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This paper presents an analytic based eddy current torque analysis procedure. The equations are derived using the second order 

vector potential and the magnetic rotor is modeled using the magnetic charge sheet concept.  The formulation enables the damping and 

stiffness equations to be derived. The equations are numerically computed and the accuracy is compared against experimental torque 

and power measurements.  
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I. INTRODUCTION 

HEN a magnetic source moves in the vicinity of a 

conductive plate, time varying magnetic fields induce 

eddy currents in the plate which in turn interacts with the 

source magnetic field to create velocity dependent drag and 

lift force. The generated drag force can be utilized in 

applications such as eddy current braking [1] and rotor 

vibration damping [2]. While the lift force can be utilized to 

provide suspension for high-speed maglev trains [3].  

Electrodynamic maglev suspension systems typically rely on a 

null-flux coil guideway topology in order to maximize the lift-

to-drag ratio [4]. Another way to avoid this drag and achieve 

integrated suspension and propulsion for the vehicle at low 

cost is to rotate the magnetic source rather than translationally 

moving it above a conductive plate guideway. This 

electrodynamic wheel (EDW) concept is illustrated in Fig. 

1(a) [5]. In order to create large lift force a flux-focusing 

Halbach rotor, as shown in Fig. 1(b), is used. In this approach 

the thrust force is dependent on the slip speed, sl, defined as 

sl=ωmro-vx where ωm, ro and vx are mechanical angular 

velocity, outer radius and translational velocity respectively.  

Reitz and Davis [6] and later Langerholc [7] developed 

force and eddy current torque equations for a coil when there 

is only translational motion.  This paper presents an analytic 

based eddy current torque, power, damping and stiffness 

analysis procedure for the case when a magnetic rotor is 

rotated and translationally moved above a conductive plate.  

The equations are derived using the second order vector 

potential[8-10] approach and the magnetic rotor is modeled 

using the magnetic charge sheet concept [11].   

 

(a)  
 

(b)  

Fig. 1(a) A 2 pole-pair Halbach rotor rotating and translationally moving 

above an aluminum plate. Isoline plot of the reflected radial flux density and 

isosurface plot of the eddy current density is shown, (b) An experimental 2

pole-pair Halbach rotor with radial and shunt magnets 

 

 
(a) 

 
(b) 

Fig. 2 The (a) x-y and (b) z-y view of the problem region.  

II. GOVERNING EQUATIONS 

A schematic showing the relevant problem regions is 

shown in Fig. 2. The rotor velocity in the x, y and z directions 

as well as rotational speed, ωm, is shown. The length, l and 

width, w, of the plate are assumed to be large enough so that 

all fields are zero at the edges. The plate is assumed to have 

constant conductivity be nonmagnetic and simply connected.  

A. Conductive Region, ΩII  

Utilizing the magnetic vector potential  

                                  

B A= ∇×                        (1) 

the eddy current problems can be formulated as [8] 

                             

A
A
2

0
d

dt
µ σ∇ =                        (2) 

where σ = conductivity. Solving (2) leads to a solution 

procedure that is complicated due to the need to solve three 

scalar terms and also account for the coupling within the 

magnetic flux density components. This derivation complexity 

can be avoided by using the SOVP, W, defined as [9, 10] 

   A W ˆ ˆ[ ]a bW y y W= ∇× = ∇× + ×∇           (3)

where Wa and Wb are scalars. Only the transverse electric (TE) 

potential, Wa, is non-zero when solving eddy current problems 

in a conductive medium that is infinite in the x-z plane [9]. 

Therefore, the TE potential exists only normal to the 

conductive plate as illustrated in Fig. 3.  The formulation in 

terms of TE enables one to think of eddy current problems in 

terms of reflected and transmitted field components [12]. 

Substituting (3) into (2) yields 

  2
0

a
a

dW
W

dt
µ σ∇ =                   (4) 

Utilizing the convective derivative 

W
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 v( )a a
a

dW W
W

dt t

∂
= + ⋅ ∇
∂

 (5) 

and assuming a steady state solution such that  

 ( )( , , , ) ( , , ) mj P t
a aW x y z t W x y z e ω−=  (6) 

allows (4) to be written as 

 2
0

a a a
a m a x y z

W W W
W jP W v v v

x y z
µ σ ω
 ∂ ∂ ∂  ∇ = − + + +   ∂ ∂ ∂ 

   (7)

where P=pole-pairs. Substituting (3) into (1) yields 

      B
2 2 2 2

2 2
ˆ ˆ ˆa a a aW W W W
x y z

x y z yx z

 ∂ ∂ ∂ ∂ = − + +  ∂ ∂ ∂ ∂ ∂ ∂ 
, in ΩII           (8) 

B. Nonconductive Regions, ΩI, ΩIII 

Since the conductivity is zero the governing equation is [13] 

 2 0aW∇ = , in ΩI, ΩIII (9) 

and the relationship to B simplifies to 

 B
aW

y

 ∂  = ∇   ∂ 
 , in ΩI, ΩIII (10) 

As the magnetic scalar potential,φ , is defined as 

 B 0µ φ= − ∇  (11) 

the magnetic scalar potential is related to the SOVP by  

 
0

1 aW

y
φ

µ

∂
= −

∂
, in ΩI, ΩIII (12) 

C. Boundary Conditions 

The continuity conditions in terms of the TE potential are 

[14] 

 IIs r
a a aW W W+ = , at y = 0 (13) 

 
IIs r

a a aW W W

y y y

∂ ∂ ∂
+ =

∂ ∂ ∂
, at y = 0 (14) 

 II III
a aW W= , at y = -h (15) 
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∂ ∂
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∂ ∂
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Fig. 3 The source, reflected and 

transmitted TE potentials. 
Fig. 4. Cylindrical magnetic charge 

sheet. 

III. GENERAL SOLUTION  

Applying the separation of variables method to (7) and (9) 

and noting that the field must decay when moving away from 

the conductive surface, the solution within each region is   

 I m n mnj x jk z yr
a mn

m n

W C e e eξ κ
∞ ∞

−

=−∞ =−∞

= ∑ ∑  (17) 

     II II II[ ]mn mn m ny y j x jk zy
a mn mn

m n

W C e D e e e eβ β ξλ
∞ ∞

−

=−∞ =−∞

= +∑ ∑  (18) 

 III III ( )m n mnj x jk z y h
a mn

m n

W C e e eξ κ
∞ ∞

+

=−∞ =−∞

= ∑ ∑  (19) 

where 2 /m m lξ π=  (20) 

 2 /nk n wπ=  (21) 

 2 2 2
mn mnβ λ γ= +  (22) 

 00.5 yvλ µ σ= −  (23) 

  2 2
0mn mn osγ κ µ σ= −  (24) 

 2 2 2
mn m nkκ ξ= +  (25) 

 ( )o m m x n zs j Pw v k vξ= + +  (26)  

IV. SOURCE FIELD  

In this paper the TE potential due to a Halbach magnetic 

rotor is calculated directly from the field created by an 

equivalent fictitious magnetic charge cylinder as shown in Fig. 

4. The surface charge density on the cylinder is defined as [11]  

 ( )( , , ) 2 ( ) o mjP ts
ms o o r or t B r e θ ωρ θ −=  (27) 

where  

 
1 1 2

2 2 2 2 1
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( )

(1 )[(1 ) (1 ) ]
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s rem r i o o
r P P P

r i r o

B P r r r
B r

P r r r

µ

µ µ

+ +

+

+ −
=

+ − − +
 (28) 

is the Halbach rotor radial flux density [15].  Brem= remanent 

flux density, µ r = magnet relative permeability. The origin of 

the cylindrical charge sheet is located at (xc,yc,zc)=(0,ro+g,0). 

The scalar potential and magnetic flux density created by this 

charge cylinder at y=0 can be computed from [11] 
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where     

     r ˆ ˆ ˆ( cos ) ( sin ) ( )MA o o c o o ox r x y y r y z z zθ θ= − + − − + −  (31) 

Utilizing (12) the source field in terms of the SOVP is 

/22

0 /2

( , , , ) ( , , )
4

o

o

w

so o
a ms o o

w

r
W x y z t r t

π

ρ θ
π

−

= − ∫ ∫   

             { }             . ln ( sin )MA c o o o or y y r dz dθ θ + − −   (32) 

The integration with respect to zo is performed analytically 

whereas integration with respect to θo is accomplished 

numerically. In order to match the modes with the TE 

potentials given by (17)-(19), the source field, as given by (32)

, is expressed as the following Fourier series within ΩI 

     
2

( , , , ) m n mn mj x jk z y jP ts mn
a

m n mn

S
W x y z t e e e eξ κ ω

κ

∞ ∞
−

=−∞ =−∞

= ∑ ∑  (33)                       

where the Fourier coefficients are determined from 

 

/2 /22

/2 /2

( ,0, , ) m n

w l

j x jk zsomn
mn a

w l

S W x z t e e dxdz
lw

ξκ − −

− −

= ∫ ∫  (34) 

Substituting (17)-(19), (33) into (13)-(16) and solving yields   
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∞ ∞
−
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where the reflection function, Rmn(y), is  
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0
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0

[ ]
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mn y o

mn o mn mn

y
n
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m

v s
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µ σ κ

κ µ σ κ β β

−+
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Substituting (35) into (12) and (10), the reflected scalar 

potential and magnetic flux density are 
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
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 (38) 

V. POWER, TORQUE, STIFFNESS AND DAMPING  

Within the nonconductive regions the fields are governed by 

magnetostatic equations, therefore the complex energy, Um, 

can be computed from the magnetic charge [16, 17] 

          

/2 /2

*

/2 /2

1
( ,0, , ) ( ,0, , )

2

l w

r
m ms

l w

U x z t x z t dxdzρ φ

− −

= ∫ ∫  , at y=0 (39) 

This enables the total energy to be determined from the 

interaction of the surface magnetic charge with the reflected 

field due to the eddy currents. For computation purposes it is 

most convenient to assume that the source magnetic charge is 

located on the surface of the conductive plate. In order to 

replicate the source field below the magnetic charge sheet the 

source charge density must be twice the normal component of 

the source magnetic flux density [11] which is 

 ( ,0, , ) 2 ( ,0, , )s
ms yx z t B x z tρ = , at y=0 (40) 

From (10) and (33) one obtains 

 ( ,0, , ) 2 m n mj x jk z jP t
ms mn

m n

x z t S e e eξ ωρ

∞ ∞
−

=−∞ =−∞

= ∑ ∑  (41) 

The power is computed from the time derivative of (39) 

  
( ,0, , ) constant
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m
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x z t

U
P

t
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and the torque is then just 

                     /em em mT P ω=                                           (44) 

Using (44) the damping terms are  
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where the derivative terms are given by 
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and          coth22 2 ( )mn mmn mn n mn mnd hκ κ β βγ+ +=         (49) 

Utilizing (39) the angular stiffness constant is obtained from  
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Similarly the vertical stiffness can be computed as 

 2

0

| | Im[ (0)]em
y mn mn

m n

T lwP
k S R

y µ

∞ ∞

=−∞ =−∞

∂
= − =
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TABLE I 

EXPERIMENTAL SETUP PARAMETERS 

 Quantity Value Unit 

Magnetic 

rotor 

Outer radius, ro 26 mm 

Inner radius, ri 9.6 mm 

Width, wo 52 mm 

Remanent flux density, Brem 1.42 T 

Relative permeability, µ r 1.108 - 

Pole pairs, P 2 - 

Conductive 

plate 

Conductivity, σ 2.459×107 S/m 

Width, w 77 mm 

Outer radius 600± 0.58 mm 

Thickness, h 6.3 mm 

Sheets separation 101 mm 
 

VI. EXPERIMENTAL RESULTS  

An experimental vehicle setup with four EDWs has been 

constructed and is shown in Fig. 5-Fig. 6.  The experimental 

parameters are given in Table I. In the setup the vehicle has 

been kept translationally stationary and the conductive plate 

on the guideway wheel is rotated to simulate translational 

motion, vx. The EDWs are centered over the width of the 

conductive plate. The brushless dc motor torque and power are 

calculated using Tem=KtIa and Pem=KtIaωm respectively where 

Kt=0.0295Nm/A. The current, Ia and rotational speed, ωm, are 

measured using phase current and Hall Effect sensors. Laser 

displacement sensor is used to measure the air-gap, g. 

 
Fig. 5. Guideway wheel with an in-line gear reducer and DC braking motor. 
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Fig. 6. Vehicle setup with four laser displacement sensors to measure air-gap 
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Fig. 7. RPM, airgap and translational velocity profiles of rear right EDW 
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Fig. 8. Output power and torque comparison for rear right EDW 
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Fig. 9. (a) Torque (Nm) and (b) Dy (Ns) as function of the translational 

velocity, vx and slip speed, sl, for (vy,vz)=(0,0)m/s 

The variation in rotational speed, air-gap and translational 

speed are shown in Fig. 7. The corresponding torque and 

power both measured and computed are shown in Fig. 8. An 

excellent agreement was obtained. Equations (43)-(44) were 

calculated using 31 harmonic components. The torque, vertical 

damping and stiffness terms as a function of translational 

velocity and slip speed are shown in Fig. 9-Fig. 10.  
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Fig. 10. ky (kN) as function of translational velocity, vx and slip speed, sl, for 

(vy,vz)=(0,0) m/s 

VII. CONCLUSION 

A 3-D analytic based steady-state eddy current torque, 

damping and stiffness equations have been derived using the 

SOVP formulation. The accuracy of the developed model has 

been validated against experimental results.  
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