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Physically Plausible Scene Estimation for Manipulation in Clutter
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Abstract— Perceiving object poses in a cluttered scene is a
challenging problem because of the partial observations avail-
able to an embodied robot, where cluttered scenes are especially
problematic. In addition to occlusions, cluttered scenes have
various cases of uncertainty due to physical object interactions,
such as touching, stacking and partial support. In this paper,
we discuss these cases of physics-based uncertainty one by one
and propose methods for physically-viable scene estimation.
Specifically, we use Newtonian physical simulation to validate
the plausibility of hypotheses within a generative probabilistic
inference framework for: particle filtering, MCMC and an
MCMC variant on particle filtering. Assuming that object
geometries are known, we estimate the scene as a collection
of object poses, and infer a distribution over the state space of
scenes as well as the maximum likelihood estimate. We compare
with ICP based approaches and present our results for scene
estimation in isolated cases of physical object interaction as
well as multi-object scenes such that manipulation of graspable
objects can be performed with a PR2 robot.

I. INTRODUCTION

In order to perform purposeful manipulation, robots must
have estimates of the pose and geometry of the objects in
their environment, which collectively describes the robot’s
scene. This level of scene understanding is crucial for robots
to perform the basic aspects of manipulation, including
grasping of objects and planning collision-free movement.
However, the perception of a robot’s scene is dependent on
what can be inferred from sensory information observable to
the robot. Such inference is fraught with challenges, such as
occlusions and physical contacts, which prevent acceptable
levels of scene perception and, consequently, manipulation.
Even when object geometries are known, the estimation of
even a single object is a challenge, addressed by recent
research [5]. The challenge for scene perception becomes
much greater as the scene becomes more cluttered with
an increasing number of objects. A common approach for
tabletop scenes is to assume objects are physically separated
[3], essentially removing the challenge of clutter.

Addressing this challenge for cluttered environments, we
posit that physical plausibility is a necessary component in
the estimation of scenes for robot manipulation. The chal-
lenges of perception in cluttered scenes is caused directly by
the physical configuration and interactions between objects,
as well as partial observability from the robot’s viewpoint. As
with similar analogous approaches to human tracking [22],
[23], respecting physical viability often provides improved
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(a) Sensor view

(b) Observed depth image

(c) Estimated scene
with object poses

(d) Robot sensing the scene

Fig. 1: A physically plausible scene estimate of a cluttered environment
(a) viewed by a PR2 robot for manipulation. Using a Bayesian particle filter,
hypotheses of possible states are generated through sampling, projected into
physical plausible states and evaluated against robot’s observation (b) to
infer the most likely scene state (c) for manipulation.

accuracy in the presence of uncertainty and efficiency in
disregarding implausible scene configurations. For example,
consider a case of a robot looking down at a large object
stacked on top of a (completely occluded) small object.
Current methods often misinterpret this scene as a single
large box floating above the support surface. In addition
to floating objects, physically implausible scene estimates
can also occur due to inter-penetrating objects, unsupported
objects, and unstable structures.

In this paper, we propose a means for incorporating
physical plausibility into generative probabilistic scene es-
timation using Newtonian physical simulation. Assuming
geometry (dimensions), friction, and mass properties of N
unique objects in 3D as known parameters, we explore
three approaches to inference as a form of physics-informed
scene estimation for static environments. In each of these
methods, we use a physical simulation engine to constrain
inference to the set of physically plausible scene states,
which we treat as a physical plausibility projection. In terms
of Bayesian filtering, we describe a physics-informed particle
filter (PI-PF) that uses physical plausibility projection to
correct implausibility that can occur due to additive diffusion.
Based on the idea of [12], we bring PI-PF and MCMC
sampling technique together as a physics-informed Markov
Chain Particle Filter (PI-MCPF), where MCMC is performed
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within the resampling stage of particle filter.

We provide ICP based approaches as the baseline, to
discuss the limitations of data driven approaches and the
advantage of the proposed methods. We present results for
inference with the three physics-informed state estimators
in primitive cases of cluttered scenes with two objects and
more complex scenes with three and four object cases. While
our results suggest that the PI-PF and PI-MCPF produce
comparable estimation results, we observed the PI-MCPF
converges in fewer iterations, albeit with more computational
cost per iteration. Using our physics-informed estimators,
we demonstrate manipulation of cluttered scenes with a PR2
robot.

II. RELATED WORK

The problem addressed by our physics-informed particle
filter is to infer object-level manipulation semantics from
3D point clouds, or 3D maps more generally. Based on
the semantic mapping work of Rusu et al. [18], the PR2
Interactive Manipulation pipeline [6] is able to perform
relatively reliable pick-and-place manipulation for tabletop
settings without object occlusions. This approach to localize
objects relies upon estimation of the largest flat surface,
where any contiguous mass extruding from this surface is
considered a single object.

A number of discriminative methods have been proposed
for estimating objects in point clouds and/or grasping in
clutter scenes using depth images as their sensory input. ten
Pas et al. [20] have shown impressive results for grasping
in clutter scenes through matching graspable end-effector
volumes against observable point clouds, as a complement to
distinguishing individual objects. Rosman and Ramamoorthy
[16] are able to estimate a relational scene graph for objects
in contact as a collection of axioms. Papazov et al. [15]
perform rigid registration of known object geometries to
point cloud data, using methods based on the Iterative Closest
Point (ICP) algorithm. The approaches mentioned above
are quite useful for manipulation, but require discriminable
features that can be directly observed. In terms of utilizing
physics, Dogar et al. [8] have incorporated quasi-physical
prediction for grasping heavily-occluded non-touching ob-
jects cluttered on flat surfaces.

In terms of generative inference, there has been con-
siderable work in using physics within Bayesian filtering
models for tracking of people [4], [23] often for locomotion-
related activities. Such physics-informed tracking applied to
manipulation scenes presents new challenges as the complex-
ity of several interacting objects introduces more complex
contact and occlusion dynamics. Outside of robotics and
manipulation, recent work by Wu et al. [24] estimated the
physical properties of an object using physics engine with
deep learning techniques over an input video. Work by Jia
et al. [10] used physics stability to improve the RGBD-
segmentation of objects in clutter that could eventually be
used to estimate 3D geometry for manipulation. Liu et al.
[13] used knowledge-supervised MCMC to generate abstract
scene graphs of the scene from 6D pose estimates from

(a) Touching case

(b) Stacking case

(c) Slant case

o —

(d) Occlusion case

Fig. 2: Motivational cases for the primitive object interactions, commonly
seen in cluttered scenes: Left to right, Real world scene, depth observation,
point cloud view and estimated scene (using our approach) in blender view

uncertain low level measurements. Joho et al. [11] used
Dirichlet process to reason about object constellations in a
scene, helping unsupervised scene segmentation and comple-
tion of a partial scene. Zhang et al. [25] formulated a physics-
informed particle filter, G-SLAM, for grasp acquisition in
occluded planar scenes. Sui et al. [19] proposed a similar
model for estimating the entire relational scene graph and
object pose demonstrated relatively small scenes with simple
geometries. Narayanan et al. [14] have similar assumptions
as ours and formulated the object localization task under
occlusions as a multi-hueristic search problem to search over
the space of hypothesized scenes. Collet et al. [7] proposed
MOPED framework that uses iterative feature clustering for
object recognition and pose estimation, and heavily relies
on visual features. The methods above are often restricted
to quite simplistic scenes and do not consider physical
interaction between objects like we do.

In this work, we address these challenges by focusing on
specific cases of inter-object interaction for estimating the
object pose across all six degrees-of-freedom for each object.
Distinguishing our work from above methods, we substanti-
ate the accuracy of the object pose estimation by performing
robotic manipulation task on the estimated scenes.

III. MOTIVATION

A cluttered scene can be defined as a scene where objects
are not segregated from each other and, as a result, not
optimally visible to a sensor. Because robotic applications
demand reasonable precision in perception to perform even a
simple pickup task, the complexity multiplies as the number
of objects grow, leading to an increasingly cluttered scene.
There are a vast number of object interactions that can cause
a scene to be cluttered with this growth in objects. For now,
we consider the form of the uncertainty caused by object
interactions, and not issues of clutter that might arise with
number of objects. As such, we review here the primitive
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Fig. 3: System architecture for physics-informed particle filter (PI-PF)) for viable pose estimation of objects: Robot observes the scene as a depth image
and infers the state by a particle filter approach, where each particle is a hypothesized scene rendered by a graphics engine followed by a physics projection
to ensure its plausibility in the real world. After iterating for a set of particles with measurement update and diffusion, the most likely particle is estimated

to be the state of the scene.

cases of cluttered from physical object interaction: a) objects
touching each other, b) objects stacked on top of each other,
c¢) slant objects supported by either their edge or face and,
d) objects completely occluded from view by other objects.
General clutter scenes are some combination of these four
cases.

A. Object touching

Consider a case where two objects touch, as shown in
Fig. 2 (a), with similar texture and appearance. From the
depth sensing, these objects could be segmented as a single
cluster of objects from the tabletop. However, there is
no discriminable depth discontinuity between the objects.
Under-constrained and discriminative methods that depend
on features, such as corners or pre-segmentation, often fail
to estimate the touching cases reliably. Our proposal to use a
generative approach can be advantageous in these scenarios
as shown in Fig. 2 (a).

B. Object stacking

Another frequent interaction between objects is stacking.
Consider a two object stacking case as shown in Fig. 2(b),
where the top object is close to the edge of the bottom object.
The depth data as seen in the point cloud view of Fig. 2(b) is
very sparse. RGBD feature extraction and/or discrimination
might be able to detect the objects in the scene but precise
pose estimation would still be a problem as it will depend
on the sparse depth data observed. Further, an ambiguous
pose estimation might lead to states that are not physically
plausible. For example, an estimate could have poses with
the center of the mass of the top object away from the edge
of the bottom object, towards unsupported space. This results
in a state estimate that is not plausible with the physics of the

environment. Therefore, we claim that integrating physics as
a part of the estimation process is essential to reject such
implausible hypotheses and converge to the ground truth
scene as shown in the Fig. 2(b).

C. Object slant

Cluttered scenes may also include piles of objects, which
produces cases where objects are not just supported by one
of their faces, but by their edges and corners. Consider two
objects slant case as shown in Fig. 2(c), where one object is
oriented such that its mass is supported both by the table and
the other object. With the sparse depth data as shown in the
Fig. 2(c), pose estimation of the slant objects is challenging.
In addition, a wrong estimation of the pose of the slant
object might lead to objects inter-penetrating. Our proposed
method is able to handle the slant object cases which requires
consideration of an object‘s possible inter-penetration and its
physically plausible constraints.

D. Object occlusion

Object occlusion is another common problem in cluttered
scenes; it ranges from partial occlusion to complete occlusion
of objects. Consider two objects as shown in Fig. 2(d), where
one object is on top of a second object that is not visible
to the sensor. This configuration results in the data driven
approaches being unaware of the bottom object, unless a
prior informs of the bottom object being at a known location.
A generative approach, such as ours, hypothesizes object
poses that produce scenes matching to the observation shown
in Fig. 2(d). Occluded objects will have multiple pose hy-
potheses that generate scenes to best match the observation.
Our Bayesian filter approach maintains a distribution over
these possible poses and estimates the likely pose of the
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occluded object in the next time frame when the scene is
acted upon by a robot.

IV. PHYSICS-INFORMED PARTICLE FILTER

We denote our physics-informed particle filter as PI-PF.
We model this problem of pose estimation as a recursive
Bayesian filter, a common model used for state estimation
in robotics [21]. The Bayesian filter is described by the
following equation, with X; being the state of the scene X at
time ¢, sensory observations Z;, control actions U; taken by
the robot:

p(Xt‘let) o<

p(Z,IX,) / P X1, U)p(Xo1|Zig-1)dX, 1. (1)

Scene state X; is a set of object poses in the scene, repre-
sented as X; = {p1,p2,P3,...pm}. Pose of an i object in
a scene state is p; = {x;,vi,z, @i, 0;, Wi} where x;, y;, z; are
the 3D position of the center of mass and ¢;, 6;, y; are
three Euler angles parameterizing the rotation in space. S, =
{X, X2 X3, XN } represents a set of scenes or particles be-
fore physics plausibility projection. §; = {X,I,X,2,Xt3, XN }
represents a set of scenes or particles after physics plausi-
bility projection. U; is the sum of the user forces applied to
the set of objects, which will be zero for this current work.

Our proposed framework consists of two major compo-
nents: a particle filter and the physics based particle generator
(Fig. 3). Initially, a set of n particles is generated randomly
(uninformed by the observation) to form S; states. Each
particle X/ is physically projected to a state X/ and thus
forms S set of states. The particle filter consists of mea-
surement, importance sampling and diffusion submodules.
The measurement module takes in the observation Z, in
the form of depth image given by the robot’s depth sensor
and physically viable particles S, generated by the physics
based particle generator (a set of depth images rendered by
a 3D z-buffer renderer). The measurement module compares
each of the particle X/ represented as depth image with
the observation Z; using sum squared distance function
over every pixel. This comparison gives the likelihood of
each particle being close to the observation. The importance
sampling module takes the likelihood of all the particles to
perform resampling of states, based on their likelihood. This
process generates more particles created with the states that
were plausible. These states are diffused by the diffusion
submodule to provide the states for the next iteration S;.

It should be noted here that the states S; generated by the
diffusion module are not guaranteed to be physically viable.
Therefore, physics based particle generator takes the states
produced after the diffusion from the filter and projects it to
S;. These projected states are then rendered out as depth
images and the process continues till the convergence is
reached.

As alluded to above, the sequential Bayesian filter in Eq. 1
is commonly approx1mated by a collection of N weighted

particles, {X7, w\/) M1, with weight w' for particle X/,

expressed as:

P(X|Z11) o p(Z,|%) L wi”, (i1
J
From this approximation, we will still resample as in stan-

dard particle filtering by drawing N updated samples:
X ~ (XX U ). 3)

DU @

Because X,(j ) are potentially physically implausible, we will
apply a function f to each of these drawn samples to produce

a new set of physically-plausible particle hypotheses:

where f(X, x/ Vl(j),h) is the function integrating a model
of Newtonian physics forward in time by A seconds from
the positions X, () and velocities V(]) of objects in a scene.
Because we are considering static scenes, it should be noted
that both the object velocities Vl(") and control forces U,
are assumed to be zero in magnitude. The resulting set of
physically-viable particles are used to form an approximation
of the posterior at time ¢ by computing the new weights wﬁf )
through evaluating their likelihood:

! = p(z|%7), 5)

and normalizing to sum to one:

Zk er

Although we are considering static scenes, it should also
be noted that the particle filter is able to perform tracking
over time for moving objects as well with non-null object
velocities and control forces.

With regard to function f, given the geometry of a
rigid object and its physical properties (mass, inertia and
friction), a stable position and orientation of this object can
be computed with gravitational and contact forces using a
physics simulator. We cast physical plausibility projection, as
the process of submitting a state X;’ of the scene, which might
not be physically plausible or stable, as an initial condition
of the physics simulator in order to generate a guaranteed
physically plausible and stable state X/ at the end of the
simulation.

An example of physics projection is shown in the Fig. 3.
The scene state from the diffusion module is not guaranteed
to be physically stable. As shown in Fig. 3, the green object
is stable on the surface, whereas the other two objects are
floating in the air. When a scene goes through the physical
simulation, it is projected to a state that is physically stable
as shown in the Fig. 3. This projection could lead to stacking
and slant cases as in this example where the blue object is
stacked on top of green and the red object rests in a slant
position supported by the green object. There are many other
physically implausible cases such as object inter-penetrations
and center of mass not fully supported by other objects in the
scene, that can be projected to a stable scene with this physics
projection. These examples show how physics brings realism
to the estimation process, making it a plausible perception.

1076



Fig. 4: Objects touching experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene as a depth image,
Blender camera view of the estimated scene

A. Physics-informed Markov Chain Particle Filter

We explored Markov Chain Monte Carlo (MCMC) [9], a
popular method employed for inference in scene estimation
problems. To integrate physically stable sampling strategy
into the single-site Metropolis Hastings algorithm [9], ev-
ery new sample X* generated from proposal distribution
q(X*|X;—1) has to be physically projected, where X;_; is
the previous sample. The proposal distribution g(X,*|X,—1)
is defined as a .4/ (X;_1,X), where ¥ is the same as used in
the diffusion of PI-PF. It should be noted that the generated
sample X;* is not guaranteed to be a physically plausible
state. Hence, we project the X to X* using function f as
shown in Eq 4.

The physics projection of the new sample makes the
random walk in the neighborhood no more a useful sampling
technique. Hence, we discarded the direct application of
MCMC method with physics plausibility check and instead
integrate. MCMC in our PI-PF method to improve the
posterior distribution represented by the collection of the
particles. This method of inference is inspired by Khan
et al. [12] for MCMC in particle filter for tracking. Once
we have S;, a set of physically viable particles in PI-PF
at iteration 7, we sample a different particle as proposed
by ¢(X*XY) to get 57 = (X1 X2 X2, XN S; s
then physically projected to get S} = {X,*l X2 X3 L XN }
Now, an acceptance probability check is performed on each
particle X,*(’ ), to either accept or reject each of these new
samples to get a new set S, for the iteration ¢. The acceptance
probability check is defined as below.

()
(1) wx(i L(X
A( z(£>laXt (])) Zmil’l{l, ( — )} (7
(/)
L(X, ")
where L(X;) is the likelihood of a state X; given by the below

equation.
L(X:) = p(Z|X;) (8)

When A(X(j) X*(j>) is 1, then the new sample Xt*m is

t—1A
accepted to be X/, else a random number o« from % (0,1)

Fig. 5: Objects stacking experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene, Blender camera view
of the estimated scene

is used to reject the new sample if o > A(f(t(f )1,)?[*(’ )) and
retain the previous sample (Xt(j ) = Xt(j)l). Now, the particles
S; goes through the importance sampling module and then
diffusion module to follow the particle filter approach. We
denote this method as PI-MCPF for the rest of the paper.

V. EXPERIMENTAL DETAILS AND RESULTS

In this section, we give details about our implementation.
We compare the proposed methods (PI-PF and PI-MCPF)
with a baseline ICP based method on the primitive object
interaction cases. We report our observations and demon-
strate the methods on complex scenes. We use Blender
v2.74 [1] binaries, along with its Python support and built-
in implementation of Bullet [2] physics simulator. Prior to
the experiment, a template scene is created in Blender with
a camera, 3D object meshes and a supporting surface that
acts as the table. We used real world objects with cuboid
geometry for our experiments, whose object meshes are
trivial to create in Blender using their real dimensions. For
every experiment, the system is provided with the number
of objects in the scene and their geometries in the form of
meshes. We assume that an ideal recognition system provides
this information without localizing the geometries in the
scene. We used the default density value (1.0) in Blender
for our experiments, which makes the object mass equal to
its volume. All the object meshes in the scene are set as
active rigid bodies, which means they react to collision and
are subjected to gravitational forces. The supporting surface
created is set to behave as a passive rigid body, which means
it reacts to collisions but is not subjected to gravity (i.e. it in-
teracts with objects but stays fixed in the scene). A Microsoft
Kinect depth sensor mounted on top of the PR2 is externally
calibrated with respect to the table using AR _Marker package
ar_track_alvar from ROS providing extrinsic parameters.
This calibration helps in creating a virtual supporting surface
in Blender. After the template scene’s blend file is created,
at every iteration of the particle filter, the S; set of scenes are
loaded in parallel on multiple instances of Blender. In each
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Fig. 6: Objects slanted experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene, Blender camera view
of the estimated scene

instance, a particle X/ is loaded to set the pose of the object
meshes and then physics rigid body simulation is triggered
to project each of the states from X/ to X;/. Blender rigid
body simulation requires few critical parameters: we set up
the friction coefficient to 0.75, rigid body sim frame_end at
500 (threshold to end the simulation), solver iterations at
60 and steps per second at 750. We found these parameters
to be optimal for realistic physics simulation of the cuboid
geometries considering its computation time. Depth images
are rendered in HDR format to extract the exact metric
information from the OpenGL renderer of Blender. We used
1444 particles for all our experiments. For primitive cases,
PI-PF method was run for 150 iterations and PI-MCPF
method was run for 70 iterations. For complex scenes, PI-PF
method was run for 250 iterations and PI-MCPF method was
run for 150 iterations.

In the below subsections, we discuss the implementa-
tion of baseline ICP method and compare its results with
our proposed methods on the primitive cases considered
in Section III. For the base clutter scenes, we created
scenes which are difficult with insufficient depth data for
traditional discriminative methods of object segmentation,
object detection or pose estimation to perform robustly. The
base clutter experiments involves two objects in touching,
stacking and slant positions and also in complete occlusion.
We experiment on 7 touching scenes, 7 stacking scenes, 7
slant cases and 7 complete occlusion scenes.

A. Iterative Closest Point method

To the best of our knowledge, we have not come across
a state-of-the-art method that works on the depth data
(with no visual features) and deal with occlusions due to
physical object interactions. Hence, we created a baseline
with Iterative Closest Point (ICP) to estimate object poses in
a scene. ICP takes in two point clouds namely the source
cloud and the target cloud, and finds the transformation
between them by iteratively by minimizing their point-to-
point distance. This procedure requires the source and target
to contain the same object to perform optimally. To provide

Fig. 7: Objects occluded experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene, Blender camera view
of the estimated scene with an additional view to show how the occluded
object‘s pose is estimated by our method

this advantage to ICP based method, the 3D point cloud
of each scene in the base clutter cases is processed in two
stages: 1) the table background is subtracted by removing
the largest plane in the scene using plane segmentation from
PCL (Point Cloud Library) [17] resulting in a foreground
point cloud of interest 2) each of the two objects are manually
segmented from the foreground cloud resulting in two object
point clouds (as the base clutter scene experiments contain
only two objects). Point cloud of each object geometry
is synthetically generated based on their dimensions and
considered as source clouds for ICP matching. Each of these
source clouds are matched with their respective target clouds
segmented from the the scene. ICP matching is prone to
be sensitive to the initialization of the source point cloud.
Initial position (x,y,z) of the source clouds are generated
randomly above the table level. The orientation (¢,0,y) of
these source clouds are set to the 3 principle components of
their respective target clouds. For each scene, 50 randomly
initialized source clouds of the objects are used to perform
the ICP matching.

B. Base Clutter Scene Results

In the touching cases, two objects are placed in different
orientations on the table, touching each other as shown in
Fig. 4. We show the cases where objects are in contact on
their edges or their faces. It is observed that the estimates of
these cases using PI-PF and PI-MCPF methods are close to
the ground truth with average errors in position and angles
as shown in Table I. ICP on the object segments fail with
large pose errors as they are not physically informed about
their object boundaries leading to inter-penetrations.

In the stacking cases, two objects are placed in different
orientations on table, with one object placed on top of the
other object. This other object is supported by the table as
shown in Fig. 5. Note, that we used only small objects
to be on top of the larger object, because the converse
structure creates complete occlusion, which is discussed in
the following set of experiments. It is observed that, in order
to generate stacking scenes using physics projection, the
diffusion of the resampled S, states should accommodate
elevation of objects randomly. This diffusion creates S;. We
observed that the estimated scenes using PI-PF and PI-MCPF
methods are close to the ground truth with average errors in
position and angles as shown in Table I. ICP based approach
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ICP on Object Segments PI-PF PI-MCPF

Category Error Large Obj Small Obj Large Obj Small Obj Large Obj Small Obj
(mean) (var) (mean) (var) ‘ (mean) (var) (mean) (var) ‘ (mean) (var) (mean) (var)
Position (cm) 9.58 4.99 10.7 3.68 1.83 0.18 1.75 0.11 2.10 0.15 2.10 0.50
Touching Roll (deg) 25.9 4.51 62.0 0.14 0.19 0.05 0.30 0.20 0.17 0.05 0.23 0.19
Pitch (deg) 34.0 2.71 38.8 2.61 0.05 0.00 0.05 0.01 0.03 0.00 0.05 0.00
Yaw (deg) 28.8 2.03 33.1 8.45 1.86 3.06 1.10 0.58 2.30 3.23 8.70 3.06
Position (cm) 11.3 1.83 13.0 0.94 2.19 0.60 2.23 0.20 1.84 0.99 2.67 0.85
Stacked Roll (deg) 322 0.13 37.6 0.54 0.53 0.37 0.77 1.13 0.48 0.57 0.79 1.77
Pitch (deg) 37.1 0.63 26.2 2.20 1.09 3.81 1.54 2.59 1.35 5.45 1.18 3.19
Yaw (deg) 57.5 3.04 38.4 2.59 4.71 6.74 6.05 5.86 5.50 8.43 6.63 8.32
Position (cm) 10.4 5.23 14.3 0.72 3.09 5.51 4.38 11.4 442 5.90 4.33 6.82
Slant Roll (deg) 36.9 8.97 39.3 2.50 14.5 86.5 0.38 0.10 0.54 1.02 0.33 0.10
Pitch (deg) 38.8 0.29 334 2.94 1.58 2.97 315 23.3 5.96 69.3 19.4 74.3
Yaw (deg) 19.9 2.78 27.6 1.93 10.5 84.3 30.7 42.4 10.3 19.9 36.5 31.6
Position (cm) 26.7 2.33 NA NA 2.83 1.47 4.23 5.65 3.23 2.38 4.28 5.63
Occluded Roll (deg) 13.8 3.37 NA NA 20.0 71.1 29.9 43.6 20.0 72.8 449 448
Pitch (deg) 8.47 1.10 NA NA 0.05 0.00 30.0 85.3 0.05 0.00 30.0 87.5
Yaw (deg) 27.5 3.40 NA NA 15.0 53.6 40.0 40.0 16.1 18.1 33.9 49.8

TABLE I: Object pose estimation errors are reported here with respect to the ground truth poses. Ground truth is generated by manually matching the
object geometries to the observed point cloud using the Blender user interface.

fails to perform as the objects are not enforced to stack based
on their poses and hence could result in floating objects.

In the slant cases, two objects are placed in different
orientations on table such that one object is on the table,
supporting the other object, which is in a slant pose as
shown in Fig. 6. To generate slant scenarios, the rigid
body simulation in Blender requires care in setting up the
parameters as mentioned above. If physics projection cannot
produce these slant cases, the experiments will not converge
to the observed scene. As it can be seen in Fig. 6, even in
the cases where the bottom object is occluded by the top
slant object, its pose in the estimated depth image matches
the observation. More importantly, we find that estimated
state is physically plausible. We observed that slant cases
are difficult, and estimates from both PI-PF and PI-MCPF
methods are not as close to the ground truth as in touching
and stacked cases. The average angular error is high for the
small object, which is occluded in most of the cases and
very hard to be estimated. On the other hand, the larger
object which, even on having an advantage of being highly
visible requires a trade off in matching the observation and
also maintaining physical plausibility. ICP fails in slant cases
too as it is not informed about both the object boundaries as
well as gravitational force to support itself in a slant position.

In the occlusion cases, as shown in Fig. 7, the small
object is completely occluded by the larger object in the
observation. Our proposed methods PI-PF and PI-MCPF
robustly handles these cases and estimates the pose of the
larger object with average position errors shown in Table I.
However these methods have higher position errors for the
smaller object that is not visible to the sensor. It should
be noted that the ground truth for all these scenes were
generated using visual inspection and matching of the object
geometries to the observed point cloud. Because the small
object was not seen in the point cloud, the ground truth was
generated to just make sure physical plausibility of the scene.
The last column in Fig. 7 shows the view of the estimated

scene from a different viewpoint, to see the estimated pose
of the occluded small object. In complete occlusion, we also
had cases where the larger object was slanted on the small
object, occluding the small object. Hence there is a high
error in the Roll of the larger object similar to that of the
slant cases in both PI-PF and PI-MCPF methods. ICP based
method does not have the target cloud for the small object,
and, thus there is no way to estimate the pose of that object.

The ICP based method purely relies on 3D data associa-
tion. It is observed to fail consistently on all categories. It
should also be noted that ICP will perform much worse if
the 3D scene is not preprocessed. Overall the PI-PF and PI-
MCPF methods perform comprehensively on these difficult
primitive setups and help us develop an understanding of
using physical plausibility in the estimation process of more
complex scenes discussed in next section.

C. Cluttered Scene Results

We have performed experiments on three and four objects
cases, that combined the base cases discussed earlier. With
inclusion of additional objects, the state space for search
explodes and it takes lot of iterations to converge to the
ground truth. For experimental purpose the time complexity
is avoided with constrains on the object poses. Poses of the
objects are limited to {x;,y;,z;, ®;} (i.e. ¢; is the yaw angle
of an object to determine its rotation on the surface plane
which is aligned to XY plane) dimensions in the initialization
and updates. However physics projections at each iteration
results in real valued numbers on all the 6xN dimensions of
the scene.

In Fig. 8 we show experiments with four objects in the
scene with results from PI-PF. It can be seen that the exper-
imental set up has the combinations of the primitive cases
discussed earlier. These scenes have a lot of occlusions with
respect to the sensor viewpoint. The scenes are estimated
using PI-PF and PI-MCPF, and are close to the ground truth
poses, except for the objects that are occluded. However if
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Fig. 8: Complex experiment results with 4 objects: From left to right,
Original Scene, Observed depth image, Estimated most likely scene, Blender
camera view of the estimated scene

. Maximum PI-PF Maximum  PI-MCPF
Conditions . . . .

1terations converges 1terations converges
Touching 150 85.26 70 30.42
Stacking 150 90.84 70 53.55
Slant 150 143.7 70 70.00
Occlusion 150 70.50 70 46.98
3 Objects 250 188.2 150 113.4
4 Objects 250 224.6 150 142.1

TABLE II: Shows the average number of iterations each of methods,
took to converge. Maximum iterations are the number of iterations each
method is allowed to run. We consider the experiment to have converged
if the change in the pose estimate of the most likely particle is less than 1
cm in position and less than 3 degrees in the angles.

a continuous perception is performed, our estimation along
with the distribution over the state space will act as a prior
knowledge over time. We performed sequence of object
manipulations on the estimated scenes using PR2 robot,
whose gripper has a small tolerance to the error in estimation.
Precision to which the pose estimation is performed in PI-
PF and PI-MCPF methods are good enough to let the robot
perform successful manipulation. A couple of scenes are
shown in the video submission with robotic manipulation
on the estimated poses. We observed that the accuracy of
the PI-PF and PI-MCPF are close to each other in all the
experiments performed, but the number of iterations taken by
PI-PF is higher compared to PI-MCPF as shown in Table II.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a generative, probabilistic scene
estimation using Newtonian physical simulation for physi-
cally plausible scene estimation to enable robotic manipula-
tion in clutter. Our method estimates cluttered scenes as a
collection of object poses to generate and match observation.
We discuss primitive cases causing observation uncertainty
due to object interactions like touching, stacking and slant
support poses. We present cases where physical plausibility is
at most essential in robotic perception and show results using
our framework on some difficult cases of clutter settings. We
explored variants of our approach and report the results with
observations on each case. The current framework is limited

by its computational demands in estimating cluttered scenes
with large number of objects. As a next step, we would like
to scale it to different object geometries as well as work
on GPU implementation for real time robotic manipulation
tasks.
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