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3-D Eddy Current Torque Modeling
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This paper presents an analytic based eddy current torque analysis procedure. The equations are derived using the second order
vector potential and the magnetic rotor is modeled using the magnetic charge sheet concept. The formulation enables the damping and
stiffness equations to be derived. The equations are numerically computed and the accuracy is compared against experimental torque

and power measurements.

Index Terms— eddy currents, torque, Halbach rotor, maglev, second order vector potential.

I. INTRODUCTION

WHEN a magnetic source moves in the vicinity of a
conductive plate, time varying magnetic fields induce
eddy currents in the plate which in turn interacts with the
source magnetic field to create velocity dependent drag and
lift force. The generated drag force can be utilized in
applications such as eddy current braking [1] and rotor
vibration damping [2]. While the lift force can be utilized to
provide suspension for high-speed maglev trains [3].
Electrodynamic maglev suspension systems typically rely on a
null-flux coil guideway topology in order to maximize the lift-
to-drag ratio [4]. Another way to avoid this drag and achieve
integrated suspension and propulsion for the vehicle at low
cost is to rotate the magnetic source rather than translationally
moving it above a conductive plate guideway. This
electrodynamic wheel (EDW) concept is illustrated in Fig.
1(a) [5]. In order to create large lift force a flux-focusing
Halbach rotor, as shown in Fig. 1(b), is used. In this approach
the thrust force is dependent on the slip speed, s;, defined as
S=w,r,-v, where @,, r, and v, are mechanical angular
velocity, outer radius and translational velocity respectively.

Reitz and Davis [6] and later Langerholc [7] developed
force and eddy current torque equations for a coil when there
is only translational motion. This paper presents an analytic
based eddy current torque, power, damping and stiffness
analysis procedure for the case when a magnetic rotor is
rotated and translationally moved above a conductive plate.
The equations are derived using the second order vector
potential[8-10] approach and the magnetic rotor is modeled
using the magnetic charge sheet concept [11].
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Fig. 1(a) A 2 pole-pair Halbach rotor rotating and translationally moving
above an aluminum plate. Isoline plot of the reflected radial flux density and
isosurface plot of the eddy current density is shown, (b) An experimental 2
pole-pair Halbach rotor with radial and shunt magnets
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Fig. 2 The (a) x-y and (b) z-y view of the problem region.

II. GOVERNING EQUATIONS

A schematic showing the relevant problem regions is
shown in Fig. 2. The rotor velocity in the x, y and z directions
as well as rotational speed, w,,, is shown. The length, / and
width, w, of the plate are assumed to be large enough so that
all fields are zero at the edges. The plate is assumed to have
constant conductivity be nonmagnetic and simply connected.

A. Conductive Region, Qq

Utilizing the magnetic vector potential

B=VxA 1)
the eddy current problems can be formulated as [8]
dA
VA = o — 2
Koo a (2)

where ¢ = conductivity. Solving (2) leads to a solution
procedure that is complicated due to the need to solve three
scalar terms and also account for the coupling within the
magnetic flux density components. This derivation complexity
can be avoided by using the SOVP, W, defined as [9, 10]

A=VXW=Vx[W375+yxVW] 3)

where W, and W, are scalars. Only the transverse electric (TE)
potential, W,, is non-zero when solving eddy current problems
in a conductive medium that is infinite in the x-z plane [9].
Therefore, the TE potential exists only normal to the
conductive plate as illustrated in Fig. 3. The formulation in
terms of TE enables one to think of eddy current problems in
terms of reflected and transmitted field components [12].
Substituting (3) into (2) yields

aw
VQW(L = /Loaﬁ “4)

Utilizing the convective derivative
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aw ow
& =_—2= V)W, 5
dt ot TV, ©)
and assuming a steady state solution such that
W,(@y.2.0) = W,(a,y,2)e /) ©)
allows (4) to be written as
ow,  aw,  ow,
VZWa = /LOO'[]PUJ W, + v, 5a + v, 9y +, P @)
where P=pole-pairs. Substituting (3) into (1) yields
2 2 2 2
B:aW’lifaW“JraW“ngaW“z,inQu @)
0z0y 2 97> 020y

B. Nonconductive Regions, Qy, Qi
Since the conductivity is zero the governing equation is [13]

V2Wa =0,in Q, Qy 9)
and the relationship to B simplifies to
B = V[aW“ ,in Qp, Qupp (10)
dy
As the magnetic scalar potential, ¢ , is defined as
B = -y, Vo (11)
the magnetic scalar potential is related to the SOVP by
10w
¢ =—-———4 Qy 12)
Ho Oy

C. Boundary Conditions

The continuity conditions in terms of the TE potential are
[14]

s I _
W; +Wa7“ =W, ,aty=0 (13)
ows  awr  owl
o 4 a _ ¢ aty= 0 (14)
oy dy oy
II il _
W, =W, aty -h (15)
u m
8Wa _6Wa ’atyz-h (16)
dy d
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Fig. 3 The source,
transmitted TE potentials.

reflected and Fig. 4. Cylindrical magnetic charge
sheet.

III. GENERAL SOLUTION

Applying the separation of variables method to (7) and (9)
and noting that the field must decay when moving away from
the conductive surface, the solution within each region is

Z Z CL elbnteihuze=my

m=—o00n=—0o0

A7)

o0 o
wi = Z Z [nglmeﬂw,ﬂ +D7lylme*f’,m,ﬂ]e/\yeffm-'refkn,z (18)

m=—000 nN=—00

wi — Z Z cn effmfeﬂfn fomn (Y +h) (19)

where &, = 2mm/l (20)
k, = 2mn/u @D

/372% = Az + ’y%m (22)

A = —0.5v,py0 (23)

’ymn = K — Hp95, (24)

Ko = & + K (25)

(Pw + 67711),7‘ + knvz) (26)

IV. SOURCE FIELD

In this paper the TE potential due to a Halbach magnetic
rotor is calculated directly from the field created by an
equivalent fictitious magnetic charge cylinder as shown in Fig.
4. The surface charge density on the cylinder is defined as [11]

Puns(1y:8:1) = 2B (1 Je 00 =n!) @7
where

P+1 _ . P+1y,.2P

B:(T‘) — QBrcmP( + Mr)( i o )ro 1 (28)

R (T e N A
is the Halbach rotor radial flux density [15]. B,.,= remanent
flux density, u, = magnet relative permeability. The origin of
the cylindrical charge sheet is located at (x.,y.z.)=(0,r,+g,0).
The scalar potential and magnetic flux density created by this
charge cylinder at y=0 can be computed from [11]

2 w, /2 ( 0 t)
oty = —o [ [ Loslelela g (29)
47”10 0 —w, /2 "MA
2m w, /2
: 0 Ps(1505:1)
Bw(% Y, 2, t) = E mg’,’#rﬂ/mdzodeo (30)
0-w/2 'MA
where
rya = (@ =7 cosb)i + (y —y, —n,sinb )+ (z — z,)z (31)
Utilizing (12) the source field in terms of the SOVP is
21 w, /2
, T
W0 (z,y,2,t) = _Z;{ f/Z[pms(rmemt)
77170

.ln{rMA +@y—y. -, Sin@o)}dzonO] 32)
The integration with respect to z, is performed analytically
whereas integration with respect to 6, is accomplished
numerically. In order to match the modes with the TE
potentials given by (17)-(19), the source field, as given by (32)
, is expressed as the following Fourier series within €

Wi (z,y,2,1) Z Z Sun elentelhnz ey iPont (33)
m=—00n=—00 ‘%mfn
where the Fourier coefficients are determined from
9  w/2 1/2
S = Bnn f f W2 (x,0, zt)e Sonte R dedz  (34)
—w/2-1/2

Substituting (17)-(19), (33) into (13)-(16) and solving yields
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W) (z,y,2t) = JelnTelhnzemiPwnt (35)

§ E 77177
HLIL

m=—00N=—00 Hmn

where the reflection function, R,,,(y), is
HUnO|K + s
Rmn(y) _ 5 0 [ mn J ] e
265, — Moo, + 2k, B, coth(B, h)

Substituting (35) into (12) and (10), the reflected scalar
potential and magnetic flux density are

e ml (36)

¢) Y, %, t Z Z Smn mn ) 5ml€/knz67ij ! (37)
m=—o00n=—oo ()K”Ln
> i . §Tn
(z,y,2,t)= Z Z STk iPwnt| _ T4+
m=—o0on=—0oo Kmn

k,
— =28, R () (38)

mn

V. POWER, TORQUE, STIFFNESS AND DAMPING

Within the nonconductive regions the fields are governed by
magnetostatic equations, therefore the complex energy, U,,
can be computed from the magnetic charge [16, 17]

1 /2 w/2
U, = 5 f f pjns(x, 0,2,t)¢" (z,0,2,t)dzdz , at y=0 (39)
—1/2—w/2
This enables the total energy to be determined from the
interaction of the surface magnetic charge with the reflected
field due to the eddy currents. For computation purposes it is
most convenient to assume that the source magnetic charge is
located on the surface of the conductive plate. In order to
replicate the source field below the magnetic charge sheet the
source charge density must be twice the normal component of
the source magnetic flux density [11] which is

Prns(,0,2,1) = 2B)(x,0,2,1) , at y=0 (40)
From (10) and (33) one obtains
Pons(@:0,2,8) = 2 Z Z S”mejfm“‘e7kﬂzefjpwmt 41)
The power is computed from the time derivative of (39)
P, =Re Uy 42)
ot pms(w,(],z,t):constant
lwPw, > rrm
'PCWL = - Z Z HLIL(O)} (43)
Ho m=—con=—oo “mn
and the torque is then just
Using (44) the damping terms are
0 2
oT,, P S sl | 9B (0)
D, = — em _ mn 45
o 8wm :LLO ”L;OC n_z}oo Ky 6wm ( )
0 2
oT,, P S sl | 2B (0)
D = — em _ mn 46
Y a”y Ho m—Zfoo n—z}oo Fmn 81}@/ ( )

where the derivative terms are given by

IR, (0) _ dpoP
8’(::” d 2 dmn + MOUKWI’H[ m'nv7 + 5 ]COth(/Bﬂlﬂh)//Bmﬂ
m 'mn
0T, + 8,11 = b esch®(8,,1)} (47)
OR" (0) _ HoOhy,
8";” ,2nn [dmn + )\[ mnvy + S ]COth(ﬁﬁl’nh) / 5777,77,
Yy dmn
2
A0, + 5, Jesch(8,,,,h)] (48)
and dmn = H'rQn'n + 772?777 + 2Km7l/67n7lCOth(ﬁ7Tl7lh) (49)
Utilizing (39) the angular stiffness constant is obtained from
T 82U
= ——m = _ (50)
o0 w, 81586’
m P (%,0,2,t)=constant
2
Pt K& \
or, > Z Bl gm0 61
Ho m=—con=—oc0 "mn
Similarly the vertical stiffness can be computed as
aT, WP &
by == )l S Sy InlR,, 0] 62
Y Ho m=—00nN=—00
TABLE I
EXPERIMENTAL SETUP PARAMETERS
Quantity Value Unit
Outer radius, 7, 26 mm
Inner radius, r; 9.6 mm
Magnetic Width, w, 52 mm
rotor Remanent flux density, Byen 1.42 T
Relative permeability, u, 1.108 -
Pole pairs, P 2 -
Conductivity, o 2.459x107 S/m
Conducti Width, w 77 mm
pl(e)l?e UCVe  Outer radius 600+ 0.58 mm
Thickness, h 6.3 mm
Sheets separation 101 mm

VI. EXPERIMENTAL RESULTS

An experimental vehicle setup with four EDWs has been
constructed and is shown in Fig. 5-Fig. 6. The experimental
parameters are given in Table I. In the setup the vehicle has
been kept translationally stationary and the conductive plate
on the guideway wheel is rotated to simulate translational
motion, v,. The EDWs are centered over the width of the
conductive plate. The brushless dc motor torque and power are
calculated using 7,,=K, and P,,=K/l,®,, respectively where
K,=0.0295Nm/A. The current, I, and rotational speed, ®,,, are
measured using phase current and Hall Effect sensors. Laser
displacement sensor is used to measure the air-gap, g

Ju—
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.—vehicle

Dodge Quantis
~ HB 882,4.87:1
speed reducer
Traea=900NmM

‘ ABB DMP 132-
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Fig. 5. Guideway wheel with an in-line gear reducer and DC braking motor.
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Fig. 6. Vehicle setup with four laser displacement sensors to measure air-gap
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Fig. 7. RPM, airgap and translational velocity profiles of rear right EDW
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Fig. 9. (a) Torque (Nm) and (b) D, (Ns) as function of the translational
velocity, v, and slip speed, s;, for (v,,v,)=(0,0)m/s

The variation in rotational speed, air-gap and translational
speed are shown in Fig. 7. The corresponding torque and

power both measured and computed are shown in Fig. 8. An
excellent agreement was obtained. Equations (43)-(44) were
calculated using 31 harmonic components. The torque, vertical
damping and stiffness terms as a function of translational
velocity and slip speed are shown in Fig. 9-Fig. 10.
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Fig. 10. k, (kN) as function of translational velocity, v, and slip speed, s,, for
(vy,v2)=(0,0) m/s

VII. CONCLUSION

A 3-D analytic based steady-state eddy current torque,
damping and stiffness equations have been derived using the
SOVP formulation. The accuracy of the developed model has
been validated against experimental results.
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