
Article

Goal-directed robot manipulation
through axiomatic scene estimation

The International Journal of
Robotics Research
2017, Vol. 36(1) 86–104
© The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364916683444
journals.sagepub.com/home/ijr

Zhiqiang Sui1, Lingzhu Xiang2, Odest C Jenkins1 and Karthik Desingh1

Abstract
Performing robust goal-directed manipulation tasks remains a crucial challenge for autonomous robots. In an ideal case,
shared autonomous control of manipulators would allow human users to specify their intent as a goal state and have
the robot reason over the actions and motions to achieve this goal. However, realizing this goal remains elusive due to
the problem of perceiving the robot’s environment. We address and describe the problem of axiomatic scene estimation for
robot manipulation in cluttered scenes which is the estimation of a tree-structured scene graph describing the configuration
of objects observed from robot sensing. We propose generative approaches to scene inference (as the axiomatic particle
filter, and the axiomatic scene estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as
a scene graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation through symbolic
inference for task planning and collision-free motion planning and execution. We demonstrate the results for goal-directed
manipulation of multi-object scenes by a PR2 robot.

Keywords
Goal-directed robot manipulation, scene estimation for manipulation, integrated perception tasks planning and motion
planning

1. Introduction

Performing robust goal-directed sequential manipulation is
an ongoing and critical challenge for autonomous robots,
for which perception has been the main bottleneck. In
an ideal case, shared autonomous control of manipulators
would allow human users to specify their intent as a goal
state (i.e. the desired configuration of the world) without
being required to specify how this goal should be achieved
(either as motions or actions). Such human-expressed goals
could then be realized autonomously by a robot through
reasoning over sequences of actions and motion controls.
There have been considerable advances in reasoning for
robot decision making and purposeful robot motion, both
of which are increasingly converging. However, robots still
lack the general ability to perceive the world, especially in
typical human environments with considerable clutter. This
lack of perception greatly limits the ability and generality
of robots to reliably make decisions, carry out manipula-
tion actions, and learn from human users. From a practi-
cal perspective, the limited ability to perceive in common
human environments often restricts robots to simulation
and/or highly controlled environments.
Addressing perception for manipulation, we describe

and address the problem of axiomatic scene estimation

(AxScEs), pronounced “access”, for robot manipulation in
cluttered scenes. Figure 1 shows goal-directed manipula-
tion in action from an AxScEs estimate of a cluttered
scene of eight objects with a Willow Garage PR2 robot.
We phrase the problem of AxScEs as the estimation of
a tree-structured scene graph describing the configuration
of objects observed from robot sensing. Similar to their
use in computer graphics, scene graphs are represented
as parameterized axiomatic statements that assert relation-
ships between objects in the scene graph and the poses
and geometry of each object. Our generative approach to
inference for problems of AxScEs iteratively hypothesizes
possible scene configurations (as lists of axioms) and evalu-
ates these hypotheses against the robot’s observations (cur-
rently as depth images). The result of this inference is an

1Department of Electrical Engineering and Computer Science, University
of Michigan, USA
2Institute for Aerospace Studies, University of Toronto, Canada

Corresponding author:
Zhiqiang Sui, Laboratory for Perception Robotics and Grounded Reason-
ing Systems, Department of Electrical Engineering and Computer Science,
University of Michigan, 2260 Hayward St., Ann Arbor, MI, 48109-2121,
USA.
Email: zsui@umich.edu

uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/0278364916683444
journals.sagepub.com/home/ijr

Sui et al. 87

Fig. 1. An example of AxScEs estimation and goal-directed manipulation of a (a) cluttered scene with (b) eight objects to a (c) goal
state of putting small objects in a bin and boxes to the side. AxScEs estimation generatively infers from robot observations (d) the
maximally likely scene configuration (e) and (f). The resulting AxSeEs is used to plan and execute actions (g) to (l) to the user-specified
goal state (c). (a) Robot in initial scene. (b) Known geometries for each object. (c) Achieved user-specified goal scene. (d) Depth image
observation of initial scene. (e) Estimated initial scene in depth image. (f) Estimated initial scene in point cloud. (g) Action: Pick red
bull, place bin. (h) Action: pick toothpaste box, place bin. (i) Action: pick pringles, place bin. (j) Action: Pick nutrigrain, place side
region. (k) Action: Pick nature_valley, place side region. (l) Reach goal: Pick shampoo, place bin.

approximate posterior probability distribution over possi-
ble scenes, where the scene with maximum likelihood is
taken as the estimate of the scene configuration. Though
probabilistic in nature, a principal motivation for provid-
ing AxScEs estimates represented in axiomatic form is the
“closing the loop” between goal-directed symbolic planners
(Fikes and Nilsson, 1972; Laird et al., 1987) and modern
robotics. Such planners reason over manipulation actions
for the robot to execute from an AxScEs estimate towards
realizing a given goal scene, also expressed axiomatically.
Planned sequences of actions are then executed by motion
control/planning systems for pick-and-place manipulation

(Ciocarlie et al., 2014) or general manipulation affordances
(Hart et al., 2015).
The remainder of this article describes the problem

of axiomatic scene estimation, proposes instances of
AxScEs estimators, and examines their use for goal-
directed manipulation in scenes of increasing numbers of
physically stacked objects. We describe a formulation for
the problem of axiomatic scene estimation in Section 2.
An analysis of the growth of possible tree-structured scene
graphs is presented with respect to the number of stack-
able objects in a scene. Section 3 motivates the need for
generative approaches to problems of AxScEs as a matter

88 The International Journal of Robotics Research 36(1)

of inclusion towards bridging probabilistic and symbolic
inference for goal-directed manipulation. Section 4 covers
related work in goal-directed robot manipulation in rela-
tion to shared autonomy, goal-directed control, perception,
and decision making under uncertainty. In Section 5, we
phrase the problem AxScEs as a probabilistic state estima-
tion model that factors into inference of scene tree relations
and object pose. Within the AxScEsmodel, we cast our pre-
vious work, the axiomatic particle filter (AxPF) (Sui et al.,
2015), as an exhaustive search over scene tree relations
with particle filter inference of poses. We also introduce
axiomatic scene estimation by Markov chain Monte Carlo
(MCMC) sampling (AxMC) using the Metropolis–Hastings
algorithm (Hastings, 1970) to search scene tree relations
with pose estimation likelihoods. Our GPU-optimized par-
allel implementation of AxScEs estimation for both the
AxPF and AxMC are described in Section 6. This like-
lihood works directly with depth images from common
ranging cameras without the need for computing discrim-
inative features. Our experiments with this implementa-
tion are described in Section 7. These results indicate that
AxScEs estimators are effective for manipulation-quality
perception based on edit distance on scene graphs, estima-
tion of currently manipulatable (clear) objects, and object
pose estimation. More precisely, exhaustive search over
scene graphs with AxPF estimates yields with high accu-
racy, but, due to computational complexity, is limited to rel-
atively small collections of scenes. In contrast, AxMC esti-
mates can be generated within tractability but with less
accuracy. We conclude in Section 8 with a discussion of our
current AxScEs estimators and a summary of directions for
future work.

2. Problem statement

The objective of axiomatic scene estimation is to infer a
symbolic description of the scene Ŝ from partial observa-
tions zt by a given robot at time t. This symbolic scene
description can then be readily used by modern task and
motion planners to generate sequential actions that will
autonomously control the robot to achieve a user-expressed
desired goal state SG.
Axiomatic state xt at time t is defined as a collection of

axioms expressing possible scenes S. A scene is expressed
as a scene graph S(W(Q,V)) as a set of axiomatic assertions
describing the pose Qi and geometry Vi of each object Wi

and relations for object interactions and affordances. The
planning domain definition language (PDDL) (McDermott
et al., 1998) is used to model axiomatic state as a formal
language, which implicitly defines a tree-structured scene
graph. Shown in Figure 2, an example of a scene graph of
a four object scene is represented in PDDL. To avoid ambi-
guity, we restrict the set of axioms to only spatial and phys-
ical expressions that can be tested geometrically or through
physical simulation. These axioms assert the existence of
an object Wi, as (Wi object), with spatial geometry Vi,
(geomWi Vi), and spatial pose configuration Qi, (poseWi

Fig. 2. Axiomatic scene estimation for an example four-object
scene (top left), observed by the robot as a depth image (top
right), will estimate the pose and spatial relations of objects as
parameterized axiomatic assertions.

Qi). Axioms also assert parent-child relationships between
objects as whether an object Wi is inside another object Wj,
(in Wi Wj), or resting on another object Wk , (on Wi Wk),
as well as whether the object is the possession of a robot R,
(has R Wi). Each of these inter-object relations induces a
spatial frame relation, where the frame of a child object is
expressed in relation to its parent object.
Given the AxScEs relations above, the relation (clear

Wi) is asserted for each object Wi that is not supporting
another object. The objects asserting this relation can be
picked by the robot or used as a support surface for plac-
ing other objects. For general manipulation affordances,
additional axioms can be created that describe assertions
for preconditions and postconditions for actions associated
with objects. Precondition and postconditions axioms are
envisioned to resemble collision-based “trigger” conditions,
widely used to script interactive behaviors in video games
through programming languages such as Lua (Miller et al.,
2009).

2.1. Assumptions

For the methods presented in this article, we address the
problem of AxScEs for inferring the axioms in the scene
S (Section 5.2) and the three degree-of-freedom (DOF)
poses of each object Q (Section 5.4). The n objects com-
prising of W are assumed to have been uniquely identified
with each having known spatial geometries contained in V.
This assumption is made based on using an ideal of com-
mon visual object recognition systems (Collet et al., 2011;
Felzenszwalb et al., 2010) as a preprocessing step. Only
the inter-object relation for stacking (on) is considered for
AxScEs estimation, although the relations for enveloping
(in) and grasping (has) are considered for task planning.
Objects are assumed to be upright oriented and can take

Sui et al. 89

on any pose on the support surface provided by its parent
object. As such, the object poses of Q consists of a 2D
position and yaw rotation (SE(2) group) in the coordinates
provided by its parent object.

2.2. Scene graph enumeration

In the general case, scene estimation in this axiomatic form
can lead to a very high dimensional belief space that would
theoretically pose problems for probabilistic inference. For
this work, we will assume scene graphs are tree-structured,
have an implied base support plane, and consider only the
stacking case (asserted by the “on” relation). Thus, a sin-
gle object could physically support any number of other
objects, but is itself physically supported by one other
object. With these assumptions, let T(n) be the number of
possible scene graphs, given n objects in a scene. Then, the
total number of scenes can be expressed recursively

T(n)=
n∑

k=1

nCkg(n − k, k) (1)

where nCk is the number of combinations for selecting a
subset of k objects out of the n objects and g(s, k) is the
number of scene graphs possible for stacking s objects on
top of a fixed scene on k base objects

g(s, k)=
s∑

s1=0

s∑
s2=0

...
s∑

si=0

...
s∑

sk=0

s!

s1!s2!...si!...sk!
T(s1) T(s2) ...T(si) ...T(sk) (2)

where s = ∑k
i=1 si.

When n = 0, T(0)= 1 as the number of scenes with no
objects as one. Similarly when n = 1, T(1)= 1 expresses
the number of scenes with one object. When n = 2,
T(2)= 3 breaks down into two terms 2C1 ∗ g(1, 1) and
2C2 ∗ g(0, 2) with respect to the recursion in equation (2).
The first term considers the number of ways one object can
be placed on one supporting object g(1, 1)= 1 times the
number of ways each of the two objects to each of these
stacking roles 2C1 = 2. g(0, 2)= 1 is the number of ways
two objects can be placed on the table, for which there is
only one combination for stacking. Relationally, T(2)= 3
expresses the three possible axiomatic scene graphs for two
objects: Objects A and B are not stacked, object A is stacked
on object B, object B is stacked on object A.
When n = 3, T(3)= 16 has three terms 3C1 ∗ g(2, 1),

3C2 ∗ g(1, 2) and 3C3 ∗ g(0, 3). The first term 3C1 ∗ g(2, 1)
denotes the number of ways of choosing one object out of
three objects, g(2, 1) denotes the number of ways one object
can be placed on two supporting objects. Computing each
of the terms turns out to be 9, 6, and 1 respectively and
hence T(3)= 16.
Following this recursive expression of equation (2),

T(3)= 16, T(4)= 125, T(5)= 1296, T(6)= 16807,

T(7)= 262144, T(8)= 4782969, and so on. This recur-
sive expansion provides an upper bound as it assumes each
object is capable of providing a support surface for all other
objects. However, we speculate that most of these scene
possibilities are actually implausible physically and statis-
tically improbable to be encountered in common manipula-
tion settings and human environments. That stated, naively
performing state estimation in such a huge state space
becomes intractable quickly as the number of objects grows.
Such inference can still be of considerable use for manipu-
lation as tabletop environments can often consist of small
stacks of objects. In such cases, a tabletop segmenta-
tion algorithm, such as for the PR2 interactive manipula-
tion (Ciocarlie et al., 2014) can be used to identify clusters
of stacked objects, each of which can be treated as their own
scene.

3. A generative approach to AxScEs

To motivate the problem of AxScEs , consider the scene in
Figure 3 observed from 3D point clouds captured from the
robot’s perspective. For this scene, assume the goal for the
robot is to grab the bottom green block to give to a human
user. It can be clearly observed that block1 (the top block)
and block2 (the bottom block) are two distinct objects from
the perspective of human perception. A naive perception of
this scene, common to most robots, would instead perceive
the objects that are physically touching as a single object as
shown in the right. From the perspective of common seg-
mentation methods for 3D point clouds, estimates of the
scene as two smaller objects or a single larger object are
equally likely parsings of the robot’s observations.
To capture this uncertainty, our approach to problems

of AxScEs is to maintain a distribution across plausible
scene graph hypotheses supported by the robot’s point cloud
observations. These generated hypotheses form an approxi-
mate probability distribution (or belief) over possible states
of the scene. This ambiguity over possible scenes can be
resolved at a later time with further information, such as
after a robot action to grasp one of the objects. In addi-
tion, by maintaining diverse perspectives, the robot can use
either one of these hypotheses as an estimate of the scene
state to plan and execute a current course of action. If the
chosen state estimate was incorrect, the alternate hypothe-
sis of the scene should still be represented in the diversity
of the belief distribution. Assuming the result of the action
resolved the ambiguity, this alternate state hypothesis will
now have a greater likelihood given the new point cloud
observation. This distribution will now clearly distinguish
the alternate as the true scene state estimate from which
the robot’s plan can be recomputed. This approach to scene
estimation is implemented by a system architecture, whose
details are described in Section 6.1.
Our approach to AxScEs aims to emulate and scale

the highly effective and now ubiquitous pattern of decou-
pled decision making and probabilistic inference for

90 The International Journal of Robotics Research 36(1)

Fig. 3. Example of a robot needing to grasp an object (the green block)

in a simple stack scene. The robot needs to estimate the scene but faces

ambiguity about whether there are two stacked objects or one larger object.

Once estimated, the robot needs to perform a sequence of actions to move

the yellow block and then, once cleared, grasp the green block.

autonomous navigation (Biswas and Veloso, 2013; Del-
laert et al., 1999) in the domain of robot manipulation.
Specifically, probabilistic perception and symbolic plan-
ning are treated as independent processes, allowing each to
focus on what they do best. These processes interoperably
interface through communication of the maximally likely
axiomatic state estimate and selected robot action (or oper-
ator). While avoiding the intractability of planning in the
space of beliefs, this decoupling assumes state estimates are
a plausibly accurate representation of the current state of the
world.
Unlike autonomous navigation, AxScEs estimation faces

a drastically large state space where generative infer-
ence must balance estimation accuracy and computational
tractability. Our first efforts for AxScEs estimation pro-
posed the axiomatic particle filter (AxPF) (Sui et al., 2015).
This original description of the AxPF performs particle fil-
tering (Dellaert et al., 1999) over an exhaustive enumera-
tion of scene graph structures and demonstrated our core
approach to goal-directed manipulation. While theoretically
applicable to highly cluttered scenes of n objects, our ini-
tial AxPF faced a number of practical and computational
challenges for general AxScEs problems. First, this imple-
mentation of the AxPF used a non-optimized serial pipeline
for evaluating scene hypotheses, as particles. As we dis-
cuss later, such implementation issues can be addressed
and scaled to large numbers of particle hypotheses using
multi-core processing and GPU-based 3D processing.
More importantly, the scene dimensionality grows

rapidly towards intractability as the number of objects in the
scene increases, exceeding factorial growth. Such expan-
sive state spaces prohibit exhaustive search over scenes,
even with an optimized processing pipeline. Furthermore,
our search space consists of state variables with mixed types
over both non-binary tree structures and real-valued object
pose parameters. As described later, we explore sampling
based algorithms, including Markov chain Monte Carlo

Fig. 4. Sources common of perception errors for physically inter-
acting objects, as shown for depth-based object segmentation
using the PR2 interactive manipulation (Ciocarlie et al., 2014).
Due to issues of uncertainty in open-loop perception, reliable
autonomous robot manipulation is currently limited to distinctly
separated objects on flat tabletops. For example, consider the scene
of six simple blocks on a tabletop and its depth image from a
Kinect RGBD camera on the head of a PR2 robot. The robot
can find the tabletop, assuming it is the largest flat object in the
scene. However, it cannot distinguish (and thus grasp directly) any
of the individual objects due to occlusions, physical interaction,
and false positives. This uncertainty motivates the need for both
further action-oriented information in the form of affordances and
human-in-the-loop control to handle errors and ambiguity.

(MCMC) and particle filtering, suited to the diverse types
and high-dimensionality of axiomatic scenes.

4. Related work

4.1. Shared autonomy for manipulation

In order for autonomous robots to interact fluidly with
human partners, a robot must be able to interpret scenes
in the context of a human user’s model of the world. The
challenge is that many aspects of the human’s world model
are difficult or impossible for the robot to sense directly.
We posit the critical missing component is the grounding
of symbols that conceptually tie together low-level percep-
tion and high-level reasoning for extended goal-directed
autonomy. We specifically face the problem of anchoring
(Coradeschi and Saffiotti, 2003), a case of symbol ground-
ing (Harnad, 1990), to associate physical objects in the real
world and relationships between these objects with com-
putationally assertable facts (or axioms), from the robot’s
perception of the world. Anchoring and symbol grounding
are at the heart of the emerging area of semantic mapping
(Kuipers, 2000) and its accelerated growth due to advance-
ments in 3D RGBD mapping (Herbst et al., 2011; Rusu
et al., 2008a). With a working memory of grounded axioms
about the world, robot manipulators will be able to flexibly
and autonomously perform goal-directed tasks that require
reasoning over sequential actions (illustrated in Figure 1).
Just as important, human users will be able to more intu-
itively specify goals for robots, as desired states of the
world, through spatial configurations.

Sui et al. 91

In the greater context of shared autonomy, goal-directed
manipulation offers the opportunity to extend the bound-
aries of the “neglect curve” (Goodrich et al., 2001). The
neglect curve is a conceptual expression of robot effective-
ness with respect to delegation (or user neglect), codifying
tradeoffs between the extremes of full autonomy and man-
ual teleoperation. While teleoperation can often yield high-
levels of robot effectiveness, the performance of such sys-
tems rely heavily upon the training, aptitude, and stamina
of a human operator. Conversely, systems for autonomous
robots place much less burden on a human operator but
are often limited to generalized trajectories over controls
(Akgun et al., 2012; Calinon and Billard, 2007; Jenkins
and Matarić, 2004; Pastor et al., 2011), reactive policies
(Chernova and Veloso, 2009; Crick et al., 2011; Groll-
man and Jenkins, 2008; Niekum and Barto., 2012; Platt
et al., 2010; Vondrak et al., 2012), or goals as combina-
tions of hardcoded features (Abbeel and Ng, 2004; Atkeson
and Schaal, 1997; Kober and Peters, 2011; Nicolescu and
Matarić, 2003; Smart and Kaelbling, 2002). As evidenced
during the recent DARPA robotics challenge (Yanco et al.,
2015), shared autonomy is especially onerous and error
prone for control of humanoids and mobile manipulators
due to the complexity of goal-directed control. Similar to
the pointing work of Kemp et al. (2008), our long-term con-
jecture is that shared autonomy through the expression of
goals will greatly reduce the complexity for human opera-
tion of robots, improving robot effectiveness during periods
of delegation.

4.2. Goal-directed manipulation

Our aim is to estimate axiomatic state representations
that will allow robotics to build on the body of work in
sequential planning algorithms, which have over a five-
decade history. Described in early work, such as Stan-
ford Research Institute Problem Solver (STRIPS; Fikes
and Nilsson, 1972) and SHRDLU (SHRDLU is an natural
language understanding computer program which contains
planner that can answer queries; Winograd, 1972), classi-
cal planning algorithms adapted theorem-provers to “prove”
conclusions about goals based on symbolic axioms that
describe the world through assertable logical statements. A
classical planner can compute actions for a physical robot to
perform arbitrary sequential tasks assuming full perception
of the environment, which is often an untenable assumption
in general.
However, in structured perceivable environments, sys-

tems based on classical planning have demonstrated the
ability to reliably perform goal-directed manipulation.
Recent work by Kirk and Laird (2013); Mohan et al. (2012)
uses the Soar cognitive architecture for teaching a robot
arm to play games such as tic-tac-toe, Connect-4, and Tow-
ers of Hanoi through language-based expressions. Similar
in spirit to our AxScEs estimators, Soar uses an axiomatic
scene graph representation (Wintermute and Laird, 2008).

We posit AxScEs estimates could also be used within
broader cognitive architectures, such as ACT-R/E (Trafton
et al., 2013), that are suited to axiomatic rather than strictly
metric spatial representations. Chao et al. (2011) perform
taskable symbolic goal-directed manipulation with a focus
on associating observed robot percepts with knowledge
categories. This method uses background subtraction to
adaptively build appearance models of objects and obtain
percepts but with sensitivity to lighting and object color.
Narayanaswamy et al. (2011) perform scene estimation and
goal-directed robot manipulation for cluttered scenes of toy
parts for flexible assembly of structures.
The KnowRob system of Tenorth and Beetz (2013) per-

forms taskable goal-directed sequential manipulation at
the scale of entire buildings by automatically synthesiz-
ing sources from the semantic web and Internet. Lever-
aging the community of perception modules available in
the robot operating system (ROS) (Quigley et al., 2009),
KnowRob focuses uncertainty at the symbolic level and
relies on hard and complete state estimates from hardcoded
software components. Similarly, Srivastava et al. (2013) rely
on hardcoded perception systems to perform the joint task
and motion planning, taking advantage of modifications in
controlled environments, which include green screens and
augmented reality tags.

4.3. Perception for manipulation

While domains with uncertainty are traditionally prob-
lematic for classical planning, we posit that advances in
robot perception and manipulation with new approaches to
anchoring can overcome this uncertainty for goal-directed
robot control. There have been a number of discrimina-
tive methods proposed to perceive exact single estimates
of scene state for manipulation, which both complement
and inspire probabilistic AxScEs estimation. Based on the
semantic mapping work of Rusu et al. (2008b), the canon-
ical manipulation baseline is the PR2 interactive manipula-
tion pipeline (Ciocarlie et al., 2014) (Figure 4). The grasp
planner from this pipeline is used for results presented in
this article. This pipeline is able to perform relatively reli-
able pick-and-place manipulation for non-touching objects
in flat tabletop settings. This pipeline relies upon the esti-
mation of the largest flat surface, by the clustering of
computed surface normals. Any contiguous mass of points
extruding from this support surface is considered a single
object, leading to many false positives in object recognition
and pose estimation. Rosman and Ramamoorthy (2011)
addressed such point cloud segmentation issues in rela-
tional scene graph estimation by detecting contact points
between objects that can be directly observed from depth.
Collet et al. (2009) proposed a system for recognition and
pose registration of common household objects from a sin-
gle image by using local descriptors. In aims similar to this

92 The International Journal of Robotics Research 36(1)

article, Papazov et al. (2012) perform sequential pick-and-
place manipulation using a bottom-up approach of match-
ing known 3D object geometries to point clouds using Ran-
dom sample consensus (RANSAC) and retrieval by hashing
methods. Cosgun et al. (2011) presented a novel algorithm
for placing objects by performing a sequence of manipula-
tion actions in cluttered surfaces, like the tabletop. Beyond
the scope of this paper, our work aims to use the robust
grasp estimation methods of ten Pas and Platt (2014), which
are able to localize graspable points in highly unstructured
scenes of diverse unknown objects.
In the real world the robot’s attempts to perceive are dom-

inated by uncertainty in the robot’s sensing and action. As
such, the hard estimates from discriminative perception can
prove a difficult match for classical planning. Uncertainty
is a result of both measurements by the sensors and per-
formance by the motors that control the robot. For example,
sensor measurements are frequently inadequate for segmen-
tation of objects in contact, or identification of occluded or
partially visible objects (Figure 4). The resulting noisy and
incomplete descriptions of scene state are unsuitable inputs
for existing classical planning algorithms, affecting both the
robot’s axiomatic representation of that world and its ability
to perform effectively.
The AxMC method we propose in this article is very

similar to the recently proposed knowledge-supervised
(KS) MCMC method of Liu et al. (2015). KSMCMC uses
MCMC to sample over scene graph structures represented
axiomatically to estimate objects as oriented bounding
boxes. Pose estimation is performed using image features
for alignment. Joho et al. (2012) use a generative model
to cluster objects on a flat surface into semantically mean-
ingful categories. In a similar manner, Dogar and Srinivasa
(2011); Dogar et al. (2012) consider active manipulation of
highly occluded non-touching objects on flat surfaces.

4.4. Manipulation under uncertainty

Generative inference provides a means to address uncer-
tainty probabilistically. In our case, a generative approach
maintains a distribution over all possible scene graphs and
is not reliant upon selecting and maintaining a hard (poten-
tially incorrect) state estimate for perception. Possible world
states can be hypothesized to explain possibilities for the
true world state that could have generated the robot’s obser-
vations. These generated hypotheses form an approximate
probability distribution (or belief) over possible states of the
world.
Recent work by Choi and Christensen (2013) used

OpenGL interoperating with CUDA which is a parallel
computing platform, for fast particle generation and likeli-
hood evaluation for single object pose tracking with ground
truth initialization. Their likelihood evaluation was feature
based, with color, 3D point coordinates, and surface nor-
mals extracted from depth measurements, similar to work

by Fallon et al. (2012) for depth-based localization. In con-
trast, likelihood evaluation in our proposed system uses
a direct method based on photometric error minimization
between depth camera measurements and particle filter
estimates, without extracting hard features from the depth
images. In the implementation, we overcome the inability to
access depth values from CUDA by deriving depth values
in OpenGL shaders, and employ modern scene rendering
techniques to improve rendering performance.
In terms of generative inference, recent work by Zhang

and Trinkle (2012) formulated a physics-informed parti-
cle filter, Grasping-Simultaneous Localization, and Model-
ing, and Manipulation (G-SLAM), for grasp acquisition in
occluded scenes. While well-suited for grasp acquisition,
we posit an axiomatic representation is needed for mov-
ing to manipulation tasks where reasoning over sequential
actions is required.
It is tempting to characterize the entire problem of goal-

directed manipulation as belief space planning within a
Partially observable Markov decision process (POMDP;
Kaelbling et al., 1998). The state of the world is only
partially observable in the POMDP formulation, and the
process of a robot making a decision and then acting is
formed as a Markov process over the space of all possi-
ble world states. POMDPs provide a complete conceptual
model for the problem of goal-directed manipulation under
uncertainty. However, this completeness comes at the cost
of computational infeasibility for all but a small number
of discrete-state problems. For robotic manipulation, Lang
et al. (2012) attempt to overcome the limitations of the
POMDP through online relational reinforcement learning,
using physical simulation for exploration. Particle filtering
has also been used to combine the symbolic and statisti-
cal approaches (Manfredotti et al., 2010; Zettlemoyer et al.,
2007) in structured domains. In their recent work in robot
manipulation, Kaelbling and Lozano-Pérez (2013) build on
similar notions to blend probabilistic and symbolic infer-
ence into a single process. In this work, belief space plan-
ning occurs over logical assertions that each generates dis-
tributions of probability and combine hierarchically to solve
for combined task and motion plans.

5. AxScEs scene estimation methods

In this section, we present our methods for axiomatic scene
estimation, which are used with in the system architecture
(Section 6.1) for goal-directed manipulation. For axiomatic
scene estimation, we represent the configuration of a scene
at given time St as a random state variable xt to be inferred
from robot observations zt. This scene state variable xt =
[gt, qt] is comprised of both real-valued object poses, as
random variable qt ∈ �3, and set-valued lists of axioms,
as random variable gt. In our case, the axioms gt define the
topology of objects in a scene as a tree. We only have a few
options to perform inference with a state variable dimen-
sions of mixed type. Among these inference options, one

Sui et al. 93

option is our original brute force method, the axiomatic
particle filter (AxPF) (Sui et al., 2015). The AxPF exhaus-
tively marginalizes over combinations of scene axioms gt
and performs inference over object poses qt through parti-
cle filtering on robot observations zt. In the context of the
AxPF, we additionally explore object pose estimation using
MCMC sampling.
Avoiding exploration over all possible scenes, another

approach to AxScEs inference is to search over scenes with
algorithms amenable to general data structures, such as a
hill climbing optimization or MCMC algorithm. Similar to
Liu et al. (2015), such an inference procedure samples over
possible scenes gt where pose estimation on qt, on robot
observations zt, is performed for each sampled scene. Our
proposed axiomatic scene estimation by MCMC sampling
(AxScEs MCMCs) takes this form. AxMC performs scene
inference of gt with the MCMC-based Metropolis–Hastings
algorithm and pose inference of qt with a particle filter.
AxMC works directly with depth images without the need
for discriminative features, as used by Liu et al. (2015) or
Collet et al. (2011). Further, AxMC provides distributions
over both scene structure and object poses, which concep-
tually allows for update over time as we consider future
work.

5.1. Axiomatic particle filter

For the Axiomatic Particle Filter (AxPF), we modeled the
inference of axiomatic state xt from a history of robot obser-
vations z1:t as a sequential Bayesian filter. This model con-
sists of updating a prior belief from time t − 1 with a
dynamic resampling and likelihood evaluation to form a
new posterior belief at time t

p(xt|z1:t)∝
p(zt|xt)

∫
p(xt|xt−1, ut−1) p(xt−1|z1:t−1) dxt−1 (3)

Although results presented are for observations of static
scenes, the dynamics term p(xt|xt−1, ut−1) in this formu-
lation is to retain generality for tracking the scene as the
robot performs an action ut−1. As described by Dellaert
et al. (1999), the sequential Bayesian filter in equation (3)
is commonly approximated by a collection of N weighted
particles, {x(j)t ,w(j)

t }Nj=1, with weight w(j)
t for particle x(j)t ,

expressed as

p(xt|z1:t)≈ p(zt|xt)
∑
j

w(j)
t−1p(xt|x(j)t−1, ut−1) (4)

Over successive iterations, inference in the particle filter is
performed by drawing N scene hypotheses by importance
sampling, evaluating the likelihood of each hypothesis, and
normalizing the weights to sum to one

x(j)t ∼
∑
j

w(i)
t−1p(xt|x(i)t−1, ut−1) (5)

w∗(j)
t = p(zt|x(j)t) (6)

w(j)
t = w∗(j)

t∑
k w

∗(k)
t

(7)

Within the likelihood p(zt|x(j)t), the scene S(j) associated
with each particle x(j)t is rendered into a depth image ẑ(j)t ,
through the z-buffer of a 3D graphics engine, for compari-
son with the robots current observation zt

p(zt|x(j)t)= e−λr ·SSD(z,ẑ(j)t) (8)

where λr is a constant scaling factor and SSD(I , I ′) is
the sum of squares distance function (SSD) between depth
images I and I ′

SSD(I , I ′)=
∑
(a,b)∈z

(I(a, b)−I ′(a, b))2 (9)

where a and b are 2D image indices. Once the posterior
distribution converges about a single scene hypothesis, the
scene Ŝt from the most likely particle x̂t is taken as the scene
estimate

Ŝt = argmax
x
(j)
t

p(x(j)t |z1:t) (10)

This axiomatic scene estimate Ŝt is used for planning robot
actions and motion towards a given goal state SG, which is
also expressed in axiomatic form.

5.2. AxScEs formulation

Assuming for a moment computing with unbounded
resources, the AxPF described above still lacks con-
cepts that define operations for resampling, diffusion, and
dynamics on mixed-type scene state. We decompose the
AxScEs problem as an expression of the probability of a
scene into pose qt and scene tree structure g (assuming a
static scene for clarity)

p(xt|z1:t) = p(g, qt|z1:t) (11)

= p(g|z1:t) p(qt|g, z1:t) (12)

∝ p(g|z1:t) p(g, zt|qt) (13)∫
p(qt|qt−1, ut−1) p(qt−1|g, z1:t−1) dqt−1

≈ p(g|z1:t) p(g, zt|qt)
∑
j

w(j)
t−1p(qt|q(j)t−1, ut−1)

(14)

The expressions decompose the problem of AxScEs into
a scene tree factor p(g|z1:t) and an object pose factor
p(qt|g, z1:t). For inference, we assume the scene tree factor
is unknown and treat the object pose factor as a likelihood
of a pose being given a scene tree. Inference of the scene
tree structure allows maintenance of the distribution over
scenes in relation to object poses over time, approximated

94 The International Journal of Robotics Research 36(1)

Fig. 5. Architecture diagram for pose estimation within goal-
directed manipulation with respect to the AxPF . Pose estimation
and manipulation components are respectively highlighted in red
and blue.

by particle filtering. For goal-directed planning, our pri-
mary concern is obtaining a scene estimate Ŝ from these
distributions, which leads to our formulation of AxScEs

Ŝ = argmax
xt

p(xt|z1:t) (15)

= argmax
g,qt

p(g|z1:t) p(qt|g, z1:t) (16)

≈ argmax
g,qt

p(g|z1:t) (17)

[
argmax

qt
p(g, zt|qt)

∑
j

w(j)
t−1p(qt|q(j)t−1, ut−1)

]

In this AxScEs formulation, we cast the AxPF as assum-
ing the distribution of scene trees p(g|z1:t) to be uniform.
Consequently, pose inference over qt on factor p(qt|g, z1:t)
is performed on each possible scene, as assignments of g
to exhaustive combinations of tree axioms. Pose inference
for each tree is performed with independent particle fil-
ters, as described in equation (4), executing in parallel. The
AxScEs estimate St is taken as the scene and pose associ-
ated with the maximally likely estimate produced across all
of these particle filters.

5.3. Axiomatic Monte Carlo Markov chain

We now describe AxMC as a method to perform axiomatic
scene estimation using MCMC and particle filtering over,
respectively, scene trees g and object poses qt. With respect
to equation (12), we cast inference of the unknown scene
tree factor p(g|z1:t) as the target distribution for MCMC
sampling. Just as in the AxPF, particle filtering is performed
on the pose factor p(qt|g, z1:t) and is treated as a likelihood
for a sampled scene tree. The AxScEs estimate St is taken
as the scene tree and pose associated with the maximally
likely sample from the AxMC process.
MCMC sampling uses the single-site Metropolis–

Hastings algorithm to approximate the target distribution.
In each iteration of Metropolis–Hastings, a proposal dis-
tribution p′(g∗|g(i)) is used to generate a new sample g∗

local to the previous sample g(i). As we describe in Sec-
tion 5.4, a common instance of Metropolis–Hastings for a
real-valued vector space has this local sampling occurring
using a normally distributed proposal.
For our tree-valued variable g, generation of a proposal

sample g∗ ∼ T (g(i)) occurs with respect to a tree ker-
nel T (g(i)) that performs a single random edit to the tree
g(i). The sampling of T (g(i)) randomly selects two different
nodes, a and b, of g(i) to perform one of three permutation
operations, also selected at random:

(a) swap a and b;

(b) move a to be the child of b;

(c) move b to the child of a.

These operations are carried out by changing the on rela-
tions for objects associated with tree nodes for a and
b.
The newly sampled scene tree g∗ is either accepted or

rejected with probability

A(g(i), g∗)= min

{
1,

argmax
qt

p(qt|g∗, z1:t)

argmax
qt

p(qt|g(i), z1:t))

}
(18)

based on the respective maximally likely pose estimates for
each scene tree. In other words, the sample g∗ is accepted
if A(g(i), g∗) is greater than a uniformly generated random
number between zero and one. After accepting a fixed num-
ber of N samples G∗ = {g(i)}Ni=1, the scene tree estimate
ĝ is taken as the sample with the highest likelihood with
respect to the likelihood over pose estimates qi, as expressed
in equation (17).

5.4. MCMC pose estimation

As an alternative to particle filtering, we have addition-
ally investigated an MCMC approach to pose estimation
of qi as a likelihood for known scene graph g. This pose
inference used a single-site Metropolis–Hastings algorithm
to approximate the target distribution p(q|z, g) as a sam-
pled Markov chain, where g is a known set of scene graph
axioms. In each iteration of Metropolis–Hastings, a pro-
posal distribution p′(q∗|q(i)) is used to generate a new sam-
ple q∗ ∼ N (q(i),�q) from a normal distribution centered on
the previous sample q(i) with covariance �q over the space
of all pose dimensions. Alternatively, this sampling can be
done per object with normal distributions in the space of
DOFs for each object. The newly sampled particle q∗ is
either accepted or rejected with acceptance probability

A(q(i), q∗)= min
{
1,

w(q∗)
w(q(i))

}
(19)

where w(q) is the likelihood of pose state q, as specified in
equations (6) and (8).

Sui et al. 95

After accepting a fixed number of N samples Q∗ =
{q(i)}Ni=1, the pose estimate q̂ is taken as the sample with
the highest likelihood with respect to the likelihood w

q̂ = argmax
Q∗(i)

w(Q∗(i)) (20)

After several rounds of informal testing, we chose to focus
on pose inference by particle filtering due to significantly
better accuracy in estimation. We attribute this preference
to the relative ease of tuning parameters of the particle fil-
ter predictive density in comparison to MCMC proposal
covariance �q. The remainder of the discussion in this
article will assume pose estimation by particle filtering,
although MCMC pose estimation can be performed instead
without loss of generality.

6. Implementation

Our implementation for AxScEs perception of scenes and
goal-directed manipulation is discussed in this section. This
implementation follows the architecture outlined in Fig-
ure 5. The core of this implementation is the particle filter
object pose estimation that follows a module flow of predic-
tion, diffusion, measurement and resampling. The distribu-
tion over object poses is represented as a mixture model of
particles. The measurement module additionally performs
comparisons of relative likelihood across estimations from
other scenes. We store object geometries in a database,
which are expressed with respect to the parent object frame
once retrieved. We further assume that invalid samples,
where the center of mass for a child object is outside the
support surface of its parent, is disregarded.

6.1. System architecture

As shown in Figure 5 the measurement module gets the
observation from the robot and hypothesized particles gen-
erated from the rendering engine. Robot observations are
in the form of depth images from a Microsoft Kinect depth
camera mounted on the head of aWillow Garage PR2 robot.
The likelihood of a particle is calculated by comparing the
depth images of the observation and a graphical render-
ing of the axiomatic state hypothesized by a particle. The
comparison function is a sliding window sum of squared
distance (SSD) on two images. The z-buffer of an OpenGL-
based graphics rendering engine is used to generate depth
images from axiomatic states. We assume a known intrin-
sic calibration and extrinsic pose for the Kinect camera and
that all the object geometries are known and stored in a
geometry database.
The principal output of the measurement module is the

posterior distribution representing the distribution of belief
for the current state of the world. If the particles converge
within a threshold, the planner takes the maximum likely
state estimate and computes a plan of action for the robot to
execute. In parallel, the resamplingmodule takes in the pos-
terior distribution and performs important sampling over

their states to give the new distribution of particles to the
prediction module. Based on the robot action decided by
the planner the predict module updates the state of the par-
ticles. The diffusionmodule adds noise randomly to this dis-
tribution of particles and measurement is performed again
with a new observation from the robot. The diffusion mod-
ule also updates the rendering engine with a new set of
axiomatic states to generate particles.
A STRIPS-based system (Fikes and Nilsson, 1972) was

used for sequential planning in our manipulation system.
With the goal and the current state of the world, the plan-
ner would compute a sequence of actions towards the goal
and outputs the next immediate action to the robot. Actions
from the planner will be pick-and-place actions for a spe-
cific object in the scene. Given this object’s pose and geom-
etry, from the geometry database, PR2 tabletop manip-
ulation (Ciocarlie et al., 2014) is used to execute these
manipulation actions.

6.2. Parallelized likelihood evaluation

As described in Section 2.2, the complexity of scene graph
enumeration quickly grows beyond computational tractabil-
ity. However, in practice, we can address this inference com-
putationally viable through parallelization and constraining
the space of physically viable scene estimates (Desingh
et al., 2016). Described below is one method for paral-
lel sample generation and likelihood evaluation through
leveraging hardware graphics rasterizers in modern GPUs.
This parallelization provides performance beyond what is
offered through general-purpose computing on graphics
processing units.
We consider parallel rendering based on OpenGL

(Shreiner and Group, 2009) to simulate depth cameras and
generate scene estimation particles rapidly. This renderer
sets up the rendering pipeline using camera extrinsic and
intrinsic parameters, object geometries and estimated object
transformations. During each particle filter iteration, the
OpenGL renderer renders all particles in parallel onto a sin-
gle render buffer, which is then passed to CUDA kernels for
computing the objective metrics of particles.
A particle is a scene consisting of objects with the same

geometries but of different transformations. Each particle is
specified by a draw call for its object geometries and trans-
formations. Then, draw calls for rendering each particle
are separated by viewport specifications glViewport()
which set the positions and sizes of sub-images for parti-
cle hypotheses in the output render buffer. With credit to
internal GPU work scheduling, all particles are rendered
in parallel and viewport specification does not reduce the
parallelism of issued draw calls.
The transformations in OpenGL draw calls include

model matrices, the view matrix, and the projection matrix.
Model matrices specify the transformations of the objects
without changing the geometry of the objects. Model matri-
ces are constantly updated per iteration according to the

96 The International Journal of Robotics Research 36(1)

Fig. 6. Pose estimation results for known axiom sets in scenes containing three to four objects. Each subfigure shows the RGB (left)
and depth (middle) from a RGBD camera mounted on the head of the PR2 and estimated scene graph as a depth image (right), as well
as the RMSE for translation and rotation error.

changing estimates in particles. The view matrix is the
extrinsic transformation of the camera within the world
coordinate and can be derived using the position of the
camera and the direction of the camera. The projection
matrix can be derived using the camera intrinsic parameters,
including the focal length fx, fy, the principal point cx, cy,
and the OpenGL clipping near and far distances, zn, zf . We
derive the following matrix P for perspective projection

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2fx
W

0 1 − 2cx
W

0

0
2fy
H

1 − 2cy
H

0

0 0 − zf + zn
zf − zn

− 2zf zn
zf − zn

0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where W and H are the image width and height.
Similar to Choi and Christensen (2013), we attach the

output render buffer to a frame buffer object (FBO) for effi-
cient off screen rendering. However, we use render buffer
objects (RBOs) instead of textures because multisampling
features in textures are not useful for our purposes and only
add overhead. We also attach a depth render buffer to the
FBO which is required for depth enabled rendering. In con-
trast to previous research where only color information is
used, we are interested in the depth information. However,
RBOs in depth format are not supported by CUDA and
cannot be accessed from CUDA kernels via the OpenGL

interoperation interfaces. We propose an efficient multi-step
process for this by modifying the OpenGL fragment shader
to compute the depth values and output as float point color
values in a color formatted GL_R32F RBO, which can be
accessed from CUDA. Note that the depth rendering pro-
cess described here is similar to a part of the known deferred
shading pipeline where the depth is saved in an intermediate
result called geometric buffers (Saito and Takahashi, 1990).
Fragment shaders have access to a built-in variable

gl_FragCoord =(x, y, z, 1/w) in which w is the extra dimen-
sion of the clip-space homogeneous coordinate of the frag-
ment. Using the perspective projection matrix P, a point
[X ,Y ,Z, 1]T in camera coordinate will be projected to clip-
space coordinate [x, y, z,w]T in which w = −Z, and Z is
the distance from the point to the X-Y plane of the camera
coordinate. w = −Z has a negative sign because [x, y, z]T

is converted from the right-handed camera coordinate to
the left-handed normalized device coordinate. The depth in
the camera coordinate is then represented by Z = w. Thus
the depth values can be computed in the fragment shader
with color = 1/gl_FragCoord.w;. By leveraging
the fragment shader that is already part of the existing ren-
dering pipeline, this approach obtains depth values in one
pass and eliminates the overhead of extra copying from a
depth RBO to a color RBO.
The color RBO containing depth values is then passed

to CUDA kernels through memory mapping with no data

Sui et al. 97

transfer and minimal overhead. The CUDA kernels com-
pute the squared error objective for each pixel, and rear-
range the memory layout to compute the sums of errors for
each particle. The sums are then normalized and used as
weights in particle filter resampling. Actually, the square
error objectives can also be computed in the fragment
shader prior to CUDA kernels, which provides some flex-
ibility, although it should not have a big difference on the
overall performance. The process of computing scores for
625 particles takes 0.027 seconds.
To maximize the performance of OpenGL rendering, we

adopt several scene rendering best practices (Tavenrath and
Kubisch, 2013). We use glVertexAttribDivisor()
to specify vertex attributes format, making it only require a
single model matrix for all vertices of an object. We also use
the OpenGL extension ARB_multidraw_indirect
which allows drawing of multiple objects in a scene with a
single draw call provided with parameters of multiple draw
commands. With this extension, more objects in a scene
would no longer require more draw calls, and all object
geometries in all scenes/particles and their draw commands
can be constructed and uploaded to GPU as static data dur-
ing initialization. During particle filter iterations, only the
model matrices will need to be updated, and the draw calls
with fixed parameters reissued.
To validate the correctness of the depth value obtained

by the OpenGL renderer, we also implemented a separate
renderer based on the Nvidia OptiX (Parker et al., 2010)
ray tracing engine. We use the OptiX Prime API to imple-
ment the renderer which solely executes on GPU compute
nodes without the help of hardware rasterizers. The OptiX
renderer submits parallel rendering queries which contain
the scene geometries, transformations, and ray specifica-
tions corresponding to each pixel. Experiments with a toy
scene of three cubes on a table show less than 10−5 (meter)
average error in the results between OpenGL and OptiX
renderers, which can be mostly attributed to floating num-
ber error. However, the performance of the OptiX renderer
is much worse than the OpenGL renderer. To render 1000
images of 512 × 424 resolution, the OptiX renderer took
0.124 seconds, while for 1024 images of the same resolu-
tion, the OpenGL renderer took less than 0.005 seconds.
This is because the OpenGL renderer takes advantage of
the power of hardware rasterizers, while the OptiX ren-
derer is limited to per pixel computation on GPU compute
processors.

7. Results

In this section, we examine our AxScEs estimators, the
AxPF and the AxMC, with respect to 20 test scenes of
interacting objects from a depth camera. These objects are
common to households and vary in dimensions and geome-
tries, as shown in Figure 1(b). We first report the results
of particle filter inference on object poses, which serves as
the foundation for the inference methods over scene graphs

by both AxPF and AxMC . Results are then presented for
exhaustive search by the AxPF over scene graph which
yields estimates with high accuracy in small collections of
scenes. AxMC results are then presented that demonstrate
tractable inference with less accuracy. All the experiments
are tested on a Linux PC with Intel Core i7, 32 GB mem-
ory and a NVidia GeForce GTX Titan X Graphic Card with
CUDA 7.5.
Next, we conduct three sets of experiments to

demonstrate our goal-directed manipulation system with
AxMCaxiomatic scene estimation. In our baseline manip-
ulation experiment, we evaluate the manipulation system in
a scenario of three blocks stacked and rotated (Figure 8).
We then consider a more complex scenario of three stacked
blocks along with a basket in the scene (Figure 9). At last, to
test the limit of AxScEs , we conduct an experiment with an
eight object scene as shown in Figure 1. The PR2 robot was
successful in achieving the goal scene: The nature_valley
and nutrigrain boxes cleared to a side of the table and place
all other objects into the basket.

7.1. Object pose estimation

In order to validate the accuracy of particle filter pose esti-
mation, we first started by evaluating our GPU-optimized
likelihood function for estimating object poses given known
scene graphs. For each scene, 40 estimation trials were per-
formed with 400 particle filter iterations with 1250 parti-
cles. As the render buffer size supported by the graphics
card is 163484 × 16384 and the size of the depth image is
640 × 480, so the maximum number of images the graphics
card can render at a time is 16384 / 640 = 625. Thus, our
choice is of 1250 particles as two times 625.
The root mean square error (RMSE) on both transla-

tion (x and y) and rotation (yaw) are computed and are
denoted in each scene in Figure 6 and Figure 7. The transla-
tion error remains very low for each scene (under 1 cm)
but the rotation error seems a bit high. The large angu-
lar error is primarily due to the less accurate estimation of
occluded supporting objects, and not due to the accounting
of object symmetry. Supporting objects, higher in the scene
graph, are occluded by the top objects and, thus, have fewer
pixels in the observation depth image. Further, the stand-
ing objects also have fewer observed pixels, due to taking
observations directly from the robots first person viewpoint,
which leads to a larger angular error. Regardless, these
errors are within our observed estimate of tolerable error
for grasping with the PR2. The time taken for each particle
filter iteration is 0.022 s and varies with different rendering
objects. The total computation time for each scene is around
9.08 s.
This experiment demonstrates our particle filter can esti-

mate the object poses with high accuracy and can serve as
a likelihood function for scene graph estimation methods.

98 The International Journal of Robotics Research 36(1)

Fig. 7. Pose estimation results for known axiom sets in scenes containing five to seven objects. Each subfigure, shows the RGB (left)
and depth (middle) from a RGBD camera mounted on the head of the PR2 and estimated scene graph as a depth image (right), as well
as the RMSE for translation and rotation error.

Table 1. Metrics calculated for AxPF scene estimation. The first two columns are the mean and variance of the tree edit distance which
is the minimum number of node operations to transform one tree to the other. From the 3rd column to the 5th column, the accuracy,
precision and recall of the leaf node classification are reported. The last two columns are the pose error of translation (x and y) and yaw
a correctly classified leaf node. N is the number of objects in each scene.

Scene N Tree edit distance Leaf node classification RMS pose error

Mean Var Accuracy Precision Recall Translation Yaw

Scene (a) 3 0.00 0.00 1.00 1.00 1.00 0.47 0.99
Scene (b) 3 0.00 0.00 1.00 1.00 1.00 0.38 6.47
Scene (c) 3 0.80 1.07 0.73 0.80 0.80 3.04 11.73
Scene (d) 3 0.00 0.00 1.00 1.00 1.00 0.21 0.90

Scene (e) 4 0.00 0.00 1.00 1.00 1.00 0.23 1.69
Scene (f) 4 1.40 2.71 0.80 0.75 0.90 0.62 8.56
Scene (g) 4 1.10 1.10 0.72 0.72 0.72 0.82 0.73
Scene (h) 4 0.00 0.00 1.00 1.00 1.00 0.46 8.84

Sui et al. 99

7.2. Metrics for AxScEs

For evaluating the results of our AxScEs methods, we used
metrics related to scene graph structure, tree edit distance
(Zhang and Shasha, 1989), and leaf node classification, as
the correct identification of currently manipulatable objects.
The tree edit distance is the minimum number of node oper-
ations to transform one scene tree to the other. This distance
uses three edit operations: Replace a node, insert a node,
and delete a node. The tree edit distance is used to com-
pute the distance between an estimated scene graph tree and
ground truth scene graph tree, where, smaller values mean
two trees are closer to each other.
In a cluttered scene, the directly manipulable objects pro-

vide support for no other objects are immediately avail-
able to be picked or placed upon. These objects, asserted
by the clear relation, are the leaves in a scene graph tree.
We care more about these objects than the support objects
higher in a scene graph from an estimation perspective
because they are unoccluded. As leaf node objects are
picked up and moved away, the scene will become less clut-
tered and the supported objects will become clearer in the
eye of the robot. Towards properly estimating leaf node
objects, we introduce leaf node classification which iden-
tifies whether a node in the estimation is a correct leaf node
or not. We report the accuracy, precision, and recall for this
manipulation-oriented classification, as well as their pose
estimation accuracy.

7.3. Scene graph estimation

7.3.1. AxPF . For each of the 20 test scenes, we then ran
the exhaustive search over scene graph (Section 5.1) with
625 particles for each scene. Due to the prohibitive com-
putational complexity, the AxPF was not considered for
scenes with more than four objects. From Table 1, mean
and variance of the tree edit distance remain very low for
all the scenes tested. The computation time of the exhaus-
tive set of particle filters is relatively high. For scenes with
three objects, the exhaustive particle filters averaged 110.80
s and for four object scenes, the time grew to 1318.14 s on
average.

7.3.2. AxMC . We ran MCMC with 200 iterations. In each
MCMC iteration, a particle filter estimates object poses
with 625 particles over 400 iterations. We ran the experi-
ment ten times and the results in Table 2 is averaged over
these experiments. Based on these results, we interpreted
the AxMC to perform well for scenes of up to six objects.
The tree edit distance grows linearly with the number of
objects in the scene. The average accuracy of leaf node clas-
sification is 0.78 which means on average only one leaf
node object would be wrong for each scene as there are
maximal four objects on the top. The RMS yaw error of
the leaf nodes is relatively smaller than the errors from
Section 7.1 which are computed over all the objects in the
scene. This indicates that the robot can grasp the top objects

more robustly. For scenes with greater numbers of objects,
we found that at least one object was estimated correctly
in each trial. This gives room for an active approach to
perception and manipulation. From an AxScEs estimate,
the leaf object with the highest likelihood can be grasped
and moved to decrease ambiguity for another round of
AxScEs estimation.

7.4. Manipulation results

In this set of manipulation experiments, AxMC estimation
is evaluated within the goal-directed manipulation system
described in the previous section. The AxMC will first esti-
mate the scene and get the scene graph and the pose for
each object after convergence. Given the pose, object geom-
etry, and transformations, the system would reconstruct the
scene graph in 3D points in camera view. The planner com-
putes a sequence of actions towards the goal axiomatic
state, and executes the first action in this plan. After per-
forming this action, the robot re-estimates and re-plans for
the resulting scene to take its next action. This process loop
continues until the goal scene state is achieved.

7.4.1. Three stacked and rotated blocks. The first manipu-
lation experiment is to rearrange three stacked and rotated
blocks into a straight stack with reversed order. The obser-
vation depth image is shown in Figure 8(a). Figure 8(b)
shows the estimation result in depth image and Figure 8(c)
shows the reconstructed scene in point cloud. The STRIPS
planner planned a sequence of actions towards the goal with
the estimated scene graph and sent them to the robot. Then
the robot executed them sequentially, as shown from Figure
8(d) to Figure 8(i).

7.4.2. Extraction of middle block. The second manipula-
tion experiment is to extract the middle block from the three
block sequence into a basket which shows our system can
handle complex geometries. The remaining two blocks are
rearranged into a straight stack aside from the basket. Fig-
ure 9(a) shows the perceived depth image and Figures 9(b)
and (c) show the estimated blocks with the basket. From
Figures 9(d) and (e), the robot picked up the top block and
placed it on the table. Then the middle block was picked by
the robot and placed it into a basket which is shown in Fig-
ures 9(f) and (g). Finally, the bottom block was picked and
placed onto the top block as shown in Figures 9(h) and (i).

7.4.3. Manipulation in a cluttered environment. To test
the limit of our approach, we conducted the manipulation
experiment in a much cluttered environment with eight
objects in it. The goal of the task is to place nature_valley
and nutrigrain boxes to a side of the table and to put all other
objects into the basket. Note that as the robot gripper is not
wide enough to pick up the large boxes lying on the table,
nature_valley and nutrigrain are standing vertically on the
table. Figures 1(e) and 1(f) show the estimation results and

100 The International Journal of Robotics Research 36(1)

Fig. 8. Manipulation experiment of rearrangement of three rotated and stacked blocks. Observation and estimated depth image along
with reconstructed point cloud (top row). Frames of robot performing stacking actions to rearrange toothpaste boxes into a straight stack
(bottom rows). (a) Observation. (b) Estimated result. (c) Reconstructed scene. (d) Pick up block1. (e) Place block1. (f) Pick up block2.
(g) Place block2. (h) Pick up block3. (i) Place block3.

Fig. 9. Manipulation experiment of extraction of the middle block into the basket. Observation and estimated depth image along with
reconstructed point cloud (top row). Frames of robot performing stacking actions to extract the middle block into the basket (bottom
rows). (a) Observation. (b) Estimated result. (c) Reconstructed scene. (d) Pick up block1. (e) Place block1. (f) Pick up block2. (g) Place
block2. (h) Pick up block3. (i) Place block3.

Sui et al. 101

Table 2. Metrics calculated for AxMC scene estimation. The first two columns are the mean and variance of the tree edit distance which
is the minimum number of node operations to transform one tree to the other. From the 3rd column to the 5th column, the accuracy,
precision and recall of the leaf node classification are reported. The last two columns are the pose error of translation (x and y) and yaw
a correctly classified leaf node. N is the number of objects in each scene.

Scene N Tree edit distance Leaf node classification RMS pose error

Mean Var Accuracy Precision Recall Translation Yaw (Degree)

Scene (a) 3 0.00 0.00 1.00 1.00 1.00 0.41 1.35
Scene (b) 3 0.30 0.90 1.00 1.00 1.00 0.38 5.23
Scene (c) 3 1.40 0.93 0.53 0.65 0.65 1.20 18.72
Scene (d) 3 1.00 1.11 1.00 1.00 1.00 0.70 0.55

Scene (e) 4 1.20 2.84 0.82 0.81 0.85 1.16 5.97
Scene (f) 4 2.20 2.18 0.72 0.68 0.85 0.81 7.33
Scene (g) 4 2.00 0.67 0.65 0.62 0.75 3.13 3.74
Scene (h) 4 1.40 1.82 0.97 0.96 1.00 0.91 7.34

Scene (i) 5 3.00 2.00 0.72 0.60 0.90 1.20 1.04
Scene (j) 5 3.30 1.34 0.66 0.71 0.73 1.72 7.60
Scene (k) 5 2.40 1.60 0.82 0.70 0.95 0.56 1.97
Scene (l) 5 2.40 1.38 0.82 0.69 1.00 2.02 0.51

Scene (m) 6 3.90 0.77 0.73 0.68 0.87 2.31 6.77
Scene (n) 6 4.30 4.23 0.59 0.58 0.70 5.88 5.92
Scene (o) 6 3.20 2.84 0.76 0.71 0.89 3.18 13.31
Scene (p) 6 3.20 1.29 0.78 0.78 0.95 3.09 7.31

Scene (q) 7 4.30 2.01 0.60 0.62 0.75 7.81 8.80
Scene (r) 7 4.10 5.88 0.81 0.79 0.93 6.30 32.54
Scene (s) 7 5.80 1.51 0.63 0.55 0.70 5.58 25.73
Scene (t) 7 5.60 2.49 0.66 0.57 0.80 4.62 15.78

Scene 8 5.80 2.34 0.50 0.50 1.00 6.94 7.85

scene in point cloud view. The actions performed by the
robot is shown from Figures 1(g) to 1(l).

8. Conclusion

In this article, we proposed generative approaches to
address the problem of axiomatic scene estimation
(AxScEs) as the estimation of scenes for goal-directed
robot manipulation. In AxScEs estimation, a generative
model maintains a distribution across plausible scene graph
hypotheses supported by the robot’s point cloud observa-
tions. These generated hypotheses form an approximate
probability distribution (or belief) over possible states of the
scene. We cast the problem of AxScEs as factors for esti-
mating a scene graph as a tree and poses. Our AxPF method
performs inference in this model as a brute force exhaustive
search over combinations of scenes. We additionally pro-
posed the MCMC-base AxMC method to avoid exploration
over all possible scenes by random walk sampling. A paral-
lelized GPU-optimized version of these inference methods
was described and implemented. Our results indicate that
AxScEs estimators are effective for manipulation-quality
perception based on edit distance on scene graphs, estima-
tion of currently manipulatable (clear) objects and object
pose estimation.

In addressing problems of AxScEs, one of our primary
aims is to enable axiomatic perception that will enable a
greater convergence of symbolic inference for task plan-
ning and collision-free motion planning and execution.
Overcoming the divides between perception, planning and
action is a critical challenge for realizing the next gener-
ation of task-oriented mobile manipulators. In this regard,
our AxScEs estimators are only a step towards this goal.
There are still many issues to address given the com-
putational and spatial complexity that limit our current
AxPF and AxMCmethods. Our methods focus on the space
of potential scenes. We have yet to exploit the space of plau-
sible scenes, where the constraints of physics and space
could bring scene inference into tractability. Ideally, such
scene inference could occur in real-time, similar to localiza-
tion for modern autonomous navigation. While our models
incorporate notions of dynamics for tracking, we have left
exploration of this issue as future work.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

102 The International Journal of Robotics Research 36(1)

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by Office of Naval Research (grant number
N00014-08-1-0910) and NASA (grant number NNX13AN07A).

References

Abbeel P and Ng AY (2004) Apprenticeship learning via inverse
reinforcement learning. In: Proceedings of the twenty-first
international conference on machine learning, ICML ’04, New
York, USA, p.1. ACM.

Akgun B, Cakmak M, Jiang K, et al. (2012) Keyframe-based
learning from demonstration. International Journal of Social
Robotics 4(4): 343–355.

Atkeson CG and Schaal S (1997) Robot learning from demonstra-
tion. In: Proceedings of the fourteenth international conference
on machine learning, ICML ’97, San Francisco, CA, pp.12–20.
Morgan Kaufmann Publishers Inc.

Biswas J and Veloso MM (2013) Localization and navigation of
the cobots over long-term deployments. International Journal
of Robotics Research 32(14): 1679–1694.

Calinon S and Billard A (2007) Incremental learning of gestures
by imitation in a humanoid robot. In: Second conference on
human-robot interaction (HRI), Arlington, VA, pp. 255–262.
IEEE.

Chao C, Cakmak M and Thomaz AL (2011) Towards ground-
ing concepts for transfer in goal learning from demonstra-
tion. In: Proceedings of the joint IEEE international confer-
ence on development and learning and on epigenetic robotics
(ICDL-EpiRob). Frankfurt, Germany, pp. 1–6. IEEE.

Chernova S and Veloso M (2009) Interactive policy learning
through confidence-based autonomy. Journal of Artificial Inel-
ligence Research 34(1): 1–25.

Choi C and Christensen HI (2013) RGB-d object tracking: A par-
ticle filter approach on GPU. In: Intelligent robots and systems
(IROS), 2013 IEEE/RSJ international conference on, Tokyo,
Japan, pp.1084–1091. IEEE.

Ciocarlie M, Hsiao K, Jones EG, et al. (2014) Towards
reliable grasping and manipulation in household environ-
ments. In: Experimental Robotics. Heidelberg: Springer Berlin,
pp.241–252.

Collet A, Berenson D, Srinivasa SS, et al. (2009) Object recogni-
tion and full pose registration from a single image for robotic
manipulation. In: IEEE international conference on robotics
and automation (ICRA), Kobe, Japan. pp. 48–55. IEEE.

Collet A, Martinez M and Srinivasa SS (2011) The moped
framework: Object recognition and pose estimation for manip-
ulation. International Journal of Robotics Research 30(10):
1284–1306.

Coradeschi S and Saffiotti A (2003) An introduction to the
anchoring problem. Robotics and Autonomous Systems 43(2):
85–96.

Cosgun A, Hermans T, Emeli V, et al. (2011) Push planning
for object placement on cluttered table surfaces. In: 2011
IEEE/RSJ international conference on intelligent robots and
systems, San Francisco, CA, pp.4627–4632. IEEE.

Crick C, Osentoski S, Jay G, et al. (2011) Human and robot
perception in large-scale learning from demonstration. In:
Proceedings of the 6th ACM/IEEE international conference on

human-robot interaction (HRI). New York, NY, pp. 339–346.
ACM.

Dellaert F, Fox D, Burgard W and Thrun S (1999) Monte carlo
localization for mobile robots. In: IEEE international confer-
ence on robotics and automation. Detroit, MI, pp. 1322–1328.
IEEE.

Desingh K, Jenkins OC, Reveret L, et al. (2016) Physically plau-
sible scene estimation for manipulation in clutter. In: IEEE-
RAS international conference on humanoid robots (Humanoids
2016). 15–17 November, Cacun, Mexico.

Dogar M and Srinivasa S (2011) A framework for push-grasping
in clutter. In: Proceedings of robotics: Science and systems, Los
Angeles, CA, pp. 65–72.

Dogar MR, Hsiao K, Ciocarlie MT, et al.(2012) Physics-based
grasp planning through clutter. In: Robotics: Science and
systems. p. 504. MIT Press.

Fallon M, Johannsson H and Leonard J (2012) Efficient scene
simulation for robust monte carlo localization using an rgb-
d camera. In: Robotics and automation (ICRA), 2012 IEEE
international conference on, St. Paul, MN, pp.1663–1670.
IEEE.

Felzenszwalb PF, Girshick RB, McAllester D, et al. (2010)
Object detection with discriminatively trained part-based mod-
els. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 32(9): 1627–1645.

Fikes RE and Nilsson NJ (1972) Strips: A new approach to the
application of theorem proving to problem solving. Artificial
intelligence 2(3): 189–208.

Goodrich MA, Jr DRO, Crandall JW, et al. (2001) Experiments in
adjustable autonomy. In: Proceedings of the IJCAI workshop on
autonomy, delegation and control: Interacting with intelligent
agents, Seattle, WA, pp.1624–1629. IJCAI.

Grollman DH and Jenkins OC (2008) Sparse incremental learning
for interactive robot control policy estimation. In: International
conference on robotics and automation (ICRA 2008), 19–23
May, Pasadena, CA, pp.3315–3320. IEEE.

Harnad S (1990) The symbol grounding problem. Physica D:
Nonlinear Phenomena 42(1): 335–346.

Hart S, Dinh P and Hambuchen K (2015) The affordance tem-
plate ros package for robot task programming. In: Robotics and
automation (ICRA), 2015 IEEE International conference on,
Seattle, WA pp.6227–6234. IEEE.

Hastings WK (1970) Monte carlo sampling methods using
markov chains and their applications. Biometrika 57(1):
97–109.

Herbst E, Ren X and Fox D (2011) Rgb-d object discovery via
multi-scene analysis. In: Intelligent robots and systems (IROS),
2011 IEEE/RSJ international conference on, San Francisco,
CA, pp.4850–4856. IEEE.

Jenkins OC and Matarić MJ (2004) Performance-derived
behavior vocabularies: Data-driven acqusition of skills from
motion. International Journal of Humanoid Robotics 1(2):
237–288.

Joho D, Tipaldi GD, Engelhard N, et al. (2012) Nonparametric
bayesian models for unsupervised scene analysis and recon-
struction. In: Proceedings of robotics: Science and systems,
Sydney, Australia. pp. 161–168.

Kaelbling LP, Littman ML and Cassandra AR (1998) Planning
and acting in partially observable stochastic domains. Artificial
Intelligence 101(1-2): 99–134.

Kaelbling LP and Lozano-Pérez T (2013) Integrated task
and motion planning in belief space. The International

Sui et al. 103

Journal of Robotics Research 32(9–10): 1194–1227. Doi:
10.1177/0278364913484072.

Kemp CC, Anderson CD, Nguyen H, et al. (2008) A point-
and-click interface for the real world: Laser designation of
objects for mobile manipulation. In: Human-robot interaction
(HRI), 2008 3rd ACM/IEEE international conference on,
12–15 March, Amsterdam, The Netherlands, pp.241–248.
IEEE.

Kirk JR and Laird JE (2013) Learning task formulations through
situated interactive instruction. In: Proceedings of the second
annual conference on advances in cognitive systems, 12–14
December, Baltimore, Maryland, pp.219–236.

Kober J and Peters J (2011) Policy search for motor primitives in
robotics. Machine Learning 84(1-2): 171–203.

Kuipers B (2000) The spatial semantic hierarchy. Artificial
Intelligence 119(1): 191–233.

Laird JE, Newell A and Rosenbloom PS (1987) Soar: An archi-
tecture for general intelligence. Artificial Intelligence 33: 1–64.

Lang T, Toussaint M and Kersting K (2012) Exploration in
relational domains for model-based reinforcement learning.
Journal of Machine Learning Research 13(1): 3725–3768.

Liu Z, Chen D, Wurm KM, et al. (2015) Table-top scene
analysis using knowledge-supervised mcmc. Robotics and
Computer-Integrated Manufacturing 33: 110–123.

Manfredotti CE, Fleet DJ, SZ, et al. (2010) Relational particle
filtering. In: Monte Carlo methods for modern applications,
2010 NIPS workshop, Whistler, Canada.

McDermott D, Ghallab M, Howe A, et al. (1998) Pddl - the plan-
ning domain definition language. Technical Report TR-98-003,
Yale Center for Computational Vision and Control, USA.

Miller FP, Vandome AF and McBrewster J (2009) Lua
(Programming Language). London, UK. Alpha Press.

Mohan S, Mininger AH, Kirk JR, et al. (2012) Acquiring
grounded representations of words with situated interactive
instruction. In: Advances in Cognitive Systems pp. 113–130.
Citeseer.

Narayanaswamy S, Barbu A and Siskind JM (2011) A visual
language model for estimating object pose and structure in
a generative visual domain. In: Robotics and automation
(ICRA), 2011 IEEE international conference on, Shanghai,
China, pp.4854–4860. IEEE.

Nicolescu M and Matarić MJ (2003) Natural methods for
robot task learning: Instructive demonstration, generaliza-
tion and practice. In: 2nd international joint conference on
autonomous agents and multi-agent systems (AAMAS), 14–18
July, Melbourne, Australia, pp.241–248.

Papazov C, Haddadin S, Parusel S, et al. (2012) Rigid 3d
geometry matching for grasping of known objects in cluttered
scenes. The International Journal of Robotics Research 31(4):
538–553. Doi: 10.1177/0278364911436019.

Parker SG, Bigler J, Dietrich A, et al. (2010) Optix: A general
purpose ray tracing engine. ACM Transactions on Graphics
29(4): 66:1–66:13. Doi: 10.1145/1778765.1778803.

Pas AT and Platt R (2014) Localizing handle-like grasp affor-
dances in 3d point clouds. In: International symposium
on experimental robotics (ISER), pp. 623–638. Springer
International Publishing.

Pastor P, Kalakrishnan M, Chitta S, et al. (2011) Skill learning and
task outcome prediction for manipulation. In: Proceedings of
the 2011 IEEE international conference on robotics & automa-
tion (ICML 2011), Shanghai, China, pp. 3828–3834. IEEE.

Platt RJ, Fagg AH and Grupen RA (2010) Null-space grasp
control: Theory and experiments. IEEE Transactions on
Robotics 26(2): 282–295.

Quigley M, Conley K, Gerkey BP, et al. (2009) Ros: an open-
source robot operating system. In: ICRA workshop on open
source software, Kobe, Japan, volume 3, p. 5. ICRA.

Rosman B and Ramamoorthy S (2011) Learning spatial rela-
tionships between objects. International Journal on Robotics
Research 30(11): 1328–1342.

Rusu RB, Marton ZC, Blodow N, et al. (2008a) Towards 3D point
cloud based object maps for household environments. Robotics
and Autonomous Systems 56(11): 927–941.

Rusu RB, Marton ZC, Blodow N, et al. (2008b) Towards 3d point
cloud based object maps for household environments. Robotics
and Autonomous Systems 56(11): 927–941.

Niekum S GK, Osentoski S and Barto AG (2012) Learning and
generalization of complex tasks from unstructured demonstra-
tions. Intelligent Robots and Systems, Vilamoura, Portugal, pp.
5239–5246. IEEE.

Saito T and Takahashi T (1990) Comprehensible rendering of
3-d shapes. In: Proceedings of the 17th annual conference on
computer graphics and interactive techniques, SIGGRAPH
’90, New York, USA, pp.197–206. ACM.

Shreiner D, Sellers G, Kessenich J and Licea-Kane B (2013)
OpenGL programming guide: The official guide to learn-
ing OpenGL, Version 4.3, 8th ed, Upper Saddle River, NJ.
Addison-Wesley Professional.

Smart WD and Kaelbling LP (2002) Effective reinforcement
learning for mobile robots. In: Robotics and automation, 2002.
Proceedings. ICRA ’02. IEEE international conference on,
volume 4, Washington, DC, pp.3404–3410. IEEE.

Srivastava S, Riano L, Russell S, et al. (2013) Using classical
planners for tasks with continuous operators in robotics. In:
Proceedings of the ICAPS workshop on planning and robotics
(PlanRob), Beijing, China.

Sui Z, Jenkins OC and Desingh K (2015) Axiomatic particle fil-
tering for goal-directed robotic manipulation. In: International
conference on intelligent robots and systems (IROS 2015), 28
September–2 October, Hamburg, Germany, pp.4429–4436.

Tavenrath M and Kubisch C (2013) Advanced scenegraph
rendering pipeline. In: GPU technology conference, March,
San Jose, CA.

Tenorth M and Beetz M (2013) Knowrob: A knowledge process-
ing infrastructure for cognition-enabled robots. International
Journal of Robotics Research 32(5): 566–590.

Trafton G, Hiatt L, Harrison A, et al. (2013) Act-r/e: An embod-
ied cognitive architecture for human-robot interaction. Journal
of Human-Robot Interaction 2(1): 30–55.

Vondrak M, Sigal L, Hodgins J, et al. (2012) Video-based 3D
motion capture through biped control. ACM Transaction of
Graphics (TOG) (Proceedings of ACM SIGGRAPH) New
York, NY, pp. 27:1–27:12. ACM.

Winograd T (1972) Understanding natural language. Cognitive
psychology 3(1): 1–191.

Wintermute S and Laird JE (2008) Bimodal spatial reasoning
with continuous motion. In: Proceedings of the 23rd national
conference on artificial intelligence - Volume 3, AAAI’08,
pp.1331–1337. AAAI Press.

Yanco H, Norton A, Ober W, et al. (2015) Analysis of human-
robot interaction at the darpa robotics challenge trials. Journal
of Field Robotics 32(3): 420–444.

104 The International Journal of Robotics Research 36(1)

Zettlemoyer LS, Pasula HM and Kaelbling LP (2007) Logical
particle filtering. In: Dagstuhl seminar on probabilistic, logical
and relational learning, Dagstuhl, Germany. IBFI.

Zhang K and Shasha D (1989) Simple fast algorithms for the
editing distance between trees and related problems. SIAM
Journal on Computing 18(6): 1245–1262.

Zhang L and Trinkle J (2012) The application of particle filter-
ing to grasping acquisition with visual occlusion and tactile
sensing. In: Robotics and automation (ICRA), 2012 IEEE inter-
national conference on, St. Paul, MN, pp.3805–3812. IEEE.

