0 (l’—lrt1) (t%"l'z) + (l’—lrtz) (tgl'z) =0,

which proves that Eq. (7) is a necessary condition.

Fig. 3. A 2R mechanism. Each joint twist t; is perpendicular to the position vector r; relative to the compliance frame Oxy.
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To prove that the condition is also sufficient, we show that C can always be expressed by a known positive combination of
t1t] and t,t] if Eq. (7) is satisfied.

Suppose r?Crz = 0, then Cr; L rq. Due to the symmetry of matrix C, r%Cn = 0, and Cr; L r,. Using this and Eq. (3), t; || Cry
and t; || Cr;. Thus there exist constants A and 3 such that At; = Cry, and (3t; = Cr;. Then t; and t;, can be expressed as:

1 1
t = XCl'z, = BCI‘]. (8)

It can be shown that a matrix C constructed as:

)\2 2
th + B tt] (9)

C= 1
T 1 T
r;Cr; r;Cr;

must be equal to C.
This is shown by substituting Eq. (8) into Eq. (9) yielding

B 1 1
C=——Crrlc+ —Crrlc, 10
(fer) 20 (en) 1o

then multiplying C by r; from the right yields

- 1 1
Cr; = ——CrorlCry + ——CryrlCr
! (ricry) 2721 (rfcry) A
1 1
——Cry (rlCr;) + ——Crq (rICr
ey 2 (B00) * ey o (rien)
= Cr;.

Similarly, we have
Cr, = Cry.
Therefore:
C[ry, 1] = C[ry,13].
Since ry and r, are two linearly independent vectors, then C = C. Thus, by choosing the joint compliance c; and ¢,

A2 2

= y G = )
riCr, rICry

the compliance matrix C is realized by the mechanism with the given configuration. Note that ¢; > 0 since C is positive definite.
This completes the proof.

2x2 PSD cone Realizable space:
l‘]TCrz =0

of compliance

Qe

Fig. 4. Realizable space of compliance matrices using a 2R mechanism having variable compliant joints and fixed configuration. The two edges of the subcone
are the rank-1 matrices t; t{ and tztg associated with vectors ry and ry.
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l]J_Cl‘l

Fig. 5. Limitation of the realization of a given compliance with a 2R mechanism. Joint J, must be on the line l; L Cr; to realize the given compliance C.

Condition (7) is very restrictive. It is known that the collection of all point planar compliance matrices is a cone in the space of
2 x 2 symmetric matrices. Eq. (7) represents a plane in this space. The realizable space of PSD matrices is a subcone determined
by the intersection of the PSD cone and the plane defined by Eq. (7) (as shown in Fig. 4). The two edges of the subcone are the
rays determined by tlt{ and tztg that are associated with the positions of the two joints, J; and J,. For a given location of the
compliance frame, the position of J; relative to O, ry, is specified. The ray t; tg is constant and lies on the boundary of the PSD
cone. For a given compliance C, the plane passing through both edge t; t{ and compliance C must intersect the PSD cone at a ray.
In order to realize C, the second joint, J,, must be positioned such that its joint compliance matrix is collinear with that ray.

The restriction on the space of realizable elastic behaviors can be described in terms of the mechanism geometry as illustrated
in Fig. 5. Because the position of joint J; relative to point O is specified, r; is constant. By condition (7), vector r, must be
perpendicular to vector Cry. Let [; be the straight line passing through O that is perpendicular to Cr;. Condition (7) requires that
J> be on line [;. Thus, line [; represents the locus of all J, locations that will allow the given C to be realized by the mechanism.

Since the realizable space of a 2R mechanism is very limited (zero-measure), in order to realize an arbitrary compliance,
serial mechanisms having at least three joints must be considered.

3. Mechanisms with three or more compliant joints

The limits on the space of realizable compliances using a 2-joint mechanism are due to the fact that, once the position
of a suspended particle relative to the base location is specified, the configuration of the mechanism is fixed. In this section,
mechanisms having three or more compliant joints are considered. Since the degree of freedom is increased, the mobility of
the mechanism is no longer zero when the location of O is specified. First, mechanisms having three joints are considered.
Mathematical conditions on a compliance C to be realized with a mechanism having a given configuration are obtained. Next,
the set of joint twists needed to realize a specified compliance are obtained. These conditions are then described in terms of
the mechanism geometry. Alternate procedures to select the joint compliances based on the mechanism configuration are also
provided. Then, the results are extended to mechanisms having more than three joints.

3.1. Conditions for compliance realization

Below, we develop a geometric approach in compliance matrix space that will later be used directly in physical 2-D space to
determine the relationships among the three joints required to realize a specified compliance C.
For joint-1 and the corresponding position vector ry, consider the two vectors defined by

El = Cl'], i‘l = QCl'1.
Then, by Proposition 1,

rlCiy = (Cry)'Q(Cr;) =0

1+11 = 1 1))=Y

and t; and ; can be viewed as being associated with a nonexistent second joint needed to realize C with a 2R mechanism. The
given compliance C can be expressed as the positive combination of t; t? and t, ﬁ, which means the compliance Cis in the plane
Py determined by the two rays t;t] and ;&]:

P, :{QeRM:Q:QT,r{Qf1 :0}. (11)
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t3t3T f]f] r

AV

O

Fig. 6. Condition to realize a given compliance C. Plane P; is determined by C and the joint compliance of J, t; t{. To realize C, plane P; must separate the joint
compliances associated with joints J, and Js, t,t] and t5t].

As illustrated in Fig. 6, plane P; is uniquely determined by the position of J; and the compliance matrix C.

If C is to be realized by a 3R mechanism, C must be within a polyhedral convex cone having edges t;t!, t,t!, and t3t§. Hence
C, = t;t] and C; = t3t] must be on opposite sides of Py, which means r]C,f; and r{CsF; must have opposite signs, which can
be expressed as:

(r€C2f1) (l'.{C3i‘1) < 0. (12)
Since Q7Q = I (identity),

iy =1f (tztg) Qcry =1 (QrzrgﬂT) QCr;
=r] (Qrzrg) Cr;.

Similarly,
TCsf =11 (Qrsrl) €
r;(sr ry I3r3 ri.

Thus Eq. (12) can be expressed as:
(r]TQrerCrl) (r{0r3r§Cr1) < 0.

The above inequality is a necessary condition. In order to obtain sufficient conditions, the compliance matrix edges associated
with the other two joints, tztg and t3t§, should be considered independently using the same procedure. Thus, the conditions for
the three joints to realize a given C are:

(r{QrZrECrl) (r{0r3r§Cr1) <0, (13)
(rgﬂr3r§Cr2) (rgﬂn rfCrz) <0, (14)
riOrr’Crs) (rfQrorlCrs) < 0. (15)
(cSoririces) (rforsricrs)

Note that these conditions are not independent. If any two of the three inequalities hold, then the remaining inequality must
be true.
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Acceptable range
for t3t3T

66,7

)

Fig. 7. Locus of acceptable joint compliance of J;. The compliance associated with joint-3, t3t}, must lie on the arc between &;t] and €, (which depend on the
given positions of J; and J,).

Proposition 2. An arbitrary compliance C can be realized with three compliant joints with positions r, ,r, and r3 if and only if any
two inequalities of Eqs. (13)-(15) hold.

3.2. Conditions on configuration for compliance realization
Similar to that for J; discussed in Section 3.1, consider the two vectors associated with J, given by:
Ez = Cry, i'z = QCr,,

and plane P, defined by the two rays t,t, and t,t,. Since the compliance matrix C is on both plane P; and plane P, it must be at
the intersection of the two planes as illustrated in Fig. 7.
If C is realized by a three joint serial mechanism, plane P; must separate t,t} and t3t§, and plane P, must separate t;t] and
t3t]. Inequalities (13) and (14) require that the joint compliance t5t] be on the arc between t;t] and t,t] as shown in Fig. 7.
Note that joint twist t; and joint position r; have the relationship:

t; = +0r;, E,‘ = +QCr;.

Since the two rays associated with ;] and t,t] set the bounds on t5t] in 2 x 2 matrix space, the two vectors QCry and QCr,
define the bounds on r3 in 2-vector space and can be represented in terms of the mechanism geometry.

In the plane of the mechanism, consider two lines, [; and I,, passing through the origin O (where the compliance is specified),
defined by I; L Cr; and I, L Cry. The two lines separate the space into four subspaces: Sy, Sy, Syi, and Syy as shown in Fig. 8.

l[J.CI']

12 1 Cl’z

StU Sm
St U Sy

]

(%)

Fig. 8. The acceptable space of r; for realizing C. The space of r3 for the realization of C is a zone limited by the two lines l; and l,, 07 or 0. The space is
identified by the fact: neither ry nor r, can be inside of the acceptable space.
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[y

b

I3

I I

Fig. 9. Necessary and sufficient condition for a compliance to be realized by a 3R mechanism. Position vector r3 is adjacent to Iy and I»; r; is adjacent to /; and
I3; and rq is adjacent to I, and 5.

It can be seen that if vector r3 satisfies conditions (13)-(14), then —r3 must also satisfy the same conditions. Thus, if
inequalities (13)-(14) are true for Sj, they must be also true for Sy;.

Denote:
o1 = S U S, (16)
0y = S U Sy. (17)

Then, r3 must be either in o or in 05 to realize the compliance C. In fact, if any point in 0 satisfies inequalities (13)-(14),
the following must be true:

(i). Every point in 0 satisfies the same conditions;
(ii). No point inside 0, satisfies the same conditions.

The above statements (i) and (ii) can be proved by the fact that, for a given r; and r,, the expressions on the left side of
inequalities (13)-(14) are continuous functions of r3, and if one inequality changes sign, r; must cross either line [; or line [.

Thus, once the positions of J; and J, are specified, the acceptable space for J5 to realize C is a zone with vertical (opposite)
angles and boundaries of I; and I, either the space 0 or the space 0, shown in Fig. 8. Although the space can be identified by
testing conditions (13)-(14) using an arbitrary point, the space can also be identified directly by testing the position of J; or J,.
Neither r; nor r, can be in the interior of the space acceptable for r3. This can be proved by setting r3 = r; in condition (13),
which violates the inequality. Therefore, as shown in Fig. 9, r3 or —r3 must be separated from r; by [;. By the same reasoning,
r3 or —r3 must be separated from r; by I, and r; or —r; must be separated from r; by line I3 L Crs. Fig. 9 shows the geometric
relations among position vectors r;s and the lines /;s for a mechanism configuration that realizes a given compliance C.

In summary, we have:

Proposition 3. Consider a compliance matrix C and a 3R mechanism having joint positions r;. Let l; be a line passing through O and
perpendicular to vector Cr; (i = 1,2,3). Then,

a) Ifry and r, are specified, the space of r3 that can realize C is the zone 0 that does not contain ry (or ry) as shown in Fig. 8;
b) Ifry, ry and r; are specified, C can be realized if and only if: & r; is between and adjacent to lines I, and l3; + r; is between and
adjacent to lines Iy and I3; and + r3 is between and adjacent to lines |, and I, as shown in Fig. 9.

Similar to conditions (13)-(15), the three conditions on mechanism configuration in Proposition 3b are not independent. If
any two conditions in Proposition 3b are true, the remaining condition must also be true.

3.3. Example

An application of these results is illustrated in Fig. 10. This 3R mechanism example shows how to determine the range of the
locations of J; when the locations of the other two joints are specified.
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I

Fig. 10. Configurations of a 3R mechanism that realizes the example compliance. Joint position vector J; could be anywhere in the two identified regions
bounded by [; and I,.

If a desired compliance matrix is given as:

— 21 -2
C—[14}x10 m/N,

and the locations of J; and J, are specified as:

o [02] L _[-017,,
=1 o0 27 01 .

The two vectors Cr; and Cr, are:

-1

-4
Cry = [_2] x107°m?/N,  Cr, = [ :

] x 1073 m?/N.

The two lines Iy L Cry and I, 1 Cr; each passing through point O are illustrated in Fig. 10. For this case, r; is along the x-axis.
The space of acceptable r3 to realize the given C is identified to be the two shaded areas that meet r; only at the origin O.

Fig. 10 illustrates the locations of the three joints in a mechanism. When J; and J, are specified, J; must be in the shaded
area bounded by /1 and I in order to realize the given C. Two possible acceptable configurations J,J,J; and J1J,J; for the given
mechanism are shown.

3.4. Determination of the joint compliances

Below, means for selecting the joint compliance values for a given mechanism configuration and realizable compliance C are
derived. Unlike the calculation of Eq. (6), the matrices are not converted to vectors and a matrix inversion is not required. Only
the compliance matrix and joint locations are needed.

Suppose C is to be realized by a 3R mechanism with joint twists t;, then by Eq. (5),

C=ctit] + cotot] + ctst].
Multiplying C by rg from the left and by r3 from the right yields
Tep. — Tt 4T Te \ ¢ Te (+T
r,Cr3 = ciryttirs + ¢ (rztz) Gr; + c3rots (t3r3) .
Since rit, = O and tlr; = 0,
riCr; = ¢l tirs.
The value for the compliance of joint-1 is:

T T
r,Cr; r;Crs

rttirs  or o'

G
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Fig. 11. Cross section of the PSD cone containing the compliance C. The vertexes V; of the polygon are associated with joint compliance tl-tiT. C must be inside
the polygon to be realized with the mechanism.

Repeating the process for the pairs (rq,r3) and (rq,r;) respectively, the equations for coefficients of ¢, and c5 are obtained.
Thus, for a given configuration (ry, 1y, r3) and a realizable C, the joint compliances are calculated using:

rICr
= 273} (18)
rorrf0'r;
riCr,
3
)= —————, (19)
> rior,rl Q'
r’Cr
3= 2. (20)
rfarsrl0'r,

Note that once the configuration is specified, the compliance values are each unique. As stated in Proposition 2, if C is
realizable, then inequalities (13)-(15) must be satisfied. It can be proved that inequalities (13)-(15) ensure that each ¢; in
Egs. (18)—(20) is positive. Thus, if C is realizable, the coefficients calculated using Eqgs. (18)-(20) are all positive. In fact, ¢c; >0
(i=1,2,3)is also a necessary and sufficient condition for C to be realized with the mechanism at the given configuration.

3.5. Mechanisms with more than three compliant joints

Consider a mechanism having n (n> 3) revolute joints. At a configuration, joint i has position r; and joint twist t;, i =
1,2,...,n. If a compliance C is realized by the mechanism at the configuration, then C must be in the polyhedral convex cone
bounded by the edges (rays) associated with the rank-1 joint compliance t,-t,.T, where each edge is on the boundary of the PSD
cone.

Fig. 11 shows a cross section of the PSD cone containing the compliance C. In this plane, the edges (rays) associated with the
joint compliances t,—tl.Ts are represented by points V; on the boundary of the PSD cone, and the polygon with vertexes V; is the
cross section of the polyhedral convex cone of all realizable compliances. It can be seen that the compliance C can be realized
with the mechanism at the configuration if and only if C is within the polygon with vertexes V;.

Consider the vertex Vy in the plane shown in Fig. 11. If C is in the polygon V;V; - .V}, there must exist two vertexes V; and
V; such that C is the triangle V1 V;V;. This means that the compliance can be realized by three compliant joints J, J; and J;. This
statement is valid for any joint. As such we have:

Proposition 4. For an n-R mechanism havingjoint positionsr; (i = 1,2,---,n,n > 3), a compliance C can be realized with mechanism
at the configuration if and only if the following equivalent conditions are true:

a) There exists three joints in the mechanism that realize C;
b) For every joint J;, there exist two joints J; and Ji in the mechanism such that the three joints (J;, Jj and J; ) realize C.

Thus, for an n-R mechanism, to determine whether a given compliance can be realized at a given configuration, condition
4a or 4b can be used. Since only three joints are involved for each test set, conditions (13)-(15) can be used. If the compliance
is realizable, one can always choose just three joints in the mechanism to realize the behavior. The corresponding values of the
three joint compliances can be calculated using Eqgs. (18)-(20). It can be seen that for a realizable compliance at a configuration,
the set of joints that realizes the compliance is not unique.
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Note that if compliance is provided at more than three joints, there are an infinite number of solutions for the set of joint
compliances that achieve a realizable compliance. A closed form solution cannot be obtained if no additional constraints are
considered.

As shown above, the kinematics of a mechanism plays a significant role in compliance realization. In the following section,
mechanism geometries that facilitate realization of an arbitrary compliance are identified.

4. Realization of any compliance with a given mechanism

Section 3 addressed the realizability of a single given compliance for a given mechanism configuration. Since an n-R mech-
anism has n degrees-of-freedom, when n > 3, the configuration can change when the position of endpoint O relative to the
mechanism base J; is specified. A compliance unrealizable with one configuration could be realizable by changing the configu-
ration. Here, the ability of a given n-R mechanism to realize every particle planar compliance at its endpoint without changing
the endpoint location is investigated.

First, mechanisms having three joints are considered. A requirement on the twist spaces associated with joints J, and J3 is
identified. Next, the requirement on the twist space is converted to geometric conditions on the mechanism. We show that if
a 3R mechanism has appropriate link length ratios (including the distance from J; to 0), all compliances can be realized at the
given endpoint location. Then, the results for 3R mechanisms are extended to n-R mechanisms. A discussion on the workspace
and the space of endpoint locations that ensure the mechanism ability to realize all compliances is presented.

4.1. Realization conditions for every compliance

Consider a 3R serial mechanism in which the endpoint location O relative to the base J; is specified. The mechanism can be
viewed as a four-bar linkage with J; O grounded. The position of J; relative to the compliance frame, ry, is constant.

If a compliance matrix C is given, line I; L Cr; is specified. When the configuration of the mechanism changes, two joints,
J> and J5, change their positions. The position vectors of J, and J5, r, and r3, span different ranges depending on the mechanism
geometry. We show that the capability of a mechanism to realize an arbitrary compliance depends on the ranges spanned by r;
and r3. In fact, we have:

Proposition 5. Consider a mechanism having three compliant revolute joints with positions r;, i = 1,2, 3.

a) A given compliance C can be realized with the mechanism if r; or r3 can cross line l; 1 Cry;
b) Every compliance matrix can be realized with the mechanism if and only if the union of spaces spanned by r, and r3 is no less
than a half plane.

The proof of Proposition 5a is based on the fact that one can always choose a configuration such that r or r3 is on line l;. The
compliance can be realized with two compliant joints: either using J; and J, with c3 = 0, or using J; and J; with c; = 0. Note
that the realization condition in Proposition 5a is also necessary if link-1 cannot make a full rotation. For such case, the ranges
of r; and r3 are connected. Thus, the ranges of joint compliances tztg and t3t§ are connected. If neither r, nor r3 can cross Iy, tztg
and t3t£ must always be on the same side of plane P; defined in Eq. (11). Thus, the given C cannot be realized at that endpoint
location.

Proposition 5b is sufficient as a direct result of Proposition 3a. If the union of ranges of r, and r3 continuously spans more
than a half plane, then any straight line is within the range. Thus, for any compliance, one of the two vectors r, or r3 must be
able to cross line ;. To prove that Proposition 5b also provides a necessary condition to realize all compliances, it can be shown
that all possible joints compliances C; = c,-t,-tiT will not fill the boundary of the PSD cone if the union of ranges of r, and r3; does
not span a half space or more. Thus there are some compliances that are not comprised of a positive combination of t1t{, tztg,
and tgtg for all possible configurations of the mechanism having the given endpoint, which proves Proposition 5b.

The ability of a 3R mechanism to realize an arbitrary compliance depends on the mobility of the mechanism, especially the
ranges spanned by r, and rs. It should be noted that while the range of r3 is determined by a single rotation angle (angle of link-
3), the range spanned by r, is not directly determined by the rotation angle of a single link and is, therefore, more complicated
to calculate. The ability to realize any compliance can be readily assessed by evaluating the rotation range of link-3. If link-3 can
rotate more than 180°, then any compliance matrix can be realized with the mechanism.

In the following, geometric conditions on a 3R mechanism that ensure a sufficiently large twist space are developed.

4.2. Conditions on the mechanism link lengths

Consider the 3R serial mechanism shown in Fig. 12. If the position of the base J; relative to the end-point O is specified, the
system is kinematically equivalent to a four-bar mechanism. The geometry of the four-bar mechanism is characterized by the
three link lengths L, L, L3 and the distance between the base joint J; and the endpoint O, L.
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Fig. 12. A 3R serial mechanism with specified endpoint. If the location of endpoint O relative to base J; is specified, the system is kinematically equivalent to a
four-bar mechanism.

It is known that if a mechanism satisfies the Grashof criterion, then at least one link is capable of turning a full rotation. For
the mechanism shown in Fig. 12, if L3 or Ly is the shortest link, link-3 can make a full rotation [25]. For this case, any compliance
can be realized with the mechanism.

For a non-Grashof mechanism, none of the links can make a full rotation. Both link-1 and link-3 rock between limits but can
always cross line OJ; either clockwise or counterclockwise [25]. Due to the restrictions on rq and rs3, the twist spaces associated
with J, and J; are limited. However, some mechanism geometries will still allow the space spanned by r, and r3 to be more than
a half plane. It can be shown that if L, is the longest link, this condition is satisfied. Thus any compliance can be realized.

As stated previously, if link-3 in a mechanism can rotate more than 180°, then any compliance can be realized. It is known
that the range of a link in a four-bar mechanism is determined by the dead points (extreme positions) of the link [25]. For the
mechanism shown in Fig. 12, extreme positions of link-3 can be evaluated with minimum and maximum values of 63, 65, and

63max-
It can be shown that if the following two conditions are satisfied

(L + L) > 12 + 12, (21)

Ly — L] < |Lo — L3], (22)
then, 63, < 90° and link-3 can rotate more than 180° through 63 = 180°. If the following two conditions are satisfied:

(L —L)? <2 +13, (23)

L1+ L, >Lg+ L3, (24)

then, O3max > 90° and link-3 can rotate more than 180° through 63 = 0°.

In summary, we have:

Proposition 6. Consider an arbitrary 3R serial mechanism with specified location of endpoint O relative to the base J;.
a) If the mechanism is Grashof with L3 or Ly being the shortest link, then any compliance matrix can be realized.

b) If the mechanism is non-Grashof with L, being the longest link, then any compliance matrix can be realized.
¢) If the mechanism satisfies conditions (21)-(22) or conditions (23)-(24), then any compliance can be realized.

4.3. Mechanisms with more than three joints

The results obtained for 3R mechanisms can be extended to n-R mechanisms (n > 3). Similar to Proposition 5, we have:

Proposition 7. Consider a mechanism having n (n> 3) compliant revolute joints. Suppose r; is the position vector of joint J,
i=12,---,n

a) A given compliance C can be realized with the mechanism if there is a joint J; that can cross line l; L Cry;
b) Every compliance matrix can be realized with the mechanism if and only if the union of spaces spanned by r;s (2 < i < n)is no
less than a half plane.
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Fig. 13. Ann-R mechanism. When the mechanism base J; and the end-point O are specified, the mechanism is kinematically equivalent to an (n+ 1)-bar linkage
with Ly grounded.

Similar to the 3R case discussed in Section 4.2, when the mechanism base and the end-point (where the compliance frame is
located) are specified, an n-R mechanism is kinematically equivalent to an (n + 1)-bar linkage. Due to the increase in degrees of
freedom, the description of the space spanned by each r; is much more complicated. However, for some cases, the mechanism
ability to realize all compliances can be assessed by the rotation range of the nth link. If link-n can rotate more than 180°, then
every compliance can be achieved with the mechanism. Below, a necessary and sufficient condition for link-n to have this ability
is obtained using the theory presented in [26].

Consider an n-R mechanism with link length L; as shown in Fig. 13. Suppose that the distance between the base joint J; and
the end-point O is specified as L.

Denote:

Lij = min (L, L;),  Lmax = max(Lg,Ly,--- ,Ln).

Then, the two adjacent links L; and L; can revolve relative to each other if and only if the sum of L;; and Lmax is no greater than
the sum of all remaining link lengths [26]. For the two adjacent links Ly and L, the condition can be expressed as:

. 1<
Linax + min(Ly, Lo) < 5 ;g. (25)

Since Ly is grounded, condition (25) is a necessary and sufficient condition for link-n to make a full rotation. Thus, condition
(25) is a sufficient condition for a mechanism to achieve all compliances.

4.4. Discussion

A 3R serial mechanism is an open chain having 3 DOF. Although it is kinematically equivalent to a four-bar linkage when the
endpoint O (the location of the compliance frame) is specified, the endpoint is clearly not fixed in space. The implications of this
analogy on the manipulator workspace are described below.

Fig. 14 shows, for two different cases of manipulator geometry, both the manipulator workspace and the space of endpoint
locations for which all compliances can be realized.

In Fig. 14a, the link lengths of the manipulator satisfy L; > L, > L3 and L, + L3 > L;. The manipulator workspace is a circle of
radius Ry, = L1 + Ly + L. It can be proved that if the location of the mechanism endpoint is inside of the circle of radius R., where

Re=/(Li + L2 - L2,

then any compliance can be realized with the manipulator at that location.

In Fig. 14b, the link lengths of the manipulator satisfy Ly > L, > L3, but L, +L3 < L;. The manipulator workspace is an annulus
between the circle of radius Ry = L; + L, + L3 and the circle of radius r, = L; — L, — L3. It can be proved that if the location of
the endpoint is inside of the annulus between the circle of radius R, and the circle of radius r, where

Re= (L1 + )2 -13,
re=,/(l1 —L)? - 13,
then any compliance can be realized with the manipulator at that location.

It can be seen that, for both cases, if link-3 is short, the space of endpoint locations for which all compliances can be realized
is close to the mechanism workspace.
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(b)

Fig. 14. The workspace and the space of endpoint locations that ensure the mechanism ability to realize any compliance matrix. (a) Case 1: L; > L, > L3 and
Ly +L3>L;.(b)Case2: [y >Ly; >Lzyand Ly + L3 < L;.

5. Synthesis of a realizable compliance

If it is possible to realize a compliance at a given location with a given mechanism, a procedure for finding an appropriate
configuration and associated joint compliance coefficients is needed. In this section, two types of synthesis procedures for any
given realizable compliance are provided. First, a synthesis procedure for the realization of a compliance using a 3R mechanism
having only two compliant joints is developed. Then, a synthesis procedure for the general case in which all three joints of a 3R
mechanism are compliant is presented.

The synthesis procedures presented in this section for 3R mechanisms can be applied to n-R mechanisms using the results
presented in Section 3.5.

5.1. Synthesis with a mechanism having two compliant joints

Since a non-singular 2 x 2 compliance C is rank 2, to realize a given C at least two compliant joints are required. Proposition 4
shows that if a compliance C can be realized with a 3R mechanism, C can always be realized with only two compliant joints,
either J; and J, or J; and J3, with the remaining joint having ¢; = 0. If a mechanism satisfies the conditions in Propositions 6 and
7, then any compliance can be realized with joints J; and J5 alone. For these mechanisms, adding compliance to the intermediate
joint (joint-2) does not enlarge the realizable compliance space of the mechanisms.

Although loading all three joints with compliance is not necessary to realize a given compliance, mechanisms with three
compliant joints have the advantage that a significant amount of compliances (a large “neighborhood” in the PSD space) can be
reached with the mechanism by just changing the joint compliances while keeping the configuration unchanged. For a mecha-
nism with only two compliant joints, when a compliance varies in the realizable space, both the mechanism configuration and
the joint compliances need to be changed.

Below a synthesis procedure is developed to realize an arbitrary compliance with a 3R mechanism having compliance at
joints J; and J5. For a given compliance C, the procedure determines the mechanism configuration and the joint compliances.

Consider a given mechanism having link lengths Ly, L,, and L3 as shown in Fig. 12. The distance between the base joint J; and
compliance frame origin is specified as Ly.

A 2 x 2 compliance matrix C to be realized is expressed in the coordinate frame Oxy having the form:

S

In the coordinate frame Oxy, the position of J; and the corresponding twist are:
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The 3-step synthesis procedure is:
1. Decompose C into two rank-1 matrices:
ab 0 O ab
=[3e]-[oa’e ]2 4]
bd 0d-2 b =
=C +GCs.

Since Cis a PSD matrix, a > 0,d > 0, and

2
ad—bZEO:d—%EO.

and C; and C5 are PSD matrices.
2. Synthesize C; with compliant joint J;.
Choose

then, C; = c1ty t{.
3. Synthesize C3 with compliant joint J5.
Express Cs3 in dyad form:

o~[32)-[£]ee 2

o Calculate angle 65.
The slope of the vector Cry is % In order for link-3 to be on line [; L Cry,

03 = tan~! g +90°. (27)

e Determine the joint compliance c3.
The joint compliance can be calculated by:

2
c a+
3:

2

L3

Then, C3 = C3t3t§.

With the final step, the mechanism configuration and joint compliances are determined. It is noted that Eq. (27) yields two
configurations. Each realizes the same compliance C.

5.2. Synthesis with a mechanism having three compliant joints

A synthesis procedure is developed to realize a given compliance C in which all three joints of a 3R mechanism are compliant.
This development is based on the procedure used for the 2-compliant joint case (described in Section 5.1).

When the position of the endpoint relative to the joint base J; is specified, the position vector r; is constant and line [; 1 Cry
is determined. Since the mechanism has one DOF, the locations of J, and J5 are related by the geometry of a four-bar linkage. In
order to ensure J5 is in an acceptable position, the process presented in Section 4.1 can be used to estimate the acceptable space
for r3. First, consider the configuration that realizes the given compliance C using two compliant joints J; and J5. As shown in
4.1, the position of J,, 1}, and line [, L Cr), are obtained. The two lines /; and [, can be used to estimate the acceptable space of
r3 based on Proposition 3a. A location for J; can be chosen in the acceptable space.

The 4-step synthesis procedure is:

1. Calculate the vector Cr; and determine line [; L Cry.
2. Choose an angle of r3 (or a location of J3) such that r; is in an acceptable zone described in Section 3.2.
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Fig. 15. A specified 3R mechanism having given link lengths Ly, L, and Ls. The position of joint base J; relative to the compliance frame origin O is specified. At
an extreme configuration J1J5,J50, O3min = 67.98°.

The angle 03 can be found through the following:
(a) Evaluate the dead points of link-3 and determine the rotation range of 6s.
(b) Calculate the angle 65’ corresponding to line /; using Eq. (27).
(c) Calculate the position of J,, ry’, assuming 63 = 03'.
(d) Determine the line I’ 1 Cry’.
(e) Choose r3 in the zone bounded by I; and [,. The zone is identified using Proposition 3a.
The angle 03 associated with r3 is now determined.
3. Calculate r; associated with the configuration yielding 65.
4, Determine the joint compliance constants using Eqs. (18)-(20) presented in Section 3.4.

With the final step the configuration and joint compliances of the mechanism are determined. It is noted that when r; is
obtained in Step 3, line I, 1 Cr; needs to be constructed to confirm that r3 is between Iy and I, and satisfies the condition in
Proposition 3a. If the conditions are not satisfied, a new position of r3 closer to I; should be selected. It is also noted that the
synthesis solution is not unique.

A numerical example is used to to illustrate the synthesis procedures in Section 6.

6. Synthesis procedure examples

An example is provided to illustrate the synthesis procedures presented in Section 5. The compliance matrix to be realized
is the same C used in Section 3.3:

_[21 -2
C—|:14i|x10 m/N.

A manipulator to be used for the realization of C is shown in Fig. 15. The link lengths of the mechanism are given as: L; =
0.4m, [, = 0.3 m, L3 = 0.2 m. The distance between the base joint J; and the compliance frame origin O is specified as Ly =
0.6 m. Since the mechanism geometry satisfies conditions (21)-(22), any compliance can be realized by the manipulator at this
endpoint location.

With the mechanism geometry, the minimum angle of link-3 is determined to be 65,;, = 67.98°. The extreme position of
the mechanism is also shown in Fig. 15.

Since the synthesis of C using all three compliant joints is based on line [; and line I, obtained from the configuration at
which the compliance is realized with two compliant joints J; and J3, the synthesis of C with these two compliant joints is first
performed. Then, the synthesis of C using all three compliant joints of the mechanism is presented.

6.1. Synthesis of C with two compliant joints

The procedure presented in Section 5.1 is first used to synthesize compliance matrix C.
Using Eq. (26), the joint compliance c; for J; is determined:

d-2  (4-1/2)x 102
= = = 0.0972m/N.
“Tz 0.62 m/

Using Eqs. (27)-(28), the angle 65 and the joint compliance c3 for J; are determined:

03 = tan‘lg +90° = 116.6%r — 63.4°,

_a+2  (2+41/2)x 1072

— 0.625m/N.
2 0.22 o/

C3
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Fig. 16. Configuration of the mechanism: Synthesis of C with two compliant joints J; and J;. The joint compliances are ¢; = 0.0972 m/N, c3 = 0.125 m/N, and
¢; = 0m/N.

If 63 = 116.6° is chosen, the configuration of the mechanism is determined. Using the four-bar kinematic relations, the
angle 6, is calculated to be 52.38°. The configuration of the mechanism is illustrated in Fig. 16. Line [, 1 Cr; associated with the
configuration is also illustrated in the figure. This line is needed in the synthesis with three compliant joints described below.

6.2. Synthesis of C with three compliant joints

Following the procedure presented in Section 5.2, the configuration of the mechanism and joint compliances needed to
realize the compliance are identified.

1. Calculate Cr; and determine line [; L Cry, as described in Section 5.1.
2. Choose a position of joint-3 such that rs is in the realizable zone between l; and [,. An angle of link-3, 63, can be selected
based on the following conditions:

(a) The extreme position is O3y;, = 67.98°.

(b) The angle 65’ associated with I; is calculated in Section 6.1 as 63’ = 116.6°.

(c) The position of J, associated with 63 = 116.6° is calculated as r, = [-0.3559 m, 0.3169 m]”.

(d) Line I, 1 Cr/, is determined. The angle between the line and the x-axis is 23.42° (shown in Fig. 16).

(e) Choose a position between Iy and [, using Proposition 3a that also satisfies kinematics constraints (greater than 63p;p).
Here, line I, is used to estimate the acceptable zone of r3. It can be seen that the configuration 63 = 90° satisfies the
above conditions and is therefore chosen to realize the compliance.

3. Determine the positions of the joints.
For 63 = 90°, the positions of three joints are determined by the kinematics of a four-bar mechanism. The joint positions

are:
. _[-06m] __[-02943m] [ 0
1= o |" 27| o02580m | " |02m|"

4. Determine the joint compliance coefficients using Eqgs. (18)-(20).

¢; = 0.0794m|N,
¢, = 0.1317m/N,
3 = 0.2809m/N.

With the final step, the mechanism configuration with 63 = 90° and the joint compliances are obtained. The mechanism
configuration is illustrated in Fig. 17. To confirm that the mechanism configuration satisfies the realization conditions, line
I, L Cr;, corresponding to the final configuration is also illustrated in the figure.

Note that, when synthesizing a given compliance with two compliant joints J; and J3, the configuration and joint compliance
of the mechanism are uniquely determined; when synthesizing a given compliance with three compliant joints, the configura-
tion and joint compliance of the mechanism are non-unique. There are an infinite number of configurations and sets of joint
compliances for the given mechanism that realize the same compliance.

7. Discussion and conclusions

The decomposition process presented in the paper is theoretical. For a given Cartesian compliance, the process yields the
mechanism configuration and the joint compliances. In this paper, we assume that any set of joint compliances can be attained
via a conventional (passive) spring at each joint, or SEAs/VSAs. In practical application, the prescribed global compliance matrix
will be influenced by the following factors: 1) gravity or loading of joint compliances, which changes the mechanism equilibrium
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Fig. 17. Configuration of the mechanism: Synthesis of C with three compliant joints J;, J,, and J5.

and causes non-symmetry of the global compliance; 2) a limited range of the joint spring stiffness or SEA/VSA stiffness, which
would limit the space of global compliances achieved by the mechanism. The influence of these factors is negligible if the overall
mechanism stiffness is sufficiently high and the range of joint compliances is sufficiently large.

In this paper, methods to realize an arbitrary 2 x 2 elastic behavior using serial mechanisms having only revolute joints are
presented. The ability of any specified 3R mechanism to realize an arbitrary compliance behavior is characterized. It is shown
that if a mechanism has appropriately sized relative link lengths, every compliance matrix can be realized by the mechanism
at the specified endpoint location. This ability allows one to realize all particle compliant behaviors with a single mechanism by
properly selecting the joint compliances and the mechanism configuration. Geometric appreciation of compliances associated
with a mechanism provides insight into the design of manipulators that realize desired elastic behaviors. In robotic applications,
a time-varying compliance can be achieved with a mechanism with VSAs by properly changing the mechanism configuration
and adjusting the joint compliances.
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