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Abstract— Scene-level Programming by Demonstration
(PbD) is faced with an important challenge - perceptual
uncertainty. Addressing this problem, we present a scene-
level PbD paradigm that programs robots to perform
goal-directed manipulation in unstructured environments
with grounded perception. Scene estimation is enabled by
our discriminatively-informed generative scene estimation
method (DIGEST). Given scene observations, DIGEST utilizes
candidates from discriminative object detectors to generate
and evaluate hypothesized scenes of object poses. Scene graphs
are generated from the estimated object poses, which in
turn is used in the PbD system for high-level task planning.
We demonstrate that DIGEST performs better than existing
method and is robust to false positive detections. Building a
PbD system on DIGEST, we show experiments of programming
a Fetch robot to set up a tray for delivery with various objects
through demonstration of goal scenes.

I. INTRODUCTION

We aim to provide a system for a user to effectively
program a robot to complete manipulation tasks. We focus on
understanding the goal of manipulation tasks. The user only
needs to demonstrate once to the robot a desired scene state.
As the scene changes, the robot should be able to manipulate
the objects in the scene to restore the desired scene state. In
tasks such as organizing objects in a household environment,
users can program the robot to keep the living room at a tidy
state.

The most related field to this objective is Programming
by Demonstration (PbD), and similar notions of learning by
imitation, which provide a natural way for naive users to
convey skills and tasks to robots. To effectively program
a robot in a general manner, the robot should be able
to understand the goal of the task, i.e., what to imitate.
With an understood goal, a robot can reason and adapt its
actions to reach this goal in various scenarios and changing
environments.

While there has been considerable advances in robot
learning, scene perception remains a challenge in general
goal-directed manipulations. Traditional PbD works using
kinesthetic teaching [11], [19], [4], [1], [21] focused on
robot learning of a configuration-space control policy for
a particular task or skill. Scene perception in workspace is
important in that a robot should be able to adapt a learned
skill to current scene. The perceptual uncertainty of scene
perception has limited robot task-level reasoning to limited
domains due to issues of computational tractability.

In this paper, we describe our approach to goal-directed
PbD over scenes. Our work is motivated by a service robot
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Fig. 1: Our work is motivated by a service robot scenario: the user needs
some food items placed with certain configurations on a tray for delivery to
his office daily. With our goal-directed PbD paradigm, the user can program
a robot to automatically set up the tray for delivery. It is critical for the robot
to understand the current and goal scene, so that it can plan actions to set
up the tray.

scenario, as illustrated in Figure 1. We argue that scene
perception is a critical missing piece for general goal-directed
PbD. With proposed scene estimation method DIGEST, we
demonstrate how goal-directed PbD can be performed at the
level of scenes in different scenarios of setting up a tray. A
critical distinction of our work is that we are estimating goals
as workspace scene graphs, represented by object relations
and poses, instead of the configuration space of the robot.
Thus we focus on estimating the goal as the desired scene
state, s.t. any capable robot can perform the task.

Our contribution is two-fold:
• We propose a discriminatively-informed generative

method (DIGEST) to estimate object poses in cluttered
scenes for goal-directed manipulation

• We present a goal-directed PbD system at the level of
scene graphs generated from the estimated object poses,
where the robot is an operator in the scene

Our experiments involve 1) evaluating the goal-directed
PbD system in tray setup tasks with a Fetch Robotics
robot, 2) evaluating DIGEST in cluttered scene. And DI-
GEST outperforms the D2P [20] on the household occlusion
dataset [2].

II. RELATED WORK

A. Scene Perception for Manipulation

Feature-based methods and analysis-by-synthesis are two
traditional approaches for model-based object pose estima-
tion. Feature-based methods try to match hand designed
or learned features between models and observations. Spin
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images [12] and FPFH [22] are two local feature based meth-
ods, where the features are extracted and matched between
models and observation for pose estimation. OUR-CVFH [3]
and VFH [23] are examples of global feature based methods
that are more robust to object occlusions. Different features
are learned with respect to the object pose. However, the
performance of feature-based methods will degrade when
the environment becomes more cluttered and key features
are occluded.

Analysis-by-synthesis, also referred as rendering and veri-
fication method, is a generative approach that renders multi-
ple hypotheses, and finds the hypothesis that best explains the
observation. The early works by Stevens et al. [24] proposed
an iterative hypothesize, render and verify process to estimate
3D pose of an object. Our previous work APF [26] [27] use
MCMC to search for the scene hypothesis that best explains
the observation. Similarly, D2P [20] uses A* as the search
method to estimate 3 Dof object poses. Both APF and D2P
assume object identities are known a priori. However, there
does not exist an ideal recognition system that can identify all
the objects correctly in a cluttered environment yet. DIGEST
aims to avoid such a strong assumption.

B. Goal-Directed PbD

There have been some works in PbD focus on learning
low level control. Grollman and Jenkins [9] simultaneously
segment a demonstrated task and learn the policy for each
individual subtask. Chernova and Veloso [6] present an
interactive algorithm for policy learning from demonstration.
Ijspeert et al. [11] and Nakanish et al. [19] teach robot
biped locomotion patterns through demonstrations. In an
incremental learning system by Calinon and Billard [4],
a HOAP-3 humanoid learns different gestures via gener-
alizing over demonstrated joint angle trajectories. Akgun
et al. [1] learns generalized trajectory by identifying a set
of keyframes. Niekum et al. [21] presents an approach
to discover finite-state representations of multi-step tasks.
For domains such as locomotion and gesture control, it is
sufficient to generalize over the robot configuration space
and proprioceptive contacts. While in the domain of robot
manipulations, in contrast, it is important to generalize over
new scenes in the workspace.

Goal-directed PbD is complementary to aforementioned
works, in addition to learning generalized trajectories over
control from demonstration, perceiving and inferring goal
from demonstrations are also important. In goal-directed
PbD, understanding the goal of a demonstrated scene is faced
with challenges such as perceptual uncertainty, especially in
cluttered scenes involving occlusions and object interactions.
Mohan et al. [18] and Kirk et al. [15] present a cognitive
system that learns task formulations, and perform goal-
directed control with grounded perception. However, they
assume that all the objects are solid-colored, so that the
visual system can infer the scene state reliably. Similarly,
Chao et al. [5] limit the demonstrations to planar objects
with distinguished colors. Unlike these works, our perception

Fig. 2: Our programming by demonstration pipeline. Current and goal
scene states are inferred from the sensor observations, and represented by
axiomatic scene graph. Given axiomatic scene graphs of current and goal
scenes, symbolic planner plans a sequence of pick and place actions to
manipulate the objects to achieve the goal scene. Motion planning module
is in charge of generating collision-free arm trajectories for each pick and
place action.

system does not rely on assumptions of object colors or
planar objects.

To deal with scene perception uncertainty, the robot can
make a decision and act based on a belief space of the scene,
which can be formulated by POMDP [13], but the problem
becomes intractable as the state space increases. Kaelbling
and Lozano-Perez [14] build their work on blending prob-
abilistic and task inference in a logical representation of
belief space. We argue that if viable scene perception can be
realized, then decision making and probabilistic inference of
the scene can be decoupled as in the domain of autonomous
navigation. In our work, we maintain a distribution over the
scene state, i.e., the inter-object relations as well as the object
poses. We use the maximal likely scene state as the scene
estimate, and perform goal-directed reasoning based on the
scene estimate of the demonstrated and start scene.

III. PROBLEM STATEMENT

Assume a robot R as a physically capable agent in
the scene, a set of geometries V = {v1, · · · ,vk} of known
objects in the scene, and a set of manipulation actions
A = {a1, · · · ,an} with known pre- and post- conditions. Our
objective is to infer goal scene state sG and current scene
state st at time t from the observations of user’s desired scene
oG and current scene ot , respectively, and plan a sequence
of actions {ai, · · · ,a j} for R to carry out to reorganize the
scene such that the scene state transits from st to sG.

We use a list of axiomatic assertions to describe a scene.
The scene state at time t is expressed as a scene graph
st = {hi

t(x)}M
i=0, where hi

t ∈ {exist,clear,on, in} is an ax-
iomatic assertion parametrized by xt = {w j

t (q
j
t ,v

j
t )}Nc

j=0, with
w j

t (q
j
t ,v

j
t ) representing that at time t object w j

t has pose q j
t

and geometry v j, Nc being the number of objects, and M
is the total number of axiomatic assertions. In our work, the
assertions are limited to to spatial relations that can be tested
geometrically or physically.

The 6 Dof pose q j
t = [x j

t ,y
j
t ,z

j
t ,φ

j
t ,ψ

j
t ,θ

j
t ] of each object

is estimated, which consists of a 3D position (x j
t ,y

j
t ,z

j
t ) and



Fig. 3: DIGEST pipeline. First, the test RGB image is passed through an R-CNN object detector trained on our dataset and a set of bounding boxes
with object labels is generated. Then possible combinations of hypothesized scenes are enumerated and evaluated against the pre-processed observed point
cloud. The particle filtering pose estimation method evaluated each scene and produced weight. At last, the result comes from the scene with the max
weight.

orientation (φ j
t ,ψ

j
t ,θ

j
t ). The number of objects Nc in the

scene is known in advance, but the object categories are not
known. Scene graph can be inferred from estimated object
poses, as explained later in section IV-B.

IV. METHODS

Perception is the core of our approach to PbD. To address
the perceptual uncertainty, we aim to decouple probabilistic
scene state estimation and action planning s.t. the robot takes
actions based on the current estimate of the scene. Our
pipeline consists of perception, plan and execution stages, as
shown in Figure 2. Given observations of a cluttered scene,
the generative process of scene estimation is informed by
discriminative object detector. A scene graph that represents
the inter-object relations are geometrically inferred from the
estimated scene, which is used for high-level goal-directed
reasoning in the PbD system.

A. DIGEST: Cluttered Scene Estimation

Given observation ot as the depth image of a cluttered
scene at time t, the objective is to estimate the object poses
q j

t , j = 1, · · · ,Nc. We utilize the discriminative power of a
pre-trained object detector and recognizer to first obtain a set
of bounding boxes and object labels. These bounding boxes
are used to guide the generative process of sampling scene
hypothesis. The overview of the cluttered scene estimation
is as illustrated in Figure 3.

1) Object Detection and Hypothesized Scene Generation:
Any object detection method that can produce candidates
including bounding boxes and object labels from the obser-
vation suits our method. Assume there are m bounding boxes
detected from the object detector. Let Bi (0≤ i≤ m) denote

each bounding box, L j (1≤ j ≤ k, k is the number of object
class) denote each object label in the bounding box Bi and
v(L j|Bi) is the confidence of object label L j in the bounding
box Bi. For each Bi, we generate a candidate Ci,

Ci = {argmax
L j

v(L j|Bi), Bi} (1)

which is a set including the object label with highest confi-
dence score and the current bounding box.

For m generated candidates, the number of hypothesized
scene h is defined as:

h =

{
mCNc , if Nc ≤ m
1, otherwise

(2)

So if there are more or equal candidates than objects in the
scene, each hypothesized scene Hi contains a combination
of Nc candidates selected from m candidates. If there are
fewer candidates than Nc, just one hypothesized scene with
m candidates will be generated.

2) Particle Filtering for Pose Estimation: Each hypoth-
esized scene Hi is modeled as a random state variable xt ,
comprised of a set of real-valued object poses. We model the
inference of the state xt from a history of robot observations
z1:t as a sequential Bayesian filter,

p(xt |z1:t) ∝

p(zt |xt)
∫

xt

p(xt |xt−1,ut−1)p(xt−1|z1:t−1)dxt−1 (3)

The posterior belief is formed at time t by updating a
prior belief from time t−1 with a dynamic resampling and
likelihood evaluation step. The sequential Bayesian filter in
Eq. 3 is often approximated by a collection of N weighted



particles, {x( j)
t ,w( j)

t }N
j=1, with weight w( j)

t for particle x( j)
t ,

expressed as:

p(xt |z1:t) ∝ p(zt |xt)∑
j

w( j)
t−1 p(xt |x( j)

t−1,ut−1) (4)

as described by [7]. Inference is then performed by com-
puting the likelihood of each hypothesis, normalizing the
weights to one, and drawing N scene hypotheses by impor-
tance sampling iteratively.

x( j)
t ∼∑

j
w(i)

t−1 p(xt |x(i)t−1,ut−1) (5)

w∗( j)
t = p(zt |x( j)

t ) (6)

w( j)
t =

w∗( j)
t

∑k w∗(k)t

(7)

Through the z-buffer of a 3D graphics engine, each particle
x( j)

t is rendered into a depth image, represented as ẑ( j)
t . We

project back the rendered depth image into a point cloud
r̂( j)

t in camera frame given intrinsic parameters. Then, we
compute the likelihood for each particle with the observation
zt :

p(zt |x j
t ) = e−λr ·d(z,r̂

( j)
t ) (8)

where λr is a constant scaling factor and d(R,O) is the
Euclidean distance between the rendered point cloud and the
observation point cloud:

d(R,O) = ∑
(a,b)∈I

‖(R(a,b)−O(a,b))‖ (9)

where a and b are indices in rendered point cloud R and
observed point cloud O, and ‖·‖ is the norm of the norm of
a 3D vector.

We apply Iterated Likelihood Weighting [17] to bootstrap
the scene estimation process, where the state transition in the
action model is represented by a zero-mean Gaussian noise.
Once the bootstrap filter converges, the scene Ĥt from the
most likely particle x̂t is taken as the scene estimate:

Ĥt = argmax
x( j)

t

p(x( j)
t |z1:t) (10)

and the unnormalized w∗( j)
t weight for the mostly likely scene

is taken as the weight for ranking the all the scenes.
3) Final Scene Ranking: After evaluating all hypothesized

scenes, we rank them based on the weight computed from our
pose estimation method. The scene hypothesis with highest
weight is taken as the maximal likely scene estimate.

B. Scene Graph Structure

The objects pose estimation of a cluttered scene can be
turned into a scene graph composed by a set of axiomatic
assertions that describes the scene. We use exist(w j(q j,v j))
to assert that object w j exists in the scene with pose q j and
geometry v j. clear(wi) for assertion that the top of object wi

is clear and no other objects are stacked on it. on(wi,w j) for

Fig. 4: An example of scene estimation for: lipton and shampoo are placed
next to each other, with clorox stacked on lipton. scene RGB: RGB image;
scene depth: the depth image of the scene with table cropped out; rendered
depth: the depth image rendered by the axiomatic scene estimator. lower
left: estimated scene graph tree structure with nodes representing objects,
and edges representing inter-object relations; lower right: The corresponding
scene graph composed by a list of parametrized axiomatic assertions.

assertion that object wi is stacked on object w j. in(wi,w j)
for assertion that object wi is in object w j. An example of a
scene graph is given in Figure 4.

We extend the tree-structured scene graph representation
used in APF [26] by introducing a scene element (virtual
object). With a virtual object wγ(qγ ,vγ), a scene graph can
express proximity relations between objects. To assert the
proximity relations between two objects wi,w j, we add a
virtual object wγ(qγ ,vγ) into the scene graph, with vγ being
an arbitrary shape, and qγ expressed in the frame of object
wi. Then, the spatial relation between wi,w j can be encoded
by {has(wi,wγ), in(wγ ,w j)}, where has(wi,wγ) asserts that
wi has an virtual object wγ attached to its frame. When the
parent object wi is in a new location, the robot can adapt to
the new scenario by placing the child object w j within the
region of wγ attached to the frame of wi.

We assume that one object is supported by a single object,
versus that one object is supported by multiple objects at
the same time. In each 3D object model, the z-axis is the
gravitational axis when the object stands upright, the x-axis
is the gravitational axis when the object lies on a ground,
and y-axis is the cross product of the other two axes. The
dimensions {hx,hy,hz} of the 3D box that encloses each
object model are provided. In order to decide whether object
wi is being supported by another object, two heuristics are
tested: 1) if one of the object axes (e.g. x-axis) is aligned
with the gravitational axis, then the height hi of the 3D
volume occupied by the object equals to the corresponding
dimension (e.g. hx) of the provided 3D enclosing box. A
simple rule zi− htable > 0.5hi implies whether object wi is
being supported by another object; 2) if none of the object



Fig. 5: DIGEST evaluation result with baseline method D2P along with
OUR-CVFH and Brute force ICP. Note that we did not run the baseline
methods and the plots of these three methods are from [20]. The y-axis is
the estimation accuracy. The x-axis is the allowed orientation error for an
estimation to be considered as accurate.

axes are aligned with the gravitational axis, then wi is being
supported by another object.

The set of objects that are being supported by other objects
are denoted as Os, and the rest of the objects are being
denoted as Or. For object wi ∈ Os, a heuristic measure is
used to determine which object w j ∈ Or is supporting w j,

argmax
j

m(rb(wi),rt(w j))

where m(r1,r2) measures the overlapping area of two regions
r1,r2. rt(w),rb(w) represent the projected region on the
horizontal plane of the top and bottom surface of object w,
respectively. With identified supporting relation between a
pair of objects wi,w j, the corresponding axiomatic assertion
is expressed as either on(wi,w j) or in(wi,w j), depending on
the geometry type of the supporting object w j being convex
or concave.

V. IMPLEMENTATION

A. RCNN object detector

We employ RCNN [8] as our discriminative object de-
tector for DIGEST. RCNN first generates object proposals
given an image and then classifies the proposals using a deep
convolutional neural metwork. For the sake of efficiency and
performance, we replaced the original selective search [28]
with EdgeBox [29] for object proposal generation.

B. Particle Filtering and parallelization

The implementation of particle filtering pose estimation
method consists of three modules: measurement, resampling
and diffusion. For each object in each particle x( j)

t , it is
initialized by the candidate Ci in the hypothesized scene, the
object label li determines which object to sample, and the
initial pose is uniformly sampled from the bounding box Bi.
Then these particles are given as input to a parallel graph-
ics engine which generates scene estimation depth images
rapidly. The measurement module takes a preprocessed point

Fig. 6: DIGEST Scene estimation for our dataset. The x-axis is the allowed
orientation error for an estimation to be considered as accurate.

cloud as the observation and compares it with the point cloud
back projected from the rendered depth image. Resampling
and diffusion will give the new posterior distribution and
add noise to the current state. We set the fixed particle
filter iteration to 400 and employ 625 particles for all the
experiments.

In the particle filtering process, the pose of each object
is estimated sequentially. For example, if there are four
hypothesized objects and 400 iterations for particle filtering,
the pose of the object with the largest recognition confidence
is estimated in the first 100 iterations. Then the pose of
the object with the second largest recognition confidence
is estimated in the next 100 iterations, with the first object
fixed at the converged estimated pose. We iterate the same
estimation process for the rest objects.

C. Planning

Given a demonstrated goal scene, the robot estimates the
goal scene state, i.e., the object poses and desired inter-object
relations, and stores the goal scene state by PDDL [16].
Similarly the robot estimates and stores the start scene state
by PDDL. Note, that each pose label in PDDL is associated
with an object pose in the robot base frame, s.t. the robot
knows where to pick or place objects during action execution.
For example, as shown in the lower right part of Figure 4,
lipton is at pos lipton, where pos lipton is a pose label for
lipton that is associated with the estimated lipton pose in the
robot base frame. With sets of PDDL that describe the start
and goal scene, the robot uses symbolic planner to plan a
series of actions to reorganize the start scene to match the
goal scene step-by-step. We use breadth first search for the
symbolic planner in our experiments.

D. Manipulation Execution

To execute the planned actions, the robot relies on exist-
ing motion planning library to generate collision-free arm
trajectories. We use Moveit! [25] in our experiment. In our
experiment, the object manipulation actions are essentially a
sequence of pick and place actions. To pick up an object, we



pre-defined a set of possible pre-grasp and grasp end-effector
poses w.r.t the object, i.e., grasping from the top and from
the side. Affordance template [10] can be incorporated to
extend our pipeline to deal with more complex manipulation
behavior.

VI. EXPERIMENTS

We evaluated 1) the accuracy of our cluttered scene
estimator DIGEST in public dataset and our dataset, and 2)
the performance the overall goal-directed PbD pipeline in
tasks of setting up a tray.

A. DIGEST: Cluttered Scene Estimation

In this section, we examine our DIGEST estimator in two
datasets: household occlusion dataset by Aldoma et al. [2]
and our own scene estimation dataset with more objects
and higher occlusion scenario. For the household occlusion
dataset, we compare our method with D2P [20] under the
same assumption and heuristics. For our own dataset, we
trained a RCNN object detector and evaluated our work with
the same metrics. All the experiments are ran on a Ubuntu
14.04 system with an Titan X Graphics card and CUDA 7.5.

1) Household Occlusion Dataset: We evaluate generative
power of DIGEST with D2P, the state-of-art multi-object
identification and 3 Dof localization method by Narayanan
et, al. [20] on the household occlusion dataset [2]. The
dataset contains 36 household objects with 3D geometry
models and 22 RGBD test scenes with 80 objects in total.
There are at most four objects in the scene. All objects are
standing upright in the dataset, thus in this experiment, only
3 Dof object pose (x,y,θ) is estimated instead of 6 Dof,
where x,y are the 2D locations of the object and θ is the
yaw angle of the object.

Here, we take the same assumption as D2P: known object
number and object categories. We also take exactly the same
deep learning heuristics generated from D2P and use it in
the same way. For each ROI in the depth image, candidates
are generated only from the known object in the scene with
high confidence score. The threshold is set to 0.2 as in D2P.

Pose estimation accuracy is percentage of correctly local-
ized objects over the total number of objects in the dataset.
An object is correctly localized if the pose error falls into
a certain error bound. The pose error is computed the same
way as in D2P. As shown in Figure 5, DIGEST performs
better than D2P in small error bounds (position error smaller
than 1cm and 10cm) and performs on par with D2P in larger
position error bound. For position error bound with 1cm,
DIGEST performs much better result than D2P since that 1)
DIGEST explores the state space a lot more than D2P as we
do not discretize the state space, and 2) DIGEST does not
use ICP for local search, which D2P employs for their pose
estimation step. DIGEST takes around 30 seconds (varying
with the number of objects and the size of object geometries),
which is faster than 139.74 seconds by D2P.

2) Our Dataset: We collected our own RGBD dataset for
15 household objects and 3D models. It has 20 test scenes
with more objects and occlusions in each scene. There are

(a) (b) (c)

(d) (e) (f)

Fig. 7: (a)(d) The input RGB image with bounding boxes and object
labels from R-CNN object detectors for generating hypothesized scenes.
(b)(e) The observed depth image. (c)(f) The scene estimate result shows
that DIGEST can identify the right scene from the hypothesized scenes
when false detection exists.

104 objects in total in all the scenes. We also generated
ground truth pose by manually matching geometry models
with observed point cloud in Blender. As we only estimate 3
Dof object pose, we take the ground truth value of the other
three dimensions (z, roll,pitch).

We also employ the same criteria from the previous
experiment to evaluate the pose errors, as shown in Figure 6.
The increasing tail in the plots is because some objects with
complex geometry like waterpot or spray bottle sometimes
has a flipped orientation in the estimation. The proposed
method DIGEST has the ability to resolve false positives
from the discriminative object detectors by leveraging the
robustness of generative estimation, as shown in Figure 7.

B. PbD Pipeline: Set up a Tray

We design our experiments with the service robot scenario
in mind, as illustrated in Figure 1. The robot needs to prepare
a tray of food such that it can be delivered to an user. We
tested our system on scenes of three to five objects plus a
tray, with objects stacking, and/or placed next to each other.
The goal of the robot is to reproduce the topological layout
of the goal scene, i.e., to reproduce the same inter-object
relations, and the object poses can vary from the goal scene
as long as the inter-object relations are satisfied.

1) Proof of Concept: To provide a proof of concept on
our overall goal-directed PbD paradigm, we first tested our
system with objects that are mostly primitive shaped, and
with the assumption that the categories of the objects are
known, and each object is standing upright, as in D2P [20].
Given the assumptions above, we used a previous method,
i.e., APF [26] for 3 Dof object pose and scene graph
estimation. In the later section, we relaxed these assumptions
and used DIGEST for 6 Dof object pose estimation.

As summarized in Figure 8, we considered object stacking
scenario and objects that are placed near each other. Each
object has a set of pre-defined grasp pose, i.e., grasping
from the top and from the side. During the manipulation
experiments, the robot iterates through the provided grasp



Fig. 8: We tested with primitive shaped objects in for two goal scenes. For each goal scene, four different start scenes are tested. For all 8 experiments,
the scene has been successfully programmed through the robot.

poses, and select the one that it can plan a trajectory for.
2) PbD Enabled by DIGEST: We relax the assumptions

in the previous section, thus the object categories are not
known, and the objects can be in arbitrary poses. The test
scenes are composed by objects that we have trained the
object detector on. We used DIGEST to estimate the 6 Dof
object poses, and then scene graph is derived from the pose
estimation results.

As shown in Figure 10, the goal and start scenes are well
estimated, as a collection of 6 Dof poses of objects. Based
on the scene graph inferred from the object pose estimates,
the robot generated a sequence of symbolic actions to transit
the scene from the start state to the goal state. The pose
estimation does fall into local minima sometimes, resulting
in flipped orientation of objects that is highly symmetric,
e.g., spray bottle and clorox bottle.

In these experiments, the grasp pose for each object is
defined by the user instead of using existing work for grasp
pose localization on objects. The reason for the user-defined
grasp pose is that when the robot picks up an object, not
all the valid grasp poses will be equivalently good for a
later placement action. An example of the robot manipu-
lation action sequence is as shown in Figure 9. A video
of the experiments are available at https://youtu.be/
H1OMNR_qlDA.

VII. CONCLUSION

We demonstrate a PbD paradigm for users to easily
program a robot to complete manipulation tasks, where is
goal of the task is represented as workspace scene graphs.
We address the scene perception problem using the proposed
DIGEST method, which is a discriminatively-informed gen-
erative method that recognizes objects and estimates their 6
Dof poses for manipulation. We show that DIGESTt performs
better than D2P in public dataset for 3 Dof pose estimation
and also performs well in our own dataset. We also show
that users can use our overall PbD pipeline building on
DIGEST to successfully program a Fetch robot to complete
manipulation tasks of setting up a tray.
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