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Abstract

This paper investigates the performance capabilities of a
continuously variable magnetic gearbox that utilizes a flux
focusing rotor structure. A fractional slot stator winding is
designed to couple to the outer rotor of an existing magnetic
gearbox in order to enable the magnetic gearbox to operate
with a variable gear ratio.

1. Introduction

A coaxial magnetic gear (MG) enables speed amplification
without mechanical contact. MGs do not require gear
lubrication, they have inherent overload protection and they
have the potential for quiet operation and high conversion
efficiency [1-4]. The flux-focusing coaxial MG, as shown in
Figure 1 , consists of an inner rotor with p; pole-pairs, an
outer rotor with p. pole-pairs and a central rotor made of n;
ferromagnetic segments. The governing equation for a coaxial
MG is [1]

©,p), = MO — PO, (1)
where ®; = high-speed angular velocity (on rotor 1), @;=
low-speed angular velocity (on rotor 2) and ®. is often
stationary (o.~0 on rotor 3). Shah [5] demonstrated that if the
input speed varies the output speed can be made constant
using a separate external motor to drive the outer rotor. This
results in a continuously variable magnetic gear (CVMGQG)
with a gear ratio given by:
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when o, = 0, G, = nj/ps, which is the nominal gear ratio. Jian
demonstrated that the same type of CVMG can be created
using an outer control rotor stator [6]. Using finite element
analysis (FEA), Jian simulated the performance of a 2.6:1
nominal gear ratio CVMG that used a dual Halbach rotor
structure. The calculated torque and torque density were
reported to be 816Nm and 136.6Nm/L respectively, but there
were no experimental results to validate the calculations.

Atallah designed and tested an experimental CVMG with a
1.23:1 nominal gear ratio using a stator that interacted with an
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outer control rotor [7, 8]. Using FEA, Atallah calculated a
torque density of 37.8Nm/L, while the measured torque
density of the experimental CVMG was 26.4Nnv/L [8].

Zaini [9] and Padmanathan [10] demonstrated that a CVMG
could also be created by replacing the outer rotor with a
stator. However, as the stator provides a significant portion
of the magnetizing flux the torque density is inherently low
[11, 12], with Zaini reporting a torque density of 13.2 Nm/L.
The use of the stator to magnetize the MG also significantly
lowers the power factor and creates a large torque ripple [11].

In this paper a 4.25:1 nominal gear ratio CVMG with a flux
focusing control rotor is investigated. The design is shown in
Figure 2. Unlike other proposed topologies [6-8] the outer
MG rotor, called the control rotor in this paper, shares the
magnetic flux with both the stator and the inner MG rotors.
As the stator interacts with the outer rotor, rather than the
inner rotor, as in [7, 8] the stator torque production is more
directly connected. However the disadvantage of this
approach is that the required stator torque will be higher than
what is needed to interact with the higher speed inner rotor.

If a CVMG can be shown to operate at high torque, relative to
both the overall size and the weight of the magnets used, then
it could have significant practical potential, particularly for
hybrid electric vehicles [6, 8] as well as wind [8, 9] and
marine hydrokinetic power generation [13]

Rotor 1: p,
pole-pairs

Rotor 2: n;
ferromagnetic
segments

Rotor 3: p.
pole-pairs

Figure 1 A coaxial magnetic gear using a flux focusing rotor
topology with p;=4 pole-pairs on the inner high-speed rotor,
n; =17 steel poles on the low-speed rotor and p.~13 pole-pairs
on the outer rotor [4].
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Rotor 1: p,
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pole-pairs
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Stator: p.
pole-pairs

Figure 2: A flux focusing continuously variable magnetic gear
with p,=8 pole-pairs on the inner high-speed rotor, n; =34 steel
modulation poles on the low-speed rotor and p.=26 pole-pairs
on the outer control rotor. Arrows indicate magnetization
direction.

2. Continuously Variable Magnetic Gear

The dominant radial field component created by the high-
speed rotor (rotor 1) can be approximated by assuming that it
is given by:

B(r,0,t) = b"(r)sin[p, (0 — w,t) + 2,0, ] 3)
where 0 is the initial mechanical angular position of rotor 1.

The ferromagnetic poles on rotor 2 create a radial modulating
pattern with a dominant harmonic given as:

Tl (r,0,)=X\.(r)sin[n,(0—wt)+n,0, | 4)
where 6, is the initial mechanical angular position of rotor 2.
The high-speed rotor’s field modulated by rotor 2 gives a
field in the outer rotor air-gap (at r=r.) of:
B(r,,0,t) = T(r,,0,)B!(1,,0,1) )
Substituting (3) and (4) into (5) and then wusing a
trigonometric identity one obtains:

. . MW=y
B (r,0,t) = B;| cos|(n—p, ) (0————1)+n,6, —p,0, ]
)
W+ Py,
—cos[(m;+p, ) (0 ——————1) +m,6, +p,6,]| (6)
D,
where B = b"(r)A(r) /2.
Assuming linearity, the torque in the control rotor’s im
gap is [14]:
2dr? .
T === [ Bi(r,0,t)B;(r.,0,t)d0 \
Ho =
where:
By(r,,0,t) = by(r,)sin[p, (0 — w.t) + p,6, ] ®)

is the dominant component of the radial flux density created
by the outer (control) rotor and d is the axial length of the

CVMG. The integration of the two field functions in (7) will
result in a non-zero torque only when

P =1 Ep,. 9

The CVMG under study in this paper has
©h, Pe, 1) = (8, 26, 34). Therefore

Pe =M =Py (10)

and so the first term in (6) applies. Given (10), for non-zero
steady-state torque one must also have [15]:

nw, — p,w
w, = T T (11
L
with (11) the steady-state torque from (7) becomes:
T, =T sin(p,0,+ p6, —nb,) (12)
2dr?
where T, = =< b (1, (1, )\ (7 (13)
Ho

is the peak torque. Substituting (10) into (11) yields (1).
With (ps, pe, n1) = (8, 26, 34) the speed relationship in (1) is:

w, = 4.25w, — 3.25w, (14)

As the stator electrical frequency, w., and mechanical angular
velocity, w., are related by:

wc:we/pc

15)
then (14) becomes:

w, = 4.25w, — 0.125w, . (16)

Figure 3 shows geometric parameter definitions Table 1 gives
the geometric parameter values, while Figure 4 shows the
inner magnetic gear (MG) assembly and Figure 5 shows the
assembled MG. In this paper only the stator design is being
considered. The purpose of this paper is to present a stator
design that can fit over a MG to enable the MG to act as a
CVMG. Unlike in [16] the outer rotor, called a control rotor
in this paper, is allowed to rotate and therefore will interact
with both the stator winding and low speed rotor. The control

rotor n. =26 pole-pairs and therefore a fractional slot
statc 71 with 4/13 slots-per-pole-per-phase, has
bee ~able a large number of poles to be
ac ‘~tive diameter (0.226m).

Figure 3: Definition of the geometric parameters



Description . Value  |Unit only exist during acceleration or deceleration. Therefore at
Pole pairs. p 8 - steady-state the torque must satisfy
Inner radius, r; 28 mm
Inner rotor - T,+T,+T, =0 17
(high speed) Outer radius, 7, 90 mm o s
£ Magnet thickness, #; 9.5 mm where Tj=high-speed rotor torque, 7/=low-speed rotor torque
Airgap, g 0.5 mm and Ty=stator torque.
Steel poles, 1, 34 -
(Clzvgfs“’égg) Cage bar radial thickness, I, 5 mm 3. Stator Harmonic Analvsis
P Pole span, 6, 180/p;  |degrees * y
Pole pairs, p. 26 - . . .-
Innerpr;;?uz ., %6 p— The har.momgs created by the.fractlonal slot stator winding
Control rotor [Outer radius, 7 113 mm can be investigated by computing the harmonic components.
Magnet thickness, #; 7 mm Considering the winding function [18] pattern for fractional
Airgap, g 0.5 mm slot phase-A winding as shown in Figure 6 the corresponding
Number of slots 48 - winding function for phase-A can be sketched as shown in
Tooth width, 7 8 mm . . . . .
- Figure 7. The Fourier series that reproduces Figure 7 is then:
Outer radius, 7,4 145 mm
Stator - - o
slot inner radius i 113.5 mm .
slot outer radius, 7., 135 mm n(0) = Z by, sin(k0) (18)
'Winding fill factor 60 % k=1
Material INdFeB magnet, N40H, B, 1.25T T where
Stator lamination steel (JFE, 35JN270) | - - N on 117 137 157
Active region stack length, d 75 mm b, = —[cos(k=—) — cos(k—) + cos(k—) — cos(k—)
7k 24 24 24 24

Table 1: Geometric and Material Parameters

357 33w 397 37w
+cos(k—) — cos(k——) + cos(k—) — cos(k——) (19
(:225) — coslk )+ coslk ) — cos(k 2 (19)

t trol rotor -
Outer control rofor emp. A plot of the winding fun~’ '8) for phase-A and the

resulting 3-phase windin~ hown in Figure 8.
High speed
inner rotor ==

107mm

€—Low speed cage rotor

Figure 4: Exploded view of the magnetic gear mechanic
assembly [16]

Figure 6: 48 slot stator with phase-A concentrated winding
layout shown. The first 24 slot numbers are shown.

337 357 377 397

T 48 48 48 48
Figure 5: Fully assembled inner magnetic gear with outer | ____ 1L
control rotor shown [16] 5 6.7 8

12 3 4 9 10 11 12 13 14 15 16 17 18 19 20 21 Slot
: . T R R 11y T number
The control rotor speed, w., is a function of the input speed, Ll _____ -

w;, and the desired output speed, w;. When the speeds are 97 11z 13z 157

48 48
constant the net torque on the control rotor, 7., must be zero. Fi 7 Wi 218 8 f48 . ih dine slot b
The torque applied by the stator must be balanced by the lgure /: Winding function with corresponding slot number

torque from the MG cage rotor. A non-zero net torque can and angular position shown.
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Figure 8: (a) Winding function Fourier series representation
of phase A and (b) winding function for all three phases.
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Figure 9: Overlay of analytic winding function values with
the calculated magnetic flux density values [T]. The analytic
values were normalized.

The harmonics created by the winding function should follow
that created by the air-gap field [18]. Figure 9 compares the
winding function with the radial field components computed
using JMAG finite element analysis (FEA) software. FEA
field values were calculated by changing the control rotor
magnets to steel. This prevented any external MG harmonics
from being created. Figure 9 shows that the field magnitudes
are different, however the simple winding function analysis
technique accurately determines the field profile. A
comparison of the harmonic components calculated from the
FEA and analytic model is given in Figure 10. Figure 10
confirms that the analytic model accurately predicts the
presences of the relevant spatial components. A 26 harmonic
component is indeed created and this is the major torque
producing component.

Using the geometric and material values shown in Table 1
and electrical and mechanical values shown in Table 2 a set
of magnetostatic simulations were used to calculate the torque
under peak load. It was determined that the control rotor
torque will go to zero when a stator current density of
J=17 A/mm? is used. A transient and magnetostatic
simulation was used to confirm these results and the torque

values are shown in Table 3. The transient results show
significant torque ripple. This torque ripple is not seen in
simulations without stator excitation [16], which points to the
stator flux harmonics as the cause.
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Figure 10: (a) Radial harmonic flux density calculated using
FEA and (b) winding function harmonic components. The
winding function analysis accuracy predicts the relevant

harmonics.
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Figure 11: Transient torque analysis when the control rotor

torque is made zero

Description Value Unit
Current amplitude, J 17 A/mm?
Current frequency, f. 5.2 Hz
Initial electrical angle, 8, 25.3 degrees
High speed rotor speed, wh 73 rpm
Cage rotor speed, o, 8 rpm
Control rotor speed, o, -12 rpm

Table 2: Transient simulation conditions that gives zero

control rotor torque.

Static Transient (Av; Ripple
Component [Nm] [Nm]( g) [I\[I) g] ]
High speed rotor 166.3 160.5 214
Low speed (cage) rotor | -683.9 -682.1 22.2
Control rotor -2.0 -0.37 57.0
Stator 521.2 525.2 33.4

Table 3: Magnetostatic and transient torque calculations



4. Stator Design

As a current density of J = 17A/mm? would be too high for
continuous operation, when air-cooled, a parameter study was
conducted in order to maximize the stator torque capability.
The stator tooth width, t, and coil outer radius, 7., were both
varied while keeping the current density constant at J = 8§
A/mm?.  The resulting stator and control rotor torques are
shown in Figure 12. Figure 12(a) shows that the stator torque
is maximum at 7=9.5mm. Further increases in tooth width
lead to a reduction in torque. This is likely caused by flux
leakage between the control rotor permanent magnets through
the ends of the wider stator teeth. Further increases in the
stator slot outer radius had only an incremental effect on
torque, due to saturation. Figure 12(b) shows that the control
rotor torque will not reduce to zero when using a J = 8 A/mm?
current density. At 7., = 180 mm the control rotor torque is
still at 7, = 28.8 Nm. There is little improvement obtained by
increasing 7., further. This analysis shows that this final
stator design will be too large to be constructed and will not
be able to meet the peak torque operating condition of the
MG (since T # 0).
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Figure 12: (a) Stator torque and (b) control rotor torque as a
function of stator tooth width, 1, and stator slot outer

radius, #yy.

Until this point, the effective stack length of the three rotors
and the stator were all assumed to be d = 75 mm. However in
order to mechanically embed the inner rotors the outer control
rotor axial length was mechanically made longer and
therefore the active region of the outer rotor can
accommodate additional magnets thereby enabling the outer
rotor to have an axial active length of dy = 107mm (refer
Figure 4). As the inner rotor only has a 75mm axial active
region not all of the inner rotor magnets will therefore interact
with the outer control rotor magnets. If the outer stator is
now designed to have a 107mm axial length it will enable a
higher torque to be attained on the control rotor without
significantly increasing the mechanical size of the CVMG.

The performance when using a d=75mm axial inner rotor
length and a d; = 107mm control rotor and stator axial length
was investigated by using a 2-D simulation in which the axial
length of the MG was set to 107mm and then the relative
phase angle of the cage rotor torque was adjusted to reduce
the MG torque down to 70% of peak value (75/107=0.7). An
earlier trial had showed that increasing the magnets in one
rotor alone had little effect on the maximum torque produced
by the MG. Using this approach the torque analysis values
shown in Table 4 were obtained when using a current density
of J = 5 A/mm?. The cage rotor torque is computed to be
677Nm and the control rotor torque is close to zero. This
indicates that this design approach can lead to a higher torque
operation at lower current density.

Component Torque [Nm] Torque ripple [Nm]
Low speed cage rotor -677.1 28.7
Control rotor -18.6 66.0
High speed rotor 158.9 29.0
Stator 539.5 35.7

Table 4: Torque and torque ripple values for d; = 107mm
axial stator length and J =5A/mm? current density.
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Figure 13: Calculated transient torque for a stator stack length
of d=107mm and (Fou, 70¢) = (165, 175) mm and J =5A/mm?>.



Figure 14: 2-D FEA model of the continuously variable
magnetic gearbox with (7o, 7o4) = (165, 175) mm

5. Conclusions

The initial design analysis of a flux focusing CVMG has been
presented. The design differs from previous CVMG designs
in that the outer rotor of the MG is used to both couple with
the stator and the low-speed MG rotor. However, using this
approach creates a number of challenges. In particular, the
harmonics created by the stator must be carefully assessed in
order to ensure that they do not create large torque ripples in
the MG. Furthermore, by controlling the outer rotor of the
MG the stator torque requirements are more challenging. In
order to meet the MG torque requirements the active region
axial length of the outer rotor of the MG and stator had to be
increased.
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