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Abstract— Perceiving object poses in a cluttered scene is a
challenging problem because of the partial observations avail-
able to an embodied robot, where cluttered scenes are especially
problematic. In addition to occlusions, cluttered scenes have
various cases of uncertainty due to physical object interactions,
such as touching, stacking and partial support. In this paper,
we discuss these cases of physics-based uncertainty one by one
and propose methods for physically-viable scene estimation.
Specifically, we use Newtonian physical simulation to validate
the plausibility of hypotheses within a generative probabilistic
inference framework for: particle filtering, MCMC and an
MCMC variant on particle filtering. Assuming that object
geometries are known, we estimate the scene as a collection
of object poses, and infer a distribution over the state space of
scenes as well as the maximum likelihood estimate. We compare
with ICP based approaches and present our results for scene
estimation in isolated cases of physical object interaction as
well as multi-object scenes such that manipulation of graspable
objects can be performed with a PR2 robot.

I. INTRODUCTION

In order to perform purposeful manipulation, robots must

have estimates of the pose and geometry of the objects in

their environment, which collectively describes the robot’s

scene. This level of scene understanding is crucial for robots

to perform the basic aspects of manipulation, including

grasping of objects and planning collision-free movement.

However, the perception of a robot’s scene is dependent on

what can be inferred from sensory information observable to

the robot. Such inference is fraught with challenges, such as

occlusions and physical contacts, which prevent acceptable

levels of scene perception and, consequently, manipulation.

Even when object geometries are known, the estimation of

even a single object is a challenge, addressed by recent

research [5]. The challenge for scene perception becomes

much greater as the scene becomes more cluttered with

an increasing number of objects. A common approach for

tabletop scenes is to assume objects are physically separated

[3], essentially removing the challenge of clutter.

Addressing this challenge for cluttered environments, we

posit that physical plausibility is a necessary component in

the estimation of scenes for robot manipulation. The chal-

lenges of perception in cluttered scenes is caused directly by

the physical configuration and interactions between objects,

as well as partial observability from the robot’s viewpoint. As

with similar analogous approaches to human tracking [22],

[23], respecting physical viability often provides improved
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Fig. 1: A physically plausible scene estimate of a cluttered environment
(a) viewed by a PR2 robot for manipulation. Using a Bayesian particle filter,
hypotheses of possible states are generated through sampling, projected into
physical plausible states and evaluated against robot’s observation (b) to
infer the most likely scene state (c) for manipulation.

accuracy in the presence of uncertainty and efficiency in

disregarding implausible scene configurations. For example,

consider a case of a robot looking down at a large object

stacked on top of a (completely occluded) small object.

Current methods often misinterpret this scene as a single

large box floating above the support surface. In addition

to floating objects, physically implausible scene estimates

can also occur due to inter-penetrating objects, unsupported

objects, and unstable structures.

In this paper, we propose a means for incorporating

physical plausibility into generative probabilistic scene es-

timation using Newtonian physical simulation. Assuming

geometry (dimensions), friction, and mass properties of N

unique objects in 3D as known parameters, we explore

three approaches to inference as a form of physics-informed

scene estimation for static environments. In each of these

methods, we use a physical simulation engine to constrain

inference to the set of physically plausible scene states,

which we treat as a physical plausibility projection. In terms

of Bayesian filtering, we describe a physics-informed particle

filter (PI-PF) that uses physical plausibility projection to

correct implausibility that can occur due to additive diffusion.

Based on the idea of [12], we bring PI-PF and MCMC

sampling technique together as a physics-informed Markov

Chain Particle Filter (PI-MCPF), where MCMC is performed
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within the resampling stage of particle filter.

We provide ICP based approaches as the baseline, to

discuss the limitations of data driven approaches and the

advantage of the proposed methods. We present results for

inference with the three physics-informed state estimators

in primitive cases of cluttered scenes with two objects and

more complex scenes with three and four object cases. While

our results suggest that the PI-PF and PI-MCPF produce

comparable estimation results, we observed the PI-MCPF

converges in fewer iterations, albeit with more computational

cost per iteration. Using our physics-informed estimators,

we demonstrate manipulation of cluttered scenes with a PR2

robot.

II. RELATED WORK

The problem addressed by our physics-informed particle

filter is to infer object-level manipulation semantics from

3D point clouds, or 3D maps more generally. Based on

the semantic mapping work of Rusu et al. [18], the PR2

Interactive Manipulation pipeline [6] is able to perform

relatively reliable pick-and-place manipulation for tabletop

settings without object occlusions. This approach to localize

objects relies upon estimation of the largest flat surface,

where any contiguous mass extruding from this surface is

considered a single object.

A number of discriminative methods have been proposed

for estimating objects in point clouds and/or grasping in

clutter scenes using depth images as their sensory input. ten

Pas et al. [20] have shown impressive results for grasping

in clutter scenes through matching graspable end-effector

volumes against observable point clouds, as a complement to

distinguishing individual objects. Rosman and Ramamoorthy

[16] are able to estimate a relational scene graph for objects

in contact as a collection of axioms. Papazov et al. [15]

perform rigid registration of known object geometries to

point cloud data, using methods based on the Iterative Closest

Point (ICP) algorithm. The approaches mentioned above

are quite useful for manipulation, but require discriminable

features that can be directly observed. In terms of utilizing

physics, Dogar et al. [8] have incorporated quasi-physical

prediction for grasping heavily-occluded non-touching ob-

jects cluttered on flat surfaces.

In terms of generative inference, there has been con-

siderable work in using physics within Bayesian filtering

models for tracking of people [4], [23] often for locomotion-

related activities. Such physics-informed tracking applied to

manipulation scenes presents new challenges as the complex-

ity of several interacting objects introduces more complex

contact and occlusion dynamics. Outside of robotics and

manipulation, recent work by Wu et al. [24] estimated the

physical properties of an object using physics engine with

deep learning techniques over an input video. Work by Jia

et al. [10] used physics stability to improve the RGBD-

segmentation of objects in clutter that could eventually be

used to estimate 3D geometry for manipulation. Liu et al.

[13] used knowledge-supervised MCMC to generate abstract

scene graphs of the scene from 6D pose estimates from

(a) Touching caseg

(b) Stacking caseg

(c) Slant case

(d) Occlusion case

Fig. 2: Motivational cases for the primitive object interactions, commonly
seen in cluttered scenes: Left to right, Real world scene, depth observation,
point cloud view and estimated scene (using our approach) in blender view

uncertain low level measurements. Joho et al. [11] used

Dirichlet process to reason about object constellations in a

scene, helping unsupervised scene segmentation and comple-

tion of a partial scene. Zhang et al. [25] formulated a physics-

informed particle filter, G-SLAM, for grasp acquisition in

occluded planar scenes. Sui et al. [19] proposed a similar

model for estimating the entire relational scene graph and

object pose demonstrated relatively small scenes with simple

geometries. Narayanan et al. [14] have similar assumptions

as ours and formulated the object localization task under

occlusions as a multi-hueristic search problem to search over

the space of hypothesized scenes. Collet et al. [7] proposed

MOPED framework that uses iterative feature clustering for

object recognition and pose estimation, and heavily relies

on visual features. The methods above are often restricted

to quite simplistic scenes and do not consider physical

interaction between objects like we do.

In this work, we address these challenges by focusing on

specific cases of inter-object interaction for estimating the

object pose across all six degrees-of-freedom for each object.

Distinguishing our work from above methods, we substanti-

ate the accuracy of the object pose estimation by performing

robotic manipulation task on the estimated scenes.

III. MOTIVATION

A cluttered scene can be defined as a scene where objects

are not segregated from each other and, as a result, not

optimally visible to a sensor. Because robotic applications

demand reasonable precision in perception to perform even a

simple pickup task, the complexity multiplies as the number

of objects grow, leading to an increasingly cluttered scene.

There are a vast number of object interactions that can cause

a scene to be cluttered with this growth in objects. For now,

we consider the form of the uncertainty caused by object

interactions, and not issues of clutter that might arise with

number of objects. As such, we review here the primitive
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Fig. 3: System architecture for physics-informed particle filter (PI-PF)) for viable pose estimation of objects: Robot observes the scene as a depth image
and infers the state by a particle filter approach, where each particle is a hypothesized scene rendered by a graphics engine followed by a physics projection
to ensure its plausibility in the real world. After iterating for a set of particles with measurement update and diffusion, the most likely particle is estimated
to be the state of the scene.

cases of cluttered from physical object interaction: a) objects

touching each other, b) objects stacked on top of each other,

c) slant objects supported by either their edge or face and,

d) objects completely occluded from view by other objects.

General clutter scenes are some combination of these four

cases.

A. Object touching

Consider a case where two objects touch, as shown in

Fig. 2 (a), with similar texture and appearance. From the

depth sensing, these objects could be segmented as a single

cluster of objects from the tabletop. However, there is

no discriminable depth discontinuity between the objects.

Under-constrained and discriminative methods that depend

on features, such as corners or pre-segmentation, often fail

to estimate the touching cases reliably. Our proposal to use a

generative approach can be advantageous in these scenarios

as shown in Fig. 2 (a).

B. Object stacking

Another frequent interaction between objects is stacking.

Consider a two object stacking case as shown in Fig. 2(b),

where the top object is close to the edge of the bottom object.

The depth data as seen in the point cloud view of Fig. 2(b) is

very sparse. RGBD feature extraction and/or discrimination

might be able to detect the objects in the scene but precise

pose estimation would still be a problem as it will depend

on the sparse depth data observed. Further, an ambiguous

pose estimation might lead to states that are not physically

plausible. For example, an estimate could have poses with

the center of the mass of the top object away from the edge

of the bottom object, towards unsupported space. This results

in a state estimate that is not plausible with the physics of the

environment. Therefore, we claim that integrating physics as

a part of the estimation process is essential to reject such

implausible hypotheses and converge to the ground truth

scene as shown in the Fig. 2(b).

C. Object slant

Cluttered scenes may also include piles of objects, which

produces cases where objects are not just supported by one

of their faces, but by their edges and corners. Consider two

objects slant case as shown in Fig. 2(c), where one object is

oriented such that its mass is supported both by the table and

the other object. With the sparse depth data as shown in the

Fig. 2(c), pose estimation of the slant objects is challenging.

In addition, a wrong estimation of the pose of the slant

object might lead to objects inter-penetrating. Our proposed

method is able to handle the slant object cases which requires

consideration of an object‘s possible inter-penetration and its

physically plausible constraints.

D. Object occlusion

Object occlusion is another common problem in cluttered

scenes; it ranges from partial occlusion to complete occlusion

of objects. Consider two objects as shown in Fig. 2(d), where

one object is on top of a second object that is not visible

to the sensor. This configuration results in the data driven

approaches being unaware of the bottom object, unless a

prior informs of the bottom object being at a known location.

A generative approach, such as ours, hypothesizes object

poses that produce scenes matching to the observation shown

in Fig. 2(d). Occluded objects will have multiple pose hy-

potheses that generate scenes to best match the observation.

Our Bayesian filter approach maintains a distribution over

these possible poses and estimates the likely pose of the
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occluded object in the next time frame when the scene is

acted upon by a robot.

IV. PHYSICS-INFORMED PARTICLE FILTER

We denote our physics-informed particle filter as PI-PF.

We model this problem of pose estimation as a recursive

Bayesian filter, a common model used for state estimation

in robotics [21]. The Bayesian filter is described by the

following equation, with Xt being the state of the scene X at

time t, sensory observations Zt , control actions Ut taken by

the robot:

p(Xt |Z1:t) ∝

p(Zt |Xt)
∫

p(Xt |Xt−1,Ut)p(Xt−1|Z1:t−1)dXt−1. (1)

Scene state Xt is a set of object poses in the scene, repre-

sented as Xt = {p1, p2, p3, ...pm}. Pose of an ith object in

a scene state is pi = {xi,yi,zi,ϕi,θi,ψi} where xi, yi, zi are

the 3D position of the center of mass and ϕi, θi, ψi are

three Euler angles parameterizing the rotation in space. St ={
X1

t ,X
2
t ,X

3
t , ...X

N
t

}
represents a set of scenes or particles be-

fore physics plausibility projection. S̃t =
{

X̃1
t , X̃

2
t , X̃

3
t , ...X̃

N
t

}
represents a set of scenes or particles after physics plausi-

bility projection. Ut is the sum of the user forces applied to

the set of objects, which will be zero for this current work.

Our proposed framework consists of two major compo-

nents: a particle filter and the physics based particle generator

(Fig. 3). Initially, a set of n particles is generated randomly

(uninformed by the observation) to form St states. Each

particle X
j

t is physically projected to a state X̃
j

t and thus

forms S̃t set of states. The particle filter consists of mea-

surement, importance sampling and diffusion submodules.

The measurement module takes in the observation Zt in

the form of depth image given by the robot’s depth sensor

and physically viable particles S̃t generated by the physics

based particle generator (a set of depth images rendered by

a 3D z-buffer renderer). The measurement module compares

each of the particle X̃
j

t represented as depth image with

the observation Zt using sum squared distance function

over every pixel. This comparison gives the likelihood of

each particle being close to the observation. The importance

sampling module takes the likelihood of all the particles to

perform resampling of states, based on their likelihood. This

process generates more particles created with the states that

were plausible. These states are diffused by the diffusion

submodule to provide the states for the next iteration St .

It should be noted here that the states St generated by the

diffusion module are not guaranteed to be physically viable.

Therefore, physics based particle generator takes the states

produced after the diffusion from the filter and projects it to

S̃t . These projected states are then rendered out as depth

images and the process continues till the convergence is

reached.

As alluded to above, the sequential Bayesian filter in Eq. 1

is commonly approximated by a collection of N weighted

particles, {X
( j)
t ,w

( j)
t }N

j=1, with weight w
( j)
t for particle X

( j)
t ,

expressed as:

p(Xt |Z1:t) ∝ p(Zt |Xt)∑
j

w
( j)
t−1 p(Xt |X

( j)
t−1,Ut−1) (2)

From this approximation, we will still resample as in stan-

dard particle filtering by drawing N updated samples:

X
( j)
t ∼ π(Xt |X

( j)
t−1,Ut−1). (3)

Because X
( j)
t are potentially physically implausible, we will

apply a function f to each of these drawn samples to produce

a new set of physically-plausible particle hypotheses:

X̃
( j)
t = f (X

( j)
t ,V

( j)
t ,h). (4)

where f (X
( j)
t ,V

( j)
t ,h) is the function integrating a model

of Newtonian physics forward in time by h seconds from

the positions X
( j)
t and velocities V

( j)
t of objects in a scene.

Because we are considering static scenes, it should be noted

that both the object velocities V
( j)

t and control forces Ut

are assumed to be zero in magnitude. The resulting set of

physically-viable particles are used to form an approximation

of the posterior at time t by computing the new weights w̃
( j)
t

through evaluating their likelihood:

w̃
( j)
t = p(Zt |X̃

( j)
t ), (5)

and normalizing to sum to one:

w
( j)
t =

w̃
( j)
t

∑k w̃
( j)
t

. (6)

Although we are considering static scenes, it should also

be noted that the particle filter is able to perform tracking

over time for moving objects as well with non-null object

velocities and control forces.

With regard to function f , given the geometry of a

rigid object and its physical properties (mass, inertia and

friction), a stable position and orientation of this object can

be computed with gravitational and contact forces using a

physics simulator. We cast physical plausibility projection, as

the process of submitting a state X
j

t of the scene, which might

not be physically plausible or stable, as an initial condition

of the physics simulator in order to generate a guaranteed

physically plausible and stable state X̃
j

t at the end of the

simulation.

An example of physics projection is shown in the Fig. 3.

The scene state from the diffusion module is not guaranteed

to be physically stable. As shown in Fig. 3, the green object

is stable on the surface, whereas the other two objects are

floating in the air. When a scene goes through the physical

simulation, it is projected to a state that is physically stable

as shown in the Fig. 3. This projection could lead to stacking

and slant cases as in this example where the blue object is

stacked on top of green and the red object rests in a slant

position supported by the green object. There are many other

physically implausible cases such as object inter-penetrations

and center of mass not fully supported by other objects in the

scene, that can be projected to a stable scene with this physics

projection. These examples show how physics brings realism

to the estimation process, making it a plausible perception.
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Fig. 4: Objects touching experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene as a depth image,
Blender camera view of the estimated scene

A. Physics-informed Markov Chain Particle Filter

We explored Markov Chain Monte Carlo (MCMC) [9], a

popular method employed for inference in scene estimation

problems. To integrate physically stable sampling strategy

into the single-site Metropolis Hastings algorithm [9], ev-

ery new sample X∗ generated from proposal distribution

q(X∗
t |X̃t−1) has to be physically projected, where X̃t−1 is

the previous sample. The proposal distribution q(X∗
t |X̃t−1)

is defined as a N (X̃t−1,Σ), where Σ is the same as used in

the diffusion of PI-PF. It should be noted that the generated

sample X∗
t is not guaranteed to be a physically plausible

state. Hence, we project the X∗
t to X̃∗ using function f as

shown in Eq 4.

The physics projection of the new sample makes the

random walk in the neighborhood no more a useful sampling

technique. Hence, we discarded the direct application of

MCMC method with physics plausibility check and instead

integrate MCMC in our PI-PF method to improve the

posterior distribution represented by the collection of the

particles. This method of inference is inspired by Khan

et al. [12] for MCMC in particle filter for tracking. Once

we have S̃t , a set of physically viable particles in PI-PF

at iteration t, we sample a different particle as proposed

by q(X∗( j)|X̃
( j)
t ) to get S∗t =

{
X∗1

t ,X∗2
t ,X∗3

t , ...X∗N
t

}
. S∗t is

then physically projected to get S̃∗t =
{

X̃∗1
t , X̃∗2

t , X̃∗3
t , ...X̃∗N

t

}
.

Now, an acceptance probability check is performed on each

particle X̃
∗( j)
t , to either accept or reject each of these new

samples to get a new set S̃t for the iteration t. The acceptance

probability check is defined as below.

A(X̃
( j)
t−1, X̃

∗( j)
t ) = min

{
1,

L(X̃
∗( j)
t )

L(X̃
( j)
t−1)

}
. (7)

where L(Xt) is the likelihood of a state Xt given by the below

equation.

L(Xt) = p(Zt |Xt) (8)

When A(X̃
( j)
t−1, X̃

∗( j)
t ) is 1, then the new sample X̃

∗( j)
t is

accepted to be X̃
j

t , else a random number α from U (0,1)

Fig. 5: Objects stacking experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene, Blender camera view
of the estimated scene

is used to reject the new sample if α > A(X̃
( j)
t−1, X̃

∗( j)
t ) and

retain the previous sample (X̃
( j)
t = X̃

( j)
t−1). Now, the particles

S̃t goes through the importance sampling module and then

diffusion module to follow the particle filter approach. We

denote this method as PI-MCPF for the rest of the paper.

V. EXPERIMENTAL DETAILS AND RESULTS

In this section, we give details about our implementation.

We compare the proposed methods (PI-PF and PI-MCPF)

with a baseline ICP based method on the primitive object

interaction cases. We report our observations and demon-

strate the methods on complex scenes. We use Blender

v2.74 [1] binaries, along with its Python support and built-

in implementation of Bullet [2] physics simulator. Prior to

the experiment, a template scene is created in Blender with

a camera, 3D object meshes and a supporting surface that

acts as the table. We used real world objects with cuboid

geometry for our experiments, whose object meshes are

trivial to create in Blender using their real dimensions. For

every experiment, the system is provided with the number

of objects in the scene and their geometries in the form of

meshes. We assume that an ideal recognition system provides

this information without localizing the geometries in the

scene. We used the default density value (1.0) in Blender

for our experiments, which makes the object mass equal to

its volume. All the object meshes in the scene are set as

active rigid bodies, which means they react to collision and

are subjected to gravitational forces. The supporting surface

created is set to behave as a passive rigid body, which means

it reacts to collisions but is not subjected to gravity (i.e. it in-

teracts with objects but stays fixed in the scene). A Microsoft

Kinect depth sensor mounted on top of the PR2 is externally

calibrated with respect to the table using AR Marker package

ar track alvar from ROS providing extrinsic parameters.

This calibration helps in creating a virtual supporting surface

in Blender. After the template scene’s blend file is created,

at every iteration of the particle filter, the St set of scenes are

loaded in parallel on multiple instances of Blender. In each
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Fig. 6: Objects slanted experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene, Blender camera view
of the estimated scene

instance, a particle X
j

t is loaded to set the pose of the object

meshes and then physics rigid body simulation is triggered

to project each of the states from X
j

t to X̃
j

t . Blender rigid

body simulation requires few critical parameters: we set up

the friction coefficient to 0.75, rigid body sim frame end at

500 (threshold to end the simulation), solver iterations at

60 and steps per second at 750. We found these parameters

to be optimal for realistic physics simulation of the cuboid

geometries considering its computation time. Depth images

are rendered in HDR format to extract the exact metric

information from the OpenGL renderer of Blender. We used

1444 particles for all our experiments. For primitive cases,

PI-PF method was run for 150 iterations and PI-MCPF

method was run for 70 iterations. For complex scenes, PI-PF

method was run for 250 iterations and PI-MCPF method was

run for 150 iterations.

In the below subsections, we discuss the implementa-

tion of baseline ICP method and compare its results with

our proposed methods on the primitive cases considered

in Section III. For the base clutter scenes, we created

scenes which are difficult with insufficient depth data for

traditional discriminative methods of object segmentation,

object detection or pose estimation to perform robustly. The

base clutter experiments involves two objects in touching,

stacking and slant positions and also in complete occlusion.

We experiment on 7 touching scenes, 7 stacking scenes, 7

slant cases and 7 complete occlusion scenes.

A. Iterative Closest Point method

To the best of our knowledge, we have not come across

a state-of-the-art method that works on the depth data

(with no visual features) and deal with occlusions due to

physical object interactions. Hence, we created a baseline

with Iterative Closest Point (ICP) to estimate object poses in

a scene. ICP takes in two point clouds namely the source

cloud and the target cloud, and finds the transformation

between them by iteratively by minimizing their point-to-

point distance. This procedure requires the source and target

to contain the same object to perform optimally. To provide

Fig. 7: Objects occluded experiment results: From left Original Scene,
Observed depth image, Estimated most likely scene, Blender camera view
of the estimated scene with an additional view to show how the occluded
object‘s pose is estimated by our method

this advantage to ICP based method, the 3D point cloud

of each scene in the base clutter cases is processed in two

stages: 1) the table background is subtracted by removing

the largest plane in the scene using plane segmentation from

PCL (Point Cloud Library) [17] resulting in a foreground

point cloud of interest 2) each of the two objects are manually

segmented from the foreground cloud resulting in two object

point clouds (as the base clutter scene experiments contain

only two objects). Point cloud of each object geometry

is synthetically generated based on their dimensions and

considered as source clouds for ICP matching. Each of these

source clouds are matched with their respective target clouds

segmented from the the scene. ICP matching is prone to

be sensitive to the initialization of the source point cloud.

Initial position (x,y,z) of the source clouds are generated

randomly above the table level. The orientation (ϕ,θ ,ψ) of

these source clouds are set to the 3 principle components of

their respective target clouds. For each scene, 50 randomly

initialized source clouds of the objects are used to perform

the ICP matching.

B. Base Clutter Scene Results

In the touching cases, two objects are placed in different

orientations on the table, touching each other as shown in

Fig. 4. We show the cases where objects are in contact on

their edges or their faces. It is observed that the estimates of

these cases using PI-PF and PI-MCPF methods are close to

the ground truth with average errors in position and angles

as shown in Table I. ICP on the object segments fail with

large pose errors as they are not physically informed about

their object boundaries leading to inter-penetrations.

In the stacking cases, two objects are placed in different

orientations on table, with one object placed on top of the

other object. This other object is supported by the table as

shown in Fig. 5. Note, that we used only small objects

to be on top of the larger object, because the converse

structure creates complete occlusion, which is discussed in

the following set of experiments. It is observed that, in order

to generate stacking scenes using physics projection, the

diffusion of the resampled S̃t states should accommodate

elevation of objects randomly. This diffusion creates St . We

observed that the estimated scenes using PI-PF and PI-MCPF

methods are close to the ground truth with average errors in

position and angles as shown in Table I. ICP based approach
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Category Error
ICP on Object Segments PI-PF PI-MCPF

Large Obj Small Obj Large Obj Small Obj Large Obj Small Obj
(mean) (var) (mean) (var) (mean) (var) (mean) (var) (mean) (var) (mean) (var)

Touching

Position (cm) 9.58 4.99 10.7 3.68 1.83 0.18 1.75 0.11 2.10 0.15 2.10 0.50
Roll (deg) 25.9 4.51 62.0 0.14 0.19 0.05 0.30 0.20 0.17 0.05 0.23 0.19
Pitch (deg) 34.0 2.71 38.8 2.61 0.05 0.00 0.05 0.01 0.03 0.00 0.05 0.00
Yaw (deg) 28.8 2.03 33.1 8.45 1.86 3.06 1.10 0.58 2.30 3.23 8.70 3.06

Stacked

Position (cm) 11.3 1.83 13.0 0.94 2.19 0.60 2.23 0.20 1.84 0.99 2.67 0.85
Roll (deg) 32.2 0.13 37.6 0.54 0.53 0.37 0.77 1.13 0.48 0.57 0.79 1.77
Pitch (deg) 37.1 0.63 26.2 2.20 1.09 3.81 1.54 2.59 1.35 5.45 1.18 3.19
Yaw (deg) 57.5 3.04 38.4 2.59 4.71 6.74 6.05 5.86 5.50 8.43 6.63 8.32

Slant

Position (cm) 10.4 5.23 14.3 0.72 3.09 5.51 4.38 11.4 4.42 5.90 4.33 6.82
Roll (deg) 36.9 8.97 39.3 2.50 14.5 86.5 0.38 0.10 0.54 1.02 0.33 0.10
Pitch (deg) 38.8 0.29 33.4 2.94 1.58 2.97 31.5 23.3 5.96 69.3 19.4 74.3
Yaw (deg) 19.9 2.78 27.6 1.93 10.5 84.3 30.7 42.4 10.3 19.9 36.5 31.6

Occluded

Position (cm) 26.7 2.33 NA NA 2.83 1.47 4.23 5.65 3.23 2.38 4.28 5.63
Roll (deg) 13.8 3.37 NA NA 20.0 71.1 29.9 43.6 20.0 72.8 44.9 44.8
Pitch (deg) 8.47 1.10 NA NA 0.05 0.00 30.0 85.3 0.05 0.00 30.0 87.5
Yaw (deg) 27.5 3.40 NA NA 15.0 53.6 40.0 40.0 16.1 18.1 33.9 49.8

TABLE I: Object pose estimation errors are reported here with respect to the ground truth poses. Ground truth is generated by manually matching the
object geometries to the observed point cloud using the Blender user interface.

fails to perform as the objects are not enforced to stack based

on their poses and hence could result in floating objects.

In the slant cases, two objects are placed in different

orientations on table such that one object is on the table,

supporting the other object, which is in a slant pose as

shown in Fig. 6. To generate slant scenarios, the rigid

body simulation in Blender requires care in setting up the

parameters as mentioned above. If physics projection cannot

produce these slant cases, the experiments will not converge

to the observed scene. As it can be seen in Fig. 6, even in

the cases where the bottom object is occluded by the top

slant object, its pose in the estimated depth image matches

the observation. More importantly, we find that estimated

state is physically plausible. We observed that slant cases

are difficult, and estimates from both PI-PF and PI-MCPF

methods are not as close to the ground truth as in touching

and stacked cases. The average angular error is high for the

small object, which is occluded in most of the cases and

very hard to be estimated. On the other hand, the larger

object which, even on having an advantage of being highly

visible requires a trade off in matching the observation and

also maintaining physical plausibility. ICP fails in slant cases

too as it is not informed about both the object boundaries as

well as gravitational force to support itself in a slant position.

In the occlusion cases, as shown in Fig. 7, the small

object is completely occluded by the larger object in the

observation. Our proposed methods PI-PF and PI-MCPF

robustly handles these cases and estimates the pose of the

larger object with average position errors shown in Table I.

However these methods have higher position errors for the

smaller object that is not visible to the sensor. It should

be noted that the ground truth for all these scenes were

generated using visual inspection and matching of the object

geometries to the observed point cloud. Because the small

object was not seen in the point cloud, the ground truth was

generated to just make sure physical plausibility of the scene.

The last column in Fig. 7 shows the view of the estimated

scene from a different viewpoint, to see the estimated pose

of the occluded small object. In complete occlusion, we also

had cases where the larger object was slanted on the small

object, occluding the small object. Hence there is a high

error in the Roll of the larger object similar to that of the

slant cases in both PI-PF and PI-MCPF methods. ICP based

method does not have the target cloud for the small object,

and, thus there is no way to estimate the pose of that object.

The ICP based method purely relies on 3D data associa-

tion. It is observed to fail consistently on all categories. It

should also be noted that ICP will perform much worse if

the 3D scene is not preprocessed. Overall the PI-PF and PI-

MCPF methods perform comprehensively on these difficult

primitive setups and help us develop an understanding of

using physical plausibility in the estimation process of more

complex scenes discussed in next section.

C. Cluttered Scene Results

We have performed experiments on three and four objects

cases, that combined the base cases discussed earlier. With

inclusion of additional objects, the state space for search

explodes and it takes lot of iterations to converge to the

ground truth. For experimental purpose the time complexity

is avoided with constrains on the object poses. Poses of the

objects are limited to {xi,yi,zi,ϕi} (i.e. ϕi is the yaw angle

of an object to determine its rotation on the surface plane

which is aligned to XY plane) dimensions in the initialization

and updates. However physics projections at each iteration

results in real valued numbers on all the 6xN dimensions of

the scene.

In Fig. 8 we show experiments with four objects in the

scene with results from PI-PF. It can be seen that the exper-

imental set up has the combinations of the primitive cases

discussed earlier. These scenes have a lot of occlusions with

respect to the sensor viewpoint. The scenes are estimated

using PI-PF and PI-MCPF, and are close to the ground truth

poses, except for the objects that are occluded. However if
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Fig. 8: Complex experiment results with 4 objects: From left to right,
Original Scene, Observed depth image, Estimated most likely scene, Blender
camera view of the estimated scene

Conditions
Maximum PI-PF Maximum PI-MCPF
iterations converges iterations converges

Touching 150 85.26 70 30.42
Stacking 150 90.84 70 53.55

Slant 150 143.7 70 70.00
Occlusion 150 70.50 70 46.98
3 Objects 250 188.2 150 113.4
4 Objects 250 224.6 150 142.1

TABLE II: Shows the average number of iterations each of methods,
took to converge. Maximum iterations are the number of iterations each
method is allowed to run. We consider the experiment to have converged
if the change in the pose estimate of the most likely particle is less than 1
cm in position and less than 3 degrees in the angles.

a continuous perception is performed, our estimation along

with the distribution over the state space will act as a prior

knowledge over time. We performed sequence of object

manipulations on the estimated scenes using PR2 robot,

whose gripper has a small tolerance to the error in estimation.

Precision to which the pose estimation is performed in PI-

PF and PI-MCPF methods are good enough to let the robot

perform successful manipulation. A couple of scenes are

shown in the video submission with robotic manipulation

on the estimated poses. We observed that the accuracy of

the PI-PF and PI-MCPF are close to each other in all the

experiments performed, but the number of iterations taken by

PI-PF is higher compared to PI-MCPF as shown in Table II.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a generative, probabilistic scene

estimation using Newtonian physical simulation for physi-

cally plausible scene estimation to enable robotic manipula-

tion in clutter. Our method estimates cluttered scenes as a

collection of object poses to generate and match observation.

We discuss primitive cases causing observation uncertainty

due to object interactions like touching, stacking and slant

support poses. We present cases where physical plausibility is

at most essential in robotic perception and show results using

our framework on some difficult cases of clutter settings. We

explored variants of our approach and report the results with

observations on each case. The current framework is limited

by its computational demands in estimating cluttered scenes

with large number of objects. As a next step, we would like

to scale it to different object geometries as well as work

on GPU implementation for real time robotic manipulation

tasks.
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