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In this paper the 3-D forces created by induced eddy currents in a conductive plate of finite thickness are derived using the concept of 
magnetic charge and energy.  By using this approach the exact steady-state based eddy-current damping and stiffness matrices for an 
arbitrary magnetic source moving above a conductive plate are derived.  The damping and stiffness terms caused by both angular and 
spatial motion are accounted for. The presented equations can be utilized to create a linear state-space eddy current force model. 
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I. INTRODUCTION 

N order to accurately model and control the dynamic motion 
of electromechanical devices subjected to eddy current 
forces the precise calculation of the eddy current force is 

important.  A range of authors have utilized analytic field 
based models to study conductive plate eddy current 
electromechanical dynamics.  For instance, Davis and Yoshida 
utilized field based thin-sheet approximations to study the 
eddy current force dynamics for a long wire and a thin coil  
moving above a continuously uniform conductive plate [1-2] 
and Langerholc analytically studied vertical motion for a coil 
moving above a conductive half-space [3]. Other authors have 
calculated damping equations for a limited range of 
directions [3-8].  In this paper damping is defined as the 
partial derivative of force with respect to velocity /F v¶ ¶ and 

not F/v as used by some authors [6]. For control purposes it 
would be particularly useful if the eddy current forces could 
be derived in a form that can be utilized within the linear state-
space framework [9].  In order to do this the eddy current 
forces need to be linearized and the eddy current damping and 
stiffness equations need to be determined. Ooi appears to be 
one of the only authors to derive complete damping and 
stiffness matrices for a conductive plate. However in this 
treatment approximate circuit based modeling was used [10]. 

In this paper the exact 3-D steady-state eddy current 
damping and stiffness equations are derived within the non-
conductive region and expressed in a form that can be utilized 
in a linearized state-space formulation. In many 
electromechanical devices the mechanical time constant is 
much larger than the electrical time constant and therefore the 
use of steady-state eddy current force equations with a 
dynamic mechanical model will lead to accurate 
electromechanical results [7-8]. 

II. 3-D EDDY CURRENT FIELD MODEL 

      It is well known that when modeling eddy current 
problems with conductive plates the surrounding non-
conductive regions can be modeled using a magnetic scalar 
potential, f , and the conductive regions can be modeled using 
the magnetic vector potential, A [11].  When the source field 
penetrates into the conductive plate it induces current within 
the plate, via Faraday’s law, that will result in a “reflected” 

eddy current field [3, 8, 12-13]. This reflected field then 
interacts with the source field to create force. The non-
conductive regions between the source and the conductive 
plate are then governed by the magnetostatic field equations. 
Due to the solenoidal nature of magnetic fields B 0 ⋅ = the 
forces within the magnetostatic field region cannot be stable 
[14].  However, it is well known that eddy currents induced in 
a conductive plate can indeed create stability [15-16]. This is 
possible because the eddy currents within a conductive plate 
are not governed by the magnetostatic equations.  
Nevertheless, between the plate and the source the reflected 
field must always satisfy the magnetostatic equations.  It can 
therefore be concluded that at any instant in time the forces 
created by the magnetic fields within the non-conductive 
region are unstable; however, the eddy currents if properly 
configured using the right geometric design react to the 
motion of the source in a way that stabilizes the system 
without active control.       
     If the reflected field is modeled using the magnetic scalar 

potential, rf , and the source field is modeled using a fictitious 

surface distribution of magnetic charge, msr , then the energy 

associated with the surface charge distribution interacting with 
the reflected field will be [17] 

                                    *1

2
r

m ms

S

U dSr f= ò  (1) 

The star superscript denotes complex conjugation. Only real 
part of (1) should be considered for energy calculation. As 
force within a magnetostatic region is defined as  
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F
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mU
r =
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then holding ρms constant the force in a magnetostatic region is 
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As the scalar potential and flux density are related by 

B 0
r rm f= -             (4) 

the force can be written as [18-19] 
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The external field created by a magnetic source can be 
reproduced using an equivalent fictitious magnetic charge 
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sheet [8, 20]. In this paper the charge sheet is located a 
distance g above a finite thickness conductive plate. The 
problem formulation is represented as shown in Fig. 1. It is 
assumed that the plate width, w, and length, l, is sufficiently 
large that the eddy current fields and source fields are zero at 
the plate edges.  In order to correctly model the external field 
the magnetic charge distribution on the planar sheet must 
satisfy [20] 

 ( , ) 2 ( , , )s
ms yx z B x g zr =  (6) 

where s
yB is the normal component of the source field at height 

y=g.  Substituting (6) into (5) gives the force in Maxwell stress 
tensor form: 

         F B
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It is not the typical form seen when using shear stress 
equations in that the field contributions from the source and 
the eddy currents are delineated. The reflected steady-state 
eddy current field created above the conductive plate is given 
by [8, 13] 

B ˆ ˆ ˆ( , , , ) [ ]r
mn mn m mn n
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where Rmn is the reflection coefficient 
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and              2 /m m lx p=          (10) 
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The term Smn in (8) is the source Fourier harmonic component.  
 In this paper the source field is assumed to be created by a 
Halbach rotor that is rotating at angular velocity ωm. The By 
component of the source field for a Halbach rotor can be 
accurately modeled in 3-D by [8, 20] 
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2 2 2 1/2[( cos ) ( sin ) ( ) ]c o o c o o c oR x x r y y r z z zq q= - - + - - + - -  (19) 

The Halbach rotor parameters are defined in Table 1. The 
Halbach rotor is assumed to be centered at (xc, yc, zc). The 
complex exponential term in (17) is used to model the field 

rotation of the Halbach rotor in steady-state [8, 13].  In order 
to couple the source field with the conductive plate and for 
term-by-term mode matching the source must be put into 
Fourier harmonic form. Defining the Fourier harmonic field at 
y=g as  

             ( , , , ) m n mj x jk z jP ts
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¥ ¥
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then the harmonic terms in (20) are determined from (17) by 
evaluating [8, 20] 
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Fig. 1. An x-y view of the problem region with magnetic charge sheet located 
a distance g above a conductive plate. The plate has length l and width w. 

TABLE I 
HALBACH ROTOR AND CONDUCTIVE PLATE PARAMETERS 

 Quantity Value Unit 

Magnetic 
rotor 

Outer radius, ro 26 mm 
Inner radius, ri 9.6 mm 
Width, wo 52 mm 
Residual flux density, Bres 1.42 T 
Relative permeability, µr 1.108 - 
Pole pairs, P 2 - 

Conductive 
plate 

Conductivity, σ 2.459107 S/m 
Width,  lz 150 mm 
Length, lx 250 mm 
Thickness, h 6.3 mm 
Air-gap, g 5 mm 

III. STEADY-STATE FORCE AND TORQUE 

Substituting (8) and (20) into (7) gives the 3-D eddy current 
force  

      F ˆ ˆ ˆRe s m n
mn mn

mn mnm n

j jk
wl B R x y z

x
k k

¥ ¥

=-¥ =-¥

ì üï ïé ùï ïï ïê ú= - +í ýê úï ïï ïë ûï ïî þ
å å  (22) 

where                  
2 2

0

1
mngs

mn mnB S e k

m
-=             (23) 

Equations of the same form have previously been derived [3, 
12] but in these derivations the reflection function only 
contained the vx term. The eddy current torque created by the 
rotation of the Halbach rotor is [8] 
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where m mtq w=  (25) 

IV. STEADY-STATE STIFFNESS TERMS 

The stiffness constant is defined as the negative of the change 
in force with respect to displacement [19]. Therefore positive 
values indicate stability.  The stiffness matrix for the force and 
torque components can be written as 
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From (22) it can be seen that the spatial terms are no longer 
present.  However, the stiffness can be calculated by utilizing 
the energy description given by (1).  As in electrostatics when 
taking the derivative with position either the charge density 
function or the field function is held constant [17].  For 
instance using (1) /xF y¶ ¶  will be  
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Utilizing this approach the off-diagonal terms in (26) are 
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while the diagonal terms in (26) are evaluated to be 
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By thinking of the stiffness as being derived from energy it 
can be relatively easily understood that the off-diagonal terms 
must all be symmetric [10].  From (34)-(36) it can also be 
noted that  

 0xx zz yyk k k+ + =  (38) 

Therefore, the steady-state eddy current forces are solenoidal  
                                F 0 ⋅ =  (39) 

In addition, as the stiffness matrix is diagonally symmetric 
                                F 0´ =  (40) 

V. STEADY-STATE DAMPING TERMS  

The damping coefficients are caused by the changes in the 
force and torque with respect to velocity and angular velocity. 
The damping coefficient matrix for the 3-D model is   
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From (22) and (23) it can be noted that only the reflection 
term defined by (9) depends upon velocity. Substituting (23) 
and (22) into (41) yields  
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where the 4×4 matrix [Mmn] is  

             M =[ ]

m

mn mn mn mn mn
mn

n x y z m

j

R R R R

jk v v v

jP

x
k

w

é ù-ê ú
ê ú é ù¶ ¶ ¶ ¶ê ú ê ú
ê ú ê ú- ¶ ¶ ¶ ¶ê ú ê úë ûê ú
ê úë û

 (43) 

The derivatives of the reflection coefficient with respect to the 
velocity and angular velocity are 
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where      coth2 2
02 ( )] /[ mnmn mn m mn mnna hk b bk g m s+= +  (48) 

             coth cosech2( ) / ( )mn mn mnmnb h h hb b b= -  (49) 

It can be noted that as the form of (45) is different the 
damping matrix lacks symmetry.  

VI. DISCUSSION 

In Fig. 2 the analytically calculated lift and drag force as a 
function of slip speed is compared with a finite element 
analysis (FEA) model.  The parameters shown in Table I were 
used.  The slip speed is defined as s=ωmro-vx. In Fig. 3 the 
stiffness coefficients obtained from (34)-(36) are calculated 
using the values given in Table I. It can be noted that the 
stiffness coefficients kyy is positive for increases in velocity, 
indicating stability, however kxx and kzz stiffness constants are 
both negative indicating instability along both the x and z axis.  
Further results are provided in [13].  The diagonal damping 
terms are shown in [13] to be all positive while off-diagonal 
damping term can lead to negative damping.  For instance, the 
damping variation for Dyx and Dxy are shown in Fig. 4. For 
positive slip values Dxy provides negative damping while Dyx 
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has positive damping. This confirms that the cross coupling 
terms can create instability.  
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Fig. 2. Thrust/drag and lift force comparison between the 
presented analytic model and FEA models [13, 21] for 
(vx,vy,vz) = (15, 0,0) ms-1.  
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Fig. 3 The electrodynamic stiffness coefficients as a function of translational 
velocity for (ωe, vy, vz)= (0,0,0). 
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Fig. 4 (a) Damping coefficient Dxy  and (b) damping coefficient Dyx  all as a 
function of slip and translational velocity when (vy ,vz)=(0,0)ms-1. 

VII. CONCLUSION 

This paper presented the stiffness and damping equations in a 
form that enables the 3-D eddy current forces to be expressed 
in a linearized form. The presentation has been written in a 
general way in which different magnetic sources can be 
utilized.  The approach presented here could be used to derive 
3-D steady-state eddy current damping and stiffness matrices 
for other conducting plate geometries. 
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