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In this paper the 3-D forces created by induced eddy currents in a conductive plate of finite thickness are derived using the concept of
magnetic charge and energy. By using this approach the exact steady-state based eddy-current damping and stiffness matrices for an
arbitrary magnetic source moving above a conductive plate are derived. The damping and stiffness terms caused by both angular and
spatial motion are accounted for. The presented equations can be utilized to create a linear state-space eddy current force model.
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I. INTRODUCTION

N order to accurately model and control the dynamic motion

of electromechanical devices subjected to eddy current

forces the precise calculation of the eddy current force is
important. A range of authors have utilized analytic field
based models to study conductive plate eddy current
electromechanical dynamics. For instance, Davis and Yoshida
utilized field based thin-sheet approximations to study the
eddy current force dynamics for a long wire and a thin coil
moving above a continuously uniform conductive plate [1-2]
and Langerholc analytically studied vertical motion for a coil
moving above a conductive half-space [3]. Other authors have
calculated damping equations for a limited range of
directions [3-8]. In this paper damping is defined as the
partial derivative of force with respect to velocity 9F / dv and

not F/v as used by some authors [6]. For control purposes it
would be particularly useful if the eddy current forces could
be derived in a form that can be utilized within the linear state-
space framework [9]. In order to do this the eddy current
forces need to be linearized and the eddy current damping and
stiffness equations need to be determined. Ooi appears to be
one of the only authors to derive complete damping and
stiffness matrices for a conductive plate. However in this
treatment approximate circuit based modeling was used [10].

In this paper the exact 3-D steady-state eddy current
damping and stiffness equations are derived within the non-
conductive region and expressed in a form that can be utilized
in a linearized state-space formulation. In many
electromechanical devices the mechanical time constant is
much larger than the electrical time constant and therefore the
use of steady-state eddy current force equations with a
dynamic mechanical model will lead to accurate
electromechanical results [7-8].

II. 3-D EDDY CURRENT FIELD MODEL

It is well known that when modeling eddy -current
problems with conductive plates the surrounding non-
conductive regions can be modeled using a magnetic scalar
potential, ¢, and the conductive regions can be modeled using
the magnetic vector potential, A [11]. When the source field
penetrates into the conductive plate it induces current within
the plate, via Faraday’s law, that will result in a “reflected”

eddy current field [3, 8, 12-13]. This reflected field then
interacts with the source field to create force. The non-
conductive regions between the source and the conductive
plate are then governed by the magnetostatic field equations.
Due to the solenoidal nature of magnetic fields V- B = 0the
forces within the magnetostatic field region cannot be stable
[14]. However, it is well known that eddy currents induced in
a conductive plate can indeed create stability [15-16]. This is
possible because the eddy currents within a conductive plate
are not governed by the magnetostatic equations.
Nevertheless, between the plate and the source the reflected
field must always satisfy the magnetostatic equations. It can
therefore be concluded that at any instant in time the forces
created by the magnetic fields within the non-conductive
region are unstable; however, the eddy currents if properly
configured using the right geometric design react to the
motion of the source in a way that stabilizes the system
without active control.

If the reflected field is modeled using the magnetic scalar

potential, ¢", and the source field is modeled using a fictitious

surface distribution of magnetic charge, p, ., then the energy

associated with the surface charge distribution interacting with
the reflected field will be [17]
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The star superscript denotes complex conjugation. Only real
part of (1) should be considered for energy calculation. As
force within a magnetostatic region is defined as

F= _VUm P, =cOnstant (2)
then holding p,.s constant the force in a magnetostatic region is
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As the scalar potential and flux density are related by
B" = —1,Vo" “
the force can be written as [18-19]
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The external field created by a magnetic source can be
reproduced using an equivalent fictitious magnetic charge
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sheet [8, 20]. In this paper the charge sheet is located a
distance g above a finite thickness conductive plate. The
problem formulation is represented as shown in Fig. 1. It is
assumed that the plate width, w, and length, /, is sufficiently
large that the eddy current fields and source fields are zero at
the plate edges. In order to correctly model the external field
the magnetic charge distribution on the planar sheet must
satisfy [20]

Pns(7,2) = 2B (2, 9,2) (6)
where B is the normal component of the source field at height

y=g. Substituting (6) into (5) gives the force in Maxwell stress
tensor form:
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It is not the typical form seen when using shear stress
equations in that the field contributions from the source and
the eddy currents are delineated. The reflected steady-state
eddy current field created above the conductive plate is given
by [8, 13]
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where R, is the reflection coefficient
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The term S, in (8) is the source Fourier harmonic component.

In this paper the source field is assumed to be created by a
Halbach rotor that is rotating at angular velocity w,. The B,
component of the source field for a Halbach rotor can be
accurately modeled in 3-D by [8, 20]
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The Halbach rotor parameters are defined in Table 1. The
Halbach rotor is assumed to be centered at (x., V., zc). The
complex exponential term in (17) is used to model the field

rotation of the Halbach rotor in steady-state [8, 13]. In order
to couple the source field with the conductive plate and for
term-by-term mode matching the source must be put into
Fourier harmonic form. Defining the Fourier harmonic field at
y=gas
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then the harmonic terms in (20) are determined from (17) by
evaluating [8, 20]
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Fig. 1. An x-y view of the problem region with magnetic charge sheet located
a distance g above a conductive plate. The plate has length / and width w.

TABLE I
HALBACH ROTOR AND CONDUCTIVE PLATE PARAMETERS
Quantity Value Unit
Outer radius, r, 26 mm
Inner radius, 7; 9.6 mm
Magnetic Width, w, 52 mm
rotor Residual flux density, B 1.42 T
Relative permeability, u, 1.108 -
Pole pairs, P 2 -
Conductivity, o 2.459x107 S/m
Conductive Width, L 150 mm
plate Length, /. 250 mm
Thickness, A 6.3 mm
Air-gap, g 5 mm

III. STEADY-STATE FORCE AND TORQUE

Substituting (8) and (20) into (7) gives the 3-D eddy current
force
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Equations of the same form have previously been derived [3,
12] but in these derivations the reflection function only
contained the v, term. The eddy current torque created by the
rotation of the Halbach rotor is [8]
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IV. STEADY-STATE STIFFNESS TERMS

The stiffness constant is defined as the negative of the change
in force with respect to displacement [19]. Therefore positive
values indicate stability. The stiffness matrix for the force and
torque components can be written as
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From (22) it can be seen that the spatial terms are no longer
present. However, the stiffness can be calculated by utilizing
the energy description given by (1). As in electrostatics when
taking the derivative with position either the charge density
function or the field function is held constant [17]. For

instance using (1) 9F,/ 0y will be
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Utilizing this approach the off-diagonal terms in (26) are
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By thinking of the stiffness as being derived from energy it
can be relatively easily understood that the off-diagonal terms
must all be symmetric [10]. From (34)-(36) it can also be
noted that

k, +Fk, +k (38)
Therefore, the steady-state eddy current forces are solenoidal
V-F=0 39)
In addition, as the stiffness matrix is diagonally symmetric
VxF =0
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(40)

V. STEADY-STATE DAMPING TERMS

The damping coefficients are caused by the changes in the
force and torque with respect to velocity and angular velocity.
The damping coefficient matrix for the 3-D model is

OF, 0OF, O0F, OF,
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From (22) and (23) it can be noted that only the reflection
term defined by (9) depends upon velocity. Substituting (23)
and (22) into (41) yields
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where the 4x4 matrix [M,,,,,] is
—J&n
l{’"m 8Rmn 8Rmn 8Rmn 8Rmn
[ mn }_ (43)
v, 8% ov, Ow,,
jP

The derivatives of the reflection coefficient with respect to the
velocity and angular velocity are
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It can be noted that as the form of (45) is different the
damping matrix lacks symmetry.

VI. DISCUSSION

In Fig. 2 the analytically calculated lift and drag force as a
function of slip speed is compared with a finite element
analysis (FEA) model. The parameters shown in Table I were
used. The slip speed is defined as s=@mro-vx. In Fig. 3 the
stiffness coefficients obtained from (34)-(36) are calculated
using the values given in Table I. It can be noted that the
stiffness coefficients k,, is positive for increases in velocity,
indicating stability, however k. and k. stiffness constants are
both negative indicating instability along both the x and z axis.
Further results are provided in [13]. The diagonal damping
terms are shown in [13] to be all positive while off-diagonal
damping term can lead to negative damping. For instance, the
damping variation for D, and Dy, are shown in Fig. 4. For
positive slip values Dy, provides negative damping while D,
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has positive damping. This confirms that the cross coupling
terms can create instability.
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This paper presented the stiffness and damping equations in a
form that enables the 3-D eddy current forces to be expressed
in a linearized form. The presentation has been written in a
general way in which different magnetic sources can be
utilized. The approach presented here could be used to derive
3-D steady-state eddy current damping and stiffness matrices
for other conducting plate geometries.



