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Abstract

In this paper, the problem of proactive deployment of cache-enabled unmanned aerial vehicles

(UAVs) for optimizing the quality-of-experience (QoE) of wireless devices in a cloud radio access

network (CRAN) is studied. In the considered model, the network can leverage human-centric infor-

mation such as users’ visited locations, requested contents, gender, job, and device type to predict the

content request distribution and mobility pattern of each user. Then, given these behavior predictions,

the proposed approach seeks to find the user-UAV associations, the optimal UAVs’ locations, and the

contents to cache at UAVs. This problem is formulated as an optimization problem whose goal is

to maximize the users’ QoE while minimizing the transmit power used by the UAVs. To solve this

problem, a novel algorithm based on the machine learning framework of conceptor-based echo state

networks (ESNs) is proposed. Using ESNs, the network can effectively predict each user’s content

request distribution and its mobility pattern when limited information on the states of users and the

network is available. Based on the predictions of the users’ content request distribution and their mobility

patterns, we derive the optimal user-UAV association, optimal locations of the UAVs as well as the

content to cache at UAVs. Simulation results using real pedestrian mobility patterns from BUPT and

actual content transmission data from Youku show that the proposed algorithm can yield 40% and 61%

gains, respectively, in terms of the average transmit power and the percentage of the users with satisfied

QoE compared to a benchmark algorithm without caching and a benchmark solution without UAVs.
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I. INTRODUCTION

The next-generation of cellular systems is expected to be largely user centric and, as such, it

must be cognizant of human-related information such as users’ behavior, mobility patterns, and

quality-of-experience (QoE) expectations [1]. One promising approach to introduce such wireless

network designs with human-in-the-loop is through the use of cloud radio access networks

(CRANs) [2]. In CRANs, a central cloud processor can parse through the massive users’ data to

learn the users’ information such as content request distribution and mobility patterns and, then,

determine how to manage resources in the network. However, an effective exploration of human-

in-the-loop features in a CRAN faces many challenges that range from effective predictions to

user behavior tracking, effective caching, and optimized resource management.

Some recent works such as in [3]–[13] have studied a number of ideas related to CRANs

with human-in-the-loop. In [3] and [4], a new approach is proposed for predicting the users’

mobility patterns using a deep learning algorithm and a semi-Markov process. The authors

in [5] proposes a new type of user-initiated network for cellular users to trade data plans by

leveraging personal hotspots with users’ smartphones. The work in [6] investigated the probability

of predicting users’ mobility patterns. Nevertheless, the mobility prediction works in [3]–[6]

focused only on the prediction phase and did not study how the users’ mobility patterns can

be used to optimize the wireless performance using user-centric caching and resource allocation

techniques. The authors in [7] developed a data extraction method using the Hadoop platform

to predict content popularity. The work in [8] proposed a fast threshold spread model to predict

the future access patterns of multimedia content based on social information. In [9], the authors

exploited the instantaneous demands of wireless users to estimate the content popularity and

devise an optimal random caching strategy. The authors in [10] proposed an echo state network

to predict the users’ content request distribution and mobility patterns in CRANs. The work in

[11] proposed a caching-based milimiter wave (mmWave) framework, which pre-caches video

contents at the base stations for handover users to reduce the connection delay. In [12] and [13],

the authors proposed a novel resource allocation approach based on the social context of wireless

users. However, most of these existing caching works [7]–[13] were typically restricted to static

networks without mobility and ultra dense users. Note that, in these contributions [7]–[13], the

cache content is stored at the terrestrial static base stations. However, the cache content at a
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static base station cannot be effectively used to serve the mobile users as they move outside

the coverage range of the base station. In addition, while a mobile user moves to a new cell,

its requested content may not be available at the new base station and, consequently, the users

cannot be serviced properly. In such case, to serve the mobile user, one content needs to cached

at multiple base stations which will not be efficient. Therefore, there is a need to track the users’

mobility patterns so as to improve the caching efficiency. To this end, unmanned aerial vehicles

(UAVs) can be used as flying base stations to dynamically cache the popular contents, track the

mobility pattern of the corresponding users and, then, effectively serve them. In this case, due to

the high altitude and flexible deployment of the UAVs, they can establish reliable communication

links to the users by mitigating the blockage effect.

The use of UAVs for enhancing wireless communications in cellular and ad hoc networks was

studied in [14]–[20]. However, this existing literature [14]–[20] was focused on performance

analysis and did not consider prediction of user-centric patterns such as mobility nor does it

study the use of UAVs for caching purposes. The prediction of the users’ mobility patterns can

enable the UAVs to effectively move and provide service for the ground users. Moreover, when

UAVs are considered within a CRAN system, the network must take into account the fact that

the fronthaul links that connect the UAVs to the cloud will be capacity-limited. This is due to the

fact that the bandwidth of the UAVs fronthaul links is limited. To overcome this limited-fronthaul

capacity challenge, one can use content caching techniques to proactively download and cache

content at the UAVs during off peak hours or when the UAVs are back at their docking stations.

The use of caching enables the UAVs directly transmit the content to its requested user, thus

reducing the fronthaul traffic load.

The main contribution of this paper is to develop a novel framework that leverages user-centric

information, such as content request distribution and mobility patterns, to effectively deploy

cache-enabled UAVs while maximizing the users’ QoE using a minimum total transmit power

of the UAVs. The adopted QoE metric captures human-in-the-loop features such as transmission

delay and the users’ perceptions on the rate requirement, depending on their device type. In

the proposed framework, the cloud can accurately predict the content request distribution and

mobility patterns of each user. These predictions of user’s behavior can then be used to find

the optimal locations and content caching strategies for the UAVs. Unlike previous studies such

as [7]–[11] that predict the users’ behavior using only one non-linear system, we propose a
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conceptor-based echo state network (ESN) approach to perform users’ behavior prediction. Such

an ESN model with conceptors enables the cloud to separate the users’ behaviors into different

patterns and learn these patterns independently, thus leading to a significant improvement in the

accuracy of predictions. Moreover, unlike previous studies such as [14]–[20] that consider the

deployment of the UAVs assuming static users, we study the deployment of cache-enabled UAVs

in CRANs with mobile users. In the proposed CRANs model, we derive the optimal user-UAV

association, the optimal locations of the UAVs as well as the content to cache at the UAVs. To our

best knowledge, this work is the first to analyze the use of caching at the level of UAVs, given ESN-

based predictions on the users’ behavior. To evaluate the performance of the proposed approach,

we use real data from Youku for content requests as well as realistic measured mobility data from

the Beijing University of Posts and Telecommunications for mobility simulations. Simulation

results show that the proposed algorithm can yield 40% gain in terms of the average transmit

power of the UAVs compared to a baseline algorithm without cache. Moreover, the proposed

algorithm can also yield 61% gain in terms of the percentage of the users with satisfied QoE

compared to a benchmark scenario without UAVs.

The rest of this paper is organized as follows. The system model and problem formulation are

presented in Section II. The conceptor ESN for content request distribution and mobility patterns

predictions is proposed in Section III. The proposed approach for user-UAV association, content

caching, and optimal location of each UAV is presented in Section IV. In Section V, we provide

numerical and simulation results. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a CRAN system servicing a set U of U mobile users via a set R

of R remote radio heads (RRHs) acting as distributed antennas. The RRHs are grouped into E

clusters using K-mean clustering approach [21] so that zero-forcing beamforming (ZFBF) [22]

can be used to service the users. In this system, a set K of K UAVs equipped with cache storage

units can be deployed to act as flying cache-enabled RRHs to serve the ground users along with

the terrestrial RRHs. For the UAV-to-users communication links, since the high altitude of the

UAVs can significantly reduce the blocking effect due to obstacles, we consider air-to-ground

UAV transmissions using the millimeter wave (mmWave) frequency spectrum. Meanwhile, the

terrestrial RRHs transmit over the cellular band and are connected to the cloud’s pool of the
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Fig. 1. A CRAN with cache-enabled UAVs.

baseband units (BBUs) via capacity-constrained, digital subscriber line (DSL) fronthaul links.

Further, the cloud connects to the content servers via fiber backhaul links. The transmissions

from the cloud to the UAVs occurs over wireless fronthaul links using the licensed cellular band.

Consequently, the UAVs’ wireless fronthaul links may interfere with the transmission links from

the RRHs to the users when the user’s requested content needs to be transmitted from the content

server.

In our model, the content server stores a set N of all N contents required by all users. The

contents are of equal size L. Caching at the UAVs, referred to as “UAV cache” hereinafter, will

be used to store the popular content that the users request. By caching predicted content, the

transmission delay from the content server to the UAVs can be significantly reduced as each

UAV can directly transmit its stored content to the users. Different from caching at the RRHs or

BBUs, caching at UAVs allows servicing mobile users when their QoE requirement cannot be

satisfied by the RRHs. We denote the set of C cached contents in the storage units of UAV k

by Ck, where C ≤ N and k ∈ K. For simplicity, we assume that each user can request at most

one content during each specified time slot τ . We also let Δτ be the duration of time slot τ that

also represents the maximum transmission duration of each content. The maximum transmission

duration Δτ is determined by the proposed algorithm in Section IV. We assume that the content

stored at the UAV cache will be refreshed every period that consists of T time slots and this

UAVs caching is performed at off peak hours when the UAVs return to their cloud-based docking

stations for purposes such as battery charge. Table I provides a summary of the notations used
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TABLE I
LIST OF NOTATIONS

Notation Description Notation Description
U Number of users C Number of the contents that are stored at UAV cache
K Number of UAVs F Number of intervals in each time slot
R Number of RRHs H Number of time slots to collect user mobility
PR Transmit power of RRHs Pt,ki Transmitted power of UAV or RRH
N Number of contents τ , ∆τ Time slot index, Time slot duration
lt,ki Path loss of UAVs-users dt,ki Distance between RRHs or UAVs and users

xτ,k, yτ,k, hτ,k Coordinates of UAVs δSi,n Rate requirement of device type
LFS Free space path loss d0 Free-space reference distance
fc Carrier frequency lFt,ki Path loss of fronthaul links

µLoS, µNLoS Path loss exponents χσLoS , χσNLoS Shadowing random variable
γV
t,ki, γ

H
t,ki SINR of user i LLoS

t,k , LNLoS
t,k LoS/NLoS path loss from the BBUs to UAV k

t Small interval lLoS
t,k , lNLoS

t,k LoS/NLoS path loss from the to UAV k to users
c Speed of light ht,ki Channel gains between the RRHs k and user i

D̄τ,i,n Delay CFτ,ki Fronthaul rate of UAV or RRH k

CV
τ,ki Rate of UAV-user link CH

τ,qi Rate of RRH-user link
Qτ,i,n QoE of each user i T Number of time slots for caching update
xt,i, yt,i Coordinates of users PB Transmit power of the BBUs

throughout this paper.

A. Mobility Model

In our system, we assume that the users can move continuously. In this case, we consider

a realistic model for periodic, daily, and pedestrian mobility patterns according to which each

user will regularly visit a certain location of interest. For example, certain users will often go

to the same office for work at the same time during weekdays. The locations of each user are

collected by the BBUs once every H time slots. Here, the duration of H time slots is considered

a period of one hour for each user. In addition, we assume that each user moves between two

collected locations at a constant speed. The mobility pattern for each user will then be used to

determine the content that must be cached as well as the optimal location of each UAV which

will naturally impact the QoE of each user.

In this model, the associations of the mobile users with the UAVs or the RRHs can change

depending on the QoE requirement. Since the users are moving continuously, the locations of the

UAVs must change accordingly so as to serve the users effectively. However, for tractability, we

assume that the UAVs will remain static during each content transmission. In essence, the UAVs

will update their locations according to the mobility of the users after each content transmission

is complete at a current location.
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B. Transmission Model

Next, we introduce the models for transmission links between BBUs and UAVs, UAVs and

users, and RRHs and users. For ease of exposition, a time slot τ is discretized into F equally

spaced time intervals t, i.e., ∆τ = Ft. The time interval t is chosen to be sufficiently small so

that each user’s location can be considered constant during t as in [15] and [23].

1) UAVs-Users Links: The mmWave propagation channel of the UAVs-user link is modeled

using the standard log-normal shadowing model of [24]. The standard log-normal shadowing

model can be used to model the line-of-sight (LoS) and non-line-of-sight (NLoS) links by

choosing specific channel parameters. Therefore, the LoS and NLoS path loss of UAV k located

at (xτ,k, yτ,k, hτ,k) transmitting a content to user i at interval t of time slot τ is [25] (in dB):

lLoS
t,ki (wτ,t,k,wτ,t,i) = LFS (d0) + 10µLoS log (dt,ki (wτ,t,k,wτ,t,i)) + χσLoS , (1)

lNLoS
t,ki (wτ,t,k,wτ,t,i)=LFS (d0)+10µNLoS log (dt,ki (wτ,t,k,wτ,t,i))+χσNLoS , (2)

where wτ,t,k = [xτ,k, yτ,k, hτ,k] is the coordinate of UAV k during time slot τ with hτ,k being

the altitude of UAV k at time slot τ . Also, wτ,t,k = [xt,i, yt,i] is the time-varying coordinate of

user i at interval t. LFS (d0) is the free space path loss given by 20 log (d0fc4π/c) with d0 being

the free-space reference distance, fc being the carrier frequency and c being the speed of light.

dt,ki (wτ,t,k,wτ,t,i) =
√

(xt,i − xτ,k)2 + (yt,i − yτ,k)2 + h2
τ,k is the distance between user i and

UAV k. µLoS and µNLoS are the path loss exponents for LoS and NLoS links. χσLoS and χσNLoS

are the shadowing random variables which are, respectively, represented as the Gaussian random

variables in dB with zero mean and σLoS, σNLoS dB standard deviations.

In our model, the probability of LoS connection depends on the environment, density and

height of buildings, the locations of the user and the UAV, and the elevation angle between the

user and the UAV. The LoS probability is given by [14] and [17]:

Pr
(
lLoS
t,ki

)
= (1 +X exp (−Y [φt −X]))−1, (3)

where X and Y are constants which depend on the environment (rural, urban, dense urban, or

others) and φt = sin−1 (hτ,k/dt,ki (wτ,t,k,wτ,t,i)) is the elevation angle. Clearly, the average path

loss from the UAV k to user i at interval t is [17]:

l̄t,ki (wτ,t,k,wτ,t,i) = Pr
(
lLoS
t,ki

)
× lLoS

t,ki + Pr
(
lNLoS
t,ki

)
× lNLoS

t,ki , (4)

where Pr
(
lNLoS
t,ki

)
= 1−Pr

(
lLoS
t,ki

)
. Based on the path loss, the average signal-to-noise ratio (SNR)
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of user i located at wτ,t,i from the associated UAV k at interval t is given by:

γV
t,ki =

Pt,ki

10l̄t,ki(wτ,t,k,wτ,t,i)/10σ2
, (5)

where Pt,ki is the transmit power of UAV k to the user i at time t, and σ2 is the variance of

the Gaussian noise. We assume that the total bandwidth available for each UAV is BV which

is equally divided among the associated users. The channel capacity between UAV k and user i

for each content transmission will be CV
τ,ki =

F∑
t=1

BV
Uk

log2

(
1 + γV

t,ki

)
where Uk is the number of

the users associated with UAV k.

2) BBUs-UAVs Ground-to-Air Links: For the BBUs-UAVs (ground-to-air) link, we consider

probabilistic LoS and NLoS links over the licensed band. Since the distance of the UAVs

fronthaul link may be larger compared to the distance of the UAV-user link, the cellular band

can provide a more reliable transmission and a smaller path loss compared to the mmWave

channel. In such a model, NLoS links experience higher attenuations than LoS links due to the

shadowing and diffraction loss. The LoS and NLoS path loss from the BBUs to UAV k at time

t of time slot τ can be given by [14]:

LLoS
t,k = dt,ki (wτ,t,k,wτ,t,B)−β, (6)

LNLoS
t,k = ηdt,ki(wτ,t,k,wτ,t,B)−β, (7)

where wτ,t,B = [xB, yB] is the location of the BBUs, and β is the path loss exponent. The LoS

connection probability and the average SNR of the link between the BBUs and UAV k can be

calculated using (3)-(5).

3) RRHs-Users Links: In our model, RRHs are grouped into E clusters. Then, the RRHs in

each cluster use ZFBF to improve the users’ rates. The received signals of the users associated

with RRHs cluster q at interval t is:

bt,q =
√
PRH t,qF t,qat,q + n, (8)

where H t,q ∈ RUq×Rq is the path loss matrix with Uq being the number of users associated with

RRH cluster q, and Rq is the number of RRHs’ antennas. PR is the transmit power of each

RRH which is assumed to be equal for all RRHs. at,q ∈ RUq×1 is the transmitted content at

interval t and nt,q ∈ RUq×1 is the noise power. Also, F t,q = HH
t,q

(
H t,qH

H
t,q

)−1 ∈ RRq×Uq is the

beamforming matrix [26]. We also assume that the bandwidth of each user associated wth the

RRHs is B. Then, the received signal-to-interference-plus-noise-ratio (SINR) of user i in cluster
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Mq at interval t will be:

γH
t,qi =

PR
∥∥ht,qif t,qi∥∥2

N∑
j=1,j 6=q

∑
l∈Mj

∑
u∈Uj

PR
∥∥ht,lif t,lu∥∥2

︸ ︷︷ ︸
other cluster RRHs interference

+PBgt,Bidt,Bi(xB, yB, xt,i, yt,i)
−β︸ ︷︷ ︸

wireless fronthaul interference

+σ2

, (9)

where Mj is the set of the RRHs in group j, Uj is the set of the users associated with the

RRHs in group j, ht,qi ∈ R1×Rq is the channel gain between the RRHs in cluster Mq and

user i with ht,qi = gt,qidt,qi (xi, yi)
−β , gt,qi is the Rayleigh fading parameter at interval t, and

dt,qi (xi, yi) =
√

(xt,q − xt,i)2 + (yt,q − yt,i)2 is the distance between RRH q and user i at interval

t. f t,qi ∈ RRq×1 is the beamforming vector. Given (9), the channel capacity between RRH cluster

Mq and user i for each content transmission is:

CH
τ,qi =

F∑
t=1

Blog2

(
1 + γH

t,qi

)
. (10)

C. Quality-of-Experience Model

Given the proposed models in the previous subsections, here, we present the QoE model for

each user. The quality-of-experience of each user is formally defined as a concrete human-in-

the-loop metric that captures each user’s data rate, delay, and device type.

1) Delay: In the considered CRAN system, contents can be transmitted to the users via

three types of links: (a) content server-BBUs-RRHs-user, (b) content server-BBUs-UAV-user,

and (c) UAV cache-user. The backhaul link connecting the cloud to the core network is assumed

to be fiber and, therefore, its delay is neglected. We assume that the capacity of the wired

fronthaul links between the BBUs and the RRHs is limited to a maximum rate of vF for all

users. Consequently, the fronthaul rate for each user receiving a content from the RRHs will be

vFU = vF/NFR with NFR being the number of the users receive contents from the RRHs. Thus,

the delay of a user i receiving content n over the three types of links at each time slot τ can be

written as:

Dτ,i,n =


L
vFU

+ L
CH
τ,qi
, link (a) ,

L
CFτ,k

+ L
CV
τ,ki
, link (b) ,

L
CV
τ,ki
, link (c) ,

(11)

where CF
τ,k is the rate of content transmission from the BBUs to UAV k which is calculated

analogously to (9) and (10). Next, we derive the lower bound on the delay that each user can
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tolerate for each content transmission.

Proposition 1. The lower bound of the delay for each user i receiving content n are given by:

min

{
L

vF
,
L

Cmax
K

}
≤ Dτ,i,n, (12)

where Cmax
K = BV log2

(
1 + Pmax

10(LFS(d0)+10µLoS log(hmin)−4σLoS)/10σ2

)
with Pmax being the maximum

transmit power of each UAV, and hmin being the minimum altitude of the UAV.

Proof. From (11), we can see that the delay of link (b) is larger than that of link (c) and the

minimum delay of the link (a) is L/vF . Hence, we only need to consider the delay values

between L/vFU and L/CV
τ,ki, k ∈ K. To maximize CV

τ,ki, we consider dt,ki (wτ,t,k,wτ,t,i) = h,

and Pt,ki = Pmax. Then, the rate of the UAV-user link CV
τ,ki is given by:

CV
τ,ki = FBV log2

(
1 +

Pt,ki

10l̄t,ki(wτ,t,k,wτ,t,i)/10σ2

)
≤ FBV log2

(
1 +

Pmax

10l
LoS
t,ki(wτ,t,k,wτ,t,i)/10σ2

)
(a)

≤ FBV log2

(
1 +

Pmax

10(LFS(d0)+10µLoS log(h)−4σLoS)/10σ2

)
,

(13)

where (a) follows from the fact that with a probability close to one (greater than 99.99%), the

Gaussian random variable χσLoS will have a value larger than −4σLoS. From (13), we can see

that, as h increases, the capacity CV
τ,ki decreases. Therefore, we set h = hmin. This completes

the proof.

From Proposition 1, we can see that the minimum delay of each user depends on the rate of

the fronthaul links and the maximum transmit power of the UAVs. Therefore, we can improve the

QoE of each user by adjusting the UAV’s transmit power. In particular, as the number of users

increases and the rate of fronthaul links decreases, the QoE requirement of users can be satisfied

by adjusting the UAVs’ transmit power. Note that, the upper bound of the delay ∆τ is set by

the system requirement. Using the results of Proposition 1, we can categorize the sensitivity to

the delay into five groups using the popular mean opinion score (MOS) model [27] which is

often used to measure the QoE of a wireless user. The mapping between delay and MOS model

[27] is given by:

D̄τ,i,n =
∆τ −Dτ,i,n

∆τ −min
{

L
vF
, L
Cmax
K

} , (14)

which is shown in Table II.
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TABLE II
MEAN OPINION SCORE MODEL [27]

QoE Poor Fair Good Very Good Excellent
Interval scale 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

2) Device Type: The screen size of each device type of the user will also affect the QoE

perception of the user, especially for video-oriented applications. Indeed, users who own devices

that have larger screens (such as tablets) will be more sensitive to QoE compared to those who

own smaller devices (such as small smartphones). We capture the impact of the screen size of

each user i using a parameter Si that reflects the diameter length of the user’s device. Typically,

devices with a larger screen size, can display content at a higher resolution thus requiring a higher

data rate. We assume that the rate requirement of user i with device Si receiving a content n at

interval t is δSi,n = SiĈn, where Ĉn is the rate requirement of each user receiving content n.

The mapping from the rate requirement of user device to the MOS model can be written as:

Vt,i =

 1, j ≥ δSi,n,

0, j < δSi,n,
(15)

where j ∈
{
CV
t,ki, C

H
t,qi

}
. From (15), we can see that the device type score can be equal to 1 or 0

meaning that the MOS can be “Excellent” or “Poor”. The QoE of each user i receiving content

n at time slot τ can be given by [27]:

Qτ,i,n = ζ1D̄τ,i,n + ζ2

F∑
t=1

Vt,i, (16)

where q1 and q2 are weighting parameters with ζ1 + ζ2 = 1.

D. Problem Formulation

Here, we first find the minimum rate required to meet the QoE requirement of each user asso-

ciated with the UAVs. Next, we determine the minimum transmit power of each UAV required to

meet the QoE threshold of the associated users. Finally, we formulate the minimization problem.

From Table II, we can see that, for 0.8 ≤ D̄τ,i,n ≤ 1, the MOS of delay will be “Excellent”,

which means that the delay is minimized. In this case, D̄min = 0.8 is the minimum value that

maximizes the delay component of user i’s QoE, during the transmission of a given content n.

We define the rate that achieves the optimal delay as the delay rate requirement and also, define

the rate that meets the rate requirement of device as the device rate requirement. Consider the



12

transmission between a UAV k located at wτ,t,k and a user i located at coordinates wτ,t,i. From

(11), the delay rate requirement for UAV k transmitting content n to user i at time slot τ is:

CR
τ,ki,n =


L(

∆τ−D̄min

(
∆τ−min

{
L
vF
, L
Cmax
k

})
− L

CF
τ,k

) , n /∈ Ck,

L(
∆τ−D̄min

(
∆τ−min

{
L
vF
, L
Cmax
k

})) , n ∈ Ck.
(17)

From (17), we can see that, by storing content n at cache of UAV k, the delay rate requirement

for minimizing delay decreases.

Let δSi,n be the device rate requirement of user i associated with a UAV. Clearly, the QoE is

maximized when CV
t,ki ≥ max

{
CR
τ,ki,n

/
F , δSi,n

}
. Hence, the minimum rate required to maximize

the user’s QoE is δRi,n = max
{
CR
τ,ki,n

/
F , δSi,n

}
. Based on (5), the minimum transmit power

needed to guarantee the QoE requirement of user i receiving content n at interval t is:

Pmin
t,ki

(
wτ,t,k, δ

R
i,n, n

)
=
(

2δ
R
i,nUk/BV −1

)
σ210l̄t,ki(wτ,t,k,wτ,t,i)/10. (18)

From (18), we can see that the minimum transmit power of UAV k transmitting content n to

user i depends on the UAV’s location, the rate needed to satisfy the QoE requirement of user i,

and the transmitted content n.

Given this system model, our goal is to find an effective deployment of cache-enabled UAVs to

enhance the QoE of each user while minimizing the transmit power of the UAVs. This problem

involves predicting the content request distribution and periodic locations for each user, finding

the optimal contents to cache at the UAVs, determining the users’ associations and adjusting the

locations1, and transmit power of the UAVs. This problem can be formulated as follows:

min
Ck,Uτ,k,wτ,t,k

T∑
τ=1

∑
k∈K

∑
i∈Uτ,k

F∑
t=1

Pmin
τ,t,ki

(
wτ,t,k, δ

R
i,n, nτ,i

)
, (19)

s. t. hmin ≤ hτ,k, k ∈ K, (19a)

i 6= j, i, j ∈ Ck, Ck ⊆ N , k ∈ K, (19b)

0 < Pmin
τ,t,ki ≤ Pmax, i ∈ U , k ∈ K, (19c)

1Typically, the speed of a UAV can reach up to 30 m/s while the average speed of each pedestrian ground user is less than
2 m/s. Therefore, in our model, we ignore the time duration that each UAV uses to change its location.
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where Pmin
τ,t,ki is the minimum transmit power of UAV k to user i at interval t during time slot τ .

nτ,i is the content that user i requests at time slot τ , Uτ,k is the set of the users that are associated

with UAV k at time slot τ . hmin is the minimum altitude that each UAV can reach at time slot

τ . Here, (19b) captures the fact that each cache storage unit at the UAV stores a single, unique

content, and (19c) indicates that the transmit power of the UAVs should be minimized. Since the

problem as per (19) is to satisfy the rate needed for meeting each user’s QoE requirement during

the next time period T , the predictions of users behavior will directly impact the solution. From

(19), we can see that the prediction of the users’ mobility patterns enable the BBUs to find the

optimal locations of the UAVs. Moreover, by predicting the users’ content request distribution

the BBUs can determine the most popular content to cache at the UAVs.

III. CONCEPTOR ECHO STATE NETWORKS FOR CONTENT AND MOBILITY PREDICTIONS

In this section, we propose a prediction algorithm using the framework of ESN with conceptors,

to find the users’ content request distributions and their mobility patterns. The predictions of

the users’ content request distribution and their mobility patterns will then be used in Section

IV to find the user-UAV association, optimal locations of the UAVs and content caching at

the UAVs. Echo state networks are a special type of recurrent neural networks designed for

performing non-linear systems forecasting [28]. The ESN architecture is based on a randomly

connected recurrent neural network, called reservoir, which is driven by a temporal input. The

state of the reservoir is a rich representation of the history of the inputs so that a simple linear

combination of the reservoir units is a good predictor of the future inputs. In our model, the

reservoir will be combined with the input to store the users’ context information and will also be

combined with the trained output matrix to output the predictions of the users’ content request

distribution and mobility patterns. Here, a user’s context is defined as the current state and

attribute of a user including time, week, gender, occupation, age, and device type (e.g., tablet

or smartphone). Therefore, an ESN-based approach can use the users’ context to predict the

corresponding behavior such as content request and mobility.

Compared to traditional neural network and deep learning approaches such as in [3], an ESN-

based approach can quickly learn the mobility pattern and content request distribution without

requiring significant training data due to the use of the echo state property. However, traditional

ESN-based prediction algorithms such as in [10] can be trained to predict only one mobility
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pattern for each user. In particular, to predict the weekly mobility pattern of each user using the

traditional ESN approach, the users’ context information for an entire week need to be used as

input of the ESNs that act as one non-linear system. In this conventional ESN approach, it is

not possible to separate the users’ contexts in a week into several days and train the ESNs to

predict the user’s mobility in each day with one specific non-linear system. To enable the ESN

algorithm to predict the user’s mobility pattern and content request distribution with various

non-linear systems, the notion of a conceptor as defined in [29], is an effective solution that

allows characterizing the ESN’s reservoir. Conceptors enable an ESN to perform a large number

of mobility and content request patterns predictions. Moreover, new patterns can be added to the

reservoir of the ESN without interfering with previously acquired ones. For each ESN algorithm,

an ESN can record a limited number of history input data due to the echo state property of each

ESN. Consequently, the learned pattern will be removed as the recorded input data is updated.

Here, we call the ability of recording a limited number of history input data as the memory of

the ESN’s reservoir. The idea of a conceptor can be used to allocate any free memory of an

ESN’s reservoir to the new learned patterns of the mobility and content request distribution.

Next, we first introduce the components of a conceptor ESN-based prediction algorithm. Then,

we formulate the conceptor ESN algorithm to predict the content request distribution and mobility

patterns of the users.

A. Conceptor ESN Components

The conceptor ESN-based prediction approach consists of five components: a) agents, b)

input, c) output, d) ESN model, and e) conceptor. Since the content request and mobility pattern

are user-specific, we design the specific components for the algorithms of the content request

distribution and mobility pattern predictions, separately.

1) Content request distribution prediction: The content request distribution prediction algo-

rithm has the following components:

• Agent: The agent in our ESNs is the cloud. Since each ESN scheme typically performs a

content request distribution prediction for just one user, the cloud’s BBUs must implement U

conceptor ESN algorithms.

• Input: The conceptor ESN takes input as a vector xt,j = [xtj1, · · · , xtjNx ]
T that represents the

context of user j at time t which includes gender, occupation, age, and device type (e.g., tablet
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or smartphone). Here, Nx is the number of properties that constitute the context information of

user j. The vector xt,j is then used to determine the content request distribution yt,j for user j.

Note that, the input of the ESNs is the information related to the users’ content requests. Our

goal is to predict the content request distribution using the context of each user.

• Output: The output of the content request distribution prediction ESN at time t is a vector

of probabilities yt,j = [ptj1, ptj2, . . . , ptjN ] that represents the probability distribution of content

request of user j with ptjn being the probability that user j requests content n at time t.

• ESN Model: An ESN model for each user j can find the relationship between the input xt,j

and output yt,j , thus building the function between the user’s context and the content request

distribution. Mathematically, the ESN model consists of the output weight matrix W α,out
j ∈

RN×Nw and the dynamic reservoir containing the input weight matrix W α,in
j ∈ RNw×Nx , and

the recurrent matrix W α
j ∈ RNw×Nw with Nw being the number of the dynamic reservoir units.

For each user j, the dynamic reservoir will be combined with the input xt,j to store the history

context of user j. The output weight matrix W α,out
j with the reservior is trained to approximate

the prediction function. The ESN model of user j is initially randomly generated following a

uniform distribution. To ensure that the reservoir has the echo state property, W α
j is defined as

a sparse matrix with a spectral radius less than one [30].

• Conceptors: For content request distribution prediction, we collect the users’ context infor-

mation and the corresponding content requests during the same time slots for different weeks

to train one content request distribution. We refer to each content request distribution as one

prediction pattern. Given a sequence of the reservoir states vij =
[
vi1,j, . . . ,v

i
t,j

]
with vit,j =[

vit,j1, . . . , v
i
t,jNw

]T being the reservoir state of prediction pattern i at time t and the state

correlation matrix Ri
j = E

[
vit,j
(
vit,j
)T
]
, the conceptor of prediction pattern i will be [29]:

M i
j = Ri

j

(
Ri
j + χ−2I

)−1
, (20)

where χ is aperture defined in [29]. The aperture χ needs to be appropriately set for accurately

learning several mobility patterns. When the aperture is small, the reservoir of the ESN slightly

changes for learning each new pattern. However, for a large aperture, the reservoir of the ESN

changes significantly.

2) Mobility pattern prediction: The components of mobility pattern prediction algorithm are:

• Agents: The agents in our conceptor ESNs are the BBUs. Since each ESN scheme typically
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performs mobility prediction for only one user, the BBUs must also implement U conceptor

ESN algorithms.

• Input: mt,j = [mtj1, · · · ,mtjNx+1]T represents the current location of user j and the context

of this user at time t. Using input mt,j , the future locations of user j can be predicted.

• Output: st,j = [stj1, · · · , stjNs ]
T represents the predicted locations of user j in the next time

slots, where Ns is the number of locations in the next Ns time duration H .

• ESN Model: The ESN model of mobility prediction consists of the output weight matrix

W out
j ∈ RNs×Nw , the dynamic reservoir containing the input weight matrix W in

j ∈ RNw×Nx+1,

and the recurrent matrix W j ∈ RNw×Nw . The generation of the mobility prediction ESN model

is similar to the one in the content request distribution prediction case.

• Conceptors: For mobility pattern prediction, we consider each user’s mobility in each day

during one week as one prediction pattern. The expression of the conceptors is the same as the

one for the content request distribution given in (20).

B. Conceptor ESN Algorithm for Content and Mobility Predictions

Here, we present the proposed conceptor ESN algorithm to predict the content request dis-

tribution and mobility. The proposed algorithm consists of two stages: training and prediction

stages.

1) Training Stage: The dynamic reservoir state vit,j of prediction pattern i for user j at time

t which is used to store the states of user j is given by [30]:

vit,j = f
(
W α

j v
i
t−1,j + W α,in

j xt,j

)
, (21)

where f(x) = ex−e−x
ex+e−x

. Note that, we consider the input and corresponding prediction output

as a training data. In this case, we use Ntr training data that consists of Ntr users’ contexts

and the corresponding content request to calculate the conceptors and train the output weight

matrix W α,out
j . Based on Ntr training data and (21), the reservoir states before update for each

prediction pattern j is viold,j =
[
0,vi1,j, . . . ,v

i
Ntr−1,j

]
and the updated reservoir states are vij =[

vi1,j, . . . ,v
i
Ntr,j

]
. The matrix viold,j will be used to train an input simulation matrix Dj ∈ RNw×Nw

and vij will be combined with the updated reservoir states of other prediction patterns to train

the output weight matrix.

Then, Dj will be combined with output weight matrix W α,out
j to predict the content request

distribution pattern for each user. For each added learning pattern i of each user j, the update
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of Dj will be [29]:

Dj = Dold,j + Di
inc,j, (22)

where Di
inc,j =

((
SST

/
Ntr + χ−2I

)†
ST T

/
Ntr

)T

with S = F i−1
j viold,j and T = W α,in

j xij −

Dold,jv
i
old,j . Here, F i−1

j = ¬ ∨
{
M 1

j , . . . ,M
i−1
j

}
is the free memory of the reservoir with ¬

and ∨ being the boolean operators [29], and xij =
[
xi1,j, . . . ,x

i
Ntr,j

]
is the input sequences of

prediction pattern i. During the learning of each pattern i of user j, the conceptor M i
j can be

computed using (20).

In our proposed ESN algorithm, the output weight matrix W α,out
j is trained in an offline

manner using ridge regression [30] to approximate the prediction function which is given by:

W α,out
j = yjv

T
j

(
vT
j vj + λ2I

)−1
, (23)

where vj =
[
v1
j ,v

2
j , . . . ,v

NM
j

]T
with vij =

[
vi1,j, . . . ,v

i
Ntr,j

]
being the reservoir state sequence

of prediction pattern i for user j, and NM being the number of the prediction patterns of each

user’s content request distribution. In (23), vij can also be used to calculate the conceptor M i
j

for prediction pattern i of user j.

2) Prediction Stage: Based on the learning stage, we can use the input simulation matrix Dj ,

conceptors M j =
[
M 1

j , . . . ,M
NM
j

]
, and output weight matrix W α,out

j to obtain the correspond-

ing predictions. In the prediction stage, the reservoir state of pattern i of user j is [29]:

vit,j = Ci
jf
(
W α

j v
i
t−1,j + Djv

i
t−1,j

)
. (24)

From (24), we can see that the conceptor of pattern j, Cj , controls the update of the reservoir

states. By changing the conceptor Cj , the ESN can predict different patterns in one ESN

architecture. The prediction of content request distribution i for user j can be given by:

yt,j = W α,out
j vit,j. (25)

From (24) and (25), we can see that the conceptor ESN algorithm exploits an input simulation

matrix Dj to control the memory of ESN reservoir. The conceptor ESN algorithm for predicting

the content request distribution of each user j is shown in Table III.

As shown in Table III, the proposed conceptor ESN algorithm can learn each prediction pattern

by a unique non-linear system. This property of the proposed algorithm enables the ESNs to

perform the users’ behavior predictions using different non-linear systems during different time

periods. Furthermore, using the proposed algorithm, one can have the information of the reservoir
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TABLE III
PROPOSED CONCEPTOR ESN PREDICTION ALGORITHM

Inputs: Ntr training data,

Initialize: W α,in
j , W α

j , W α,out
j , yj = 0, Dj = 0.

Training Stage:

for each prediction pattern i do.
if reservoir memory space F i−1

j > 0 do.
(a) BBUs collect the reservoir states viold,j and vij to update Dj , using (22).
(b) BBUs use the reservoir states vij to calculate the conceptor Ci

j using (20).
else

(c) increase reservoir weight matrix W α
j , re-train all the prediction patterns.

end if
end for

(c) BBUs collect the reservoir states for all patterns vj to train W α,out
j , using (23).

Prediction Stage:

(a) BBUs chooses the conceptor to obtain the corresponding reservoir state, using (24).
(b) Get the prediction of content request distribution based on (25) .

Output: Prediction yt,j

memory and extract a specific prediction pattern from the learned patterns.

IV. OPTIMAL LOCATION AND CONTENT CACHING FOR UAVS

In this section, we use the content request distribution and mobility patterns predictions

resulting from the proposed conceptor ESN algorithm in Section III to solve the problem in

(19). In our model, a subset of the users selected by the BBUs are connected to the RRHs. The

remaining users are clustered into K clusters and each UAV provides service for one cluster.

Based on the associations and predictions, we determine which contents to cache at each UAV and

find the optimal location of each UAV. Finally, we analyze the implementation and complexity

of the proposed algorithm. Fig. 2 summarizes the proposed framework that is used to solve the

problem in (19).

A. Users-RRH Association

We find the user-RRH association based on the predicted users’ locations at the next time

interval. Clearly, the prediction accuracy of the users’ locations will directly affects the users

association. A user is associated with RRHs if the following condition is satisfied:

Theorem 1. Given minimum D̄min and device screen size Si of each user i, user i will be
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Predictions
Remaining 

usersUsers-RRH Association Cluster the remaining 
users into clusters

Requirement 
of rate

Location of 
UAVs Find optimal location for 

each UAV
Find optimal contents to 

cache at each UAV

Predict users behavior 

Determine the location of 
each UAV 

Algorithms Objective

Determine the users that 
associate with RRHs

Determine the transmission 
link of each content 

Provide users location and content 
request distribution for BBUs

Determine the minimum 
transmit power for users

Determine the remaining 
users that associate with UAVs

Optimize the QoE of each user

User-UAV 
Association

Fig. 2. The procedure used for solving the optimization problem given in (19).

associated with a cluster k of RRHs if the following rate requirement is satisfied:

CH
t,qi ≥ max

⎧⎨
⎩ L

F
(
Δτ − D̄min

(
Δτ −min

{
L
vF
, L
Cmax

k

})
− L

vFU

) , δSi,n

⎫⎬
⎭ . (26)

Proof. Based on (14) and D̄min, the delay is Dτ,i,n = Δτ − D̄min

(
Δτ −min

{
L
vF
, L
Cmax

k

})
, and,

hence, the delay rate requirement for RRH cluster q transmitting content n to user i during time

slot τ will be:

CR
τ,qi =

L

Δτ − D̄min

(
Δτ −min

{
L
vF
, L
Cmax

k

})
− L

vFU

. (27)

Therefore, the delay rate requirement during each interval is equal to CR
τ,qi

/
F . Since the device

rate requirement is δSi,n, the rate of RRH cluster q transmitting content n to user i, CH
τ,qi must

satisfy CH
t,qi ≥ max

{
CR

τ,qi

/
F , δSi,n

}
. This completes the proof.

From Theorem 1, we can see that the user-RRH association depends on the fronthaul rate of

each user, the delay rate requirement, and the device rate requirement. From (27), we can see

that the fronthaul rate of each user decreases as the number of the users associated with the

RRHs increases. Clearly, the decrease of the fronthaul rate for each user will improve the delay

rate requirement.

B. Optimal Content Caching for UAVs

In our model, the remaining users who are not associated with RRHs, will be served by the

UAVs. In this case, the users-UAVs associations need to be determined. To this end, we use K-
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mean clustering approach [21] in which the users are clustered into K groups. By implementing

the K-mean clustering approach, the users that are close to each other will be grouped into

one cluster. Thereby, each UAV services one cluster and the user-UAV association will be

determined. Then, based on the UAV association, we find the optimal contents to cache at

each UAV. The content caching will reduce the transmission delay and, hence, decrease the

delay rate requirement. From (17), we can see that, optimal contents to store at the UAV cache

lead to maximum reduction of the UAV’s transmit power. The reduction of UAV transmit power

is caused by the decrease of the delay rate requirement. Let pj,i = [pj,i1, pj,i2, . . . , pj,iN ] be the

content request distribution of user i during period j that consists of H time slots. The optimal

contents that will be stored at each UAV cache can be determined based on the following theorem.

Theorem 2. The optimal set of contents Ck to cache at each UAV k during period T is:

Ck = arg max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(pj,in∆Pj,τ,ki,n), (28)

where ∆Pj,τ,ki,n=


Pmin
τ,ki

(
wτ,t,k, C

R
τ,ki, n

)
n/∈Ck
−Pmin

τ,ki

(
wτ,t,k, C

R
τ,ki, n

)
n∈Ck

,
CR
τ,ki,n(n∈Ck)

F ≥ δSi,n,

Pmin
τ,ki (wτ,t,k, δSi,n, n)n/∈Ck−P

min
τ,ki

(
wτ,t,k, C

R
τ,ki, n

)
n∈Ck

,
CR
τ,ki,n(n/∈Ck)

F ≥ δSi,n≥
CR
τ,ki,n(n∈Ck)

F ,

0, otherwise,

Proof. Since the delay rate requirement CR
τ,ki,n depends on the contents at the UAV cache, it

can be written as δRi,n = max

{
CR
τ,ki,n(n∈Ck)

F
,
CR
τ,ki,n(n/∈Ck)

F
, δSi,n

}
. Let Pmin

τ,ki =
F∑
t=1

Pmin
j,τ,t,ki. Then the

reduction of UAV transmit power by content caching during time slot τ of period j will be:

∆Pj,τ,ki,n=


Pmin
τ,ki

(
wτ,t,k, C

R
τ,ki, n

)
n/∈Ck

− Pmin
τ,ki

(
wτ,t,k, C

R
τ,ki, n

)
n∈Ck

,
CR
τ,ki,n(n∈Ck)

F ≥ δSi,n,

Pmin
τ,ki (wτ,t,k, δSi,n, n)n/∈Ck − P

min
τ,ki

(
wτ,t,k, C

R
τ,ki, n

)
n∈Ck

,
CR
τ,ki,n(n/∈Ck)

F ≥ δSi,n ≥
CR
τ,ki,n(n∈Ck)

F ,

0, otherwise,

Considering the fact that the content request distribution changes once every H time slots, the

power minimization problem for UAV k during a period that consists of H time slots is:

min
Ck

T∑
τ=1

∑
i∈Uτ,k

Pmin
τ,ki = min

Ck

T/H∑
j=1

H∑
τj=1

∑
i∈Uτ,k

Pmin
τj ,ki = min

Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

Pmin
j,τ,ki

(a)
= max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∆Pj,τ,ki,n,

(b)
= max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(pj,in∆Pj,τ,ki,n) +
∑
n/∈Ck

(pj,in∆Pj,τ,ki,n)

 ,

= max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(pj,in∆Pj,τ,ki,n), (29)
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where (a) follows the fact that minimizing the transmit power of the UAVs is equivalent to

maximizing the reduction of the UAVs’ transmit power caused by caching, and (b) is obtained

by computing the average power reduction using content request probability distribution of each

user. This completes the proof.

From Theorem 2, we can see that when the fronthaul rates of all users are the same, the transmit

power reduction ∆Pj,τ,ki,n will be a constant. Subsequently, the optimal content caching becomes

Ck = arg max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

pj,in which corresponds to the result given in [10]. From Theorem

2, we can see that the content caching depends on the pre-knowledge of users association as well

as the content request distribution of each user. Therefore, by predicting the mobility pattern and

content request distribution for each user, we can determine the optimal content to cache.

C. Optimal Locations of UAVs

Here, we determine the optimal UAVs’ locations where the UAVs can serve their associated

users using minimum transmit power. Once each UAV selects the suitable contents to cache, the

transmission link (BBUs-UAV-user or UAV-user) for each content and the delay rate requirement

CR
τ,ki,n in (17) are determined. In this case, the rate δRi,n which is used to meet the QoE requirment

of each user is also determined. Next, we derive a closed-form expression for the optimal location

of UAV k during time slot τ in two special cases.

Theorem 3. To minimize the transmit power of UAV k, the optimal locations of UAV k

during time slot τ for cases: a) UAV k positioned at low altitudes compared to the size of its

corresponding coverage, h2
τ,k � (xt,i − xτ,k)2 + (yt,i − yτ,k)2 and µNLoS = 2, b) UAV k is placed

at high altitudes compared to the size of its corresponding coverage, h2
τ,k � (xt,i − xτ,k)2 +

(yt,i − yτ,k)2, are given by:

xτ,k =

∑
i∈Uτ,k

F∑
t=1

xt,iψt,ki

∑
i∈Uτ,k

F∑
t=1

ψt,ki

, yτ,k =

∑
i∈Uτ,k

F∑
t=1

yt,iψt,ki

∑
i∈Uτ,k

F∑
t=1

ψt,ki

, (30)

where ψt,ki =
(

2δ
R
i,n/B−1

)
σ210(LFS(d0)+χσ)/10 with σ =

 σNLoS, for case a) ,

σLoS, for case b) .

Proof. At very low altitudes, h2
τ,k � (xt,i − xτ,k)2 + (yt,i − yτ,k)2, hτ,k

dt,ki(wτ,t,k,wτ,t,i)
≈ 0 leading
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to φt = 0◦, and, consequently, Pr
(
lNLoS
t,ki

)
= 1. Thus, we have l̄t,ki (wτ,t,k,wτ,t,i) = lNLoS

t,ki and

(18) can be rewritten as Pmin
τ,t,ki=

(
2δ

R
i,n/B−1

)
σ210(LFS(d0)+χσNLoS)/10dt,ki (wτ,t,k,wτ,t,i)

µNLoS .

Now, we find the optimal location (xτ,k, yτ,k) of UAV k during time slot τ in order to minimize∑
i∈Uτ,k

F∑
t=1

Pmin
τ,t,ki. In this case, the derivation of

∑
i∈Uτ,k

F∑
t=1

Pmin
τ,t,ki with respect to xτ,k is given by:

∂
∑

i∈Uτ,k

F∑
t=1

Pmin
τ,t,ki

∂xτ,k
=

∑
i∈Uτ,k

F∑
t=1

∂Pmin
τ,t,ki

∂xτ,k
=
∑
i∈Uτ,k

F∑
t=1

µNLoS (xτ,k−xt,i)ψt,ki
(
(xτ,k − xt,i)2+(yτ,k − yt,i)2+h2

τ,k

)µNLoS
2 −1

.

(31)

Given µNLoS = 2, (31) is simplified to
∑

i∈Uτ,k

F∑
t=1

2 (xτ,k−xt,i)ψt,ki=0. As a result, xτ,k =

∑
i∈Uτ,k

F∑
t=1

xt,iψt,ki

∑
i∈Uτ,k

F∑
t=1

ψt,ki

.

Likewise, we can show that yτ,k =

∑
i∈Uτ,k

F∑
t=1

yt,iψt,ki

∑
i∈Uτ,k

F∑
t=1

ψt,ki

.

For case b), since h2
τ,k � (xt,i − xτ,k)2 + (yt,i − yτ,k)2, dt,ki (wτ,t,k,wτ,t,i) ≈ hτ,k and, hence,

hτ,k

dt,ki(wτ,t,k,wτ,t,i)
≈ 1→ φt = 90◦. Consequently, Pr

(
lLoS
t,ki

)
= 1. Then, we have l̄t,ki (wτ,t,k,wτ,t,i) =

lLoS
t,ki . The derivation of

∑
i∈Uτ,k

F∑
t=1

Pmin
τ,t,ki will be:

∂
∑

i∈Uτ,k

F∑
t=1

Pmin
τ,t,ki

∂xτ,k
=
∑
i∈Uτ,k

F∑
t=1

µLoS (xτ,k−xt,i)ψt,ki
(
(xτ,k − xt,i)2+(yτ,k − yt,i)2+h2

τ,k

)µLoS
2 −1

,

≈
∑
i∈Uτ,k

F∑
t=1

µLoS (xτ,k−xt,i)ψt,kihµLoS−2
τ,k = 0. (32)

As a result, xτ,k =

∑
i∈Uτ,k

F∑
t=1

xt,iψt,ki

∑
i∈Uτ,k

F∑
t=1

ψt,ki

and yτ,k =

∑
i∈Uτ,k

F∑
t=1

yt,iψt,ki

∑
i∈Uτ,k

F∑
t=1

ψt,ki

. This completes the proof.

Using Theorem 3, we can find the optimal locations of the UAVs given the users association

and altitude hτ,k for the two special cases. For more generic cases, it is highly challenging to

find the optimal UAVs’ locations using derivation, since the UAV’s altitude depends on the x

and y coordinates of the UAV. Therefore, we use a learning algorithm given in [31] and [32]

to find a sub-optimal solution. The learning algorithm can learn the network state and exploit

different actions to adapt the UAV’s location according to the network. After the learning step,

each UAV will find a sub-optimal location to service the users in a power efficient way.
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D. Implementation and Complexity

The BBUs implement the conceptor ESN algorithm to predict the content request distribution

and mobility patterns for each user. Hence, the BBUs have the prediction information for

each user. Moreover, the BBUs have the information of the RRHs cluster and their locations.

Therefore, the proposed solutions in Section III and IV to the problem in (19) are all implemented

in the BBUs. The centralized implementation enables the BBUs to quickly determine the optimal

location for each UAV without any information exchange. Furthermore, using a centralized

implementation, one can directly modify the UAVs’ locations and users’ associations directly

when the prediction of the conceptor ESN algorithm is not accurate.

The complexity of the proposed algorithm can be divided into two parts: the conceptor ESN

algorithm and the optimization algorithm. The complexity of the conceptor ESN algorithm

depends on the number of patterns that needs to be leaned for each user. Therefore, the complexity

of the conceptor ESN algorithm will be O(U×2T/H). Note that, the implementation of the

user-RRH association algorithm depends on the number of the RRH clusters, and, hence, the

complexity of this algorithm is O(E) where E is the number of the RRH clusters and 2T/H is

the number of the patterns that each user needs to learn. Finally, the algorithm complexity for

finding the optimal content to cache and optimal location of each UAV all depend on the number

of the UAVs. Thus, the algorithm complexity is O(K) with K being the number of UAVs.

V. SIMULATION RESULTS

For our simulations, the content request data that the ESN uses to train and predict content

request distribution is obtained from Youku of China network video index2. Here, one circular

CRAN area with a radius r = 500 m is considered with U = 70 uniformly distributed users

and R = 20 uniformly distributed RRHs. The detailed parameters are listed in Table V. Actual

pedestrian mobility data is measured from the real data generated at the Beijing University of

Posts and Telecommunications. For comparison purposes, we investigate: a) optimal algorithm

with complete users’ information, b) ESN algorithm in [10] to predict the content request

distribution and mobility pattern, and c) random caching with ESN algorithm in [10] to predict

content request distribution. All statistical results are averaged over 5000 independent runs. The

accuracy of ESN prediction is measured by normalized root mean square error (NRMSE) [29].

2The data is available at http://index.youku.com/.

http://index.youku.com/
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TABLE IV
SYSTEM PARAMETERS

Parameter Value Parameter Value Parameter Value
F 1000 PR, PB 20, 30 dBm K 5
B 1 MHz N 25 C 1
χσLoS 5.3 H 10 T 120
Ntr 1000 d0 5 m fc 38 GHz
Bv 1 GHz λ 0.01 hmin 100 m
L 1 Mbit Pmax 20 W δSi,n 5 Mbit/s

µLoS,µNLoS 2, 2.4 Nx, Ns 4, 12 χ 15
Nw 1000 σ2 -95 dBm ζ1, ζ2 0.5,0.5
χσNLoS 5.27 β, η 2, 100 X,Y 11.9, 0.13

Fig. 3. Mobility patterns predictions of Conceptor ESN algorithm. In this figure, the green curve represents the conceptor ESN

prediction, the black curve is the real positions, top rectangle j is the index of the mobility pattern learned by ESN, the legend

on the bottom left shows the total reservoir memory used by ESN and the legend on the bottom right shows the NRMSE of

each mobility pattern prediction.

Fig. 3 shows how the memory of the conceptor ESN reservoir changes as the number of the

mobility patterns that were learned by the conceptor ESN varies. Here, one mobility pattern

represents the users’ trajectory in one day and the colored region represents the memory used

by the conceptor ESN. In Fig. 3, we can see that the memory usage increases as the number of

the learned mobility patterns increases. This is due to the fact the conceptor ESN uses a limited

memory to learn mobility patterns. From Fig. 3, we can also see that the conceptor ESN uses

less memory for learning mobility pattern 2 compared to pattern 6. In fact, mobility pattern 2

is similar to mobility pattern 1, and, hence, the conceptor ESN requires only a small amount of

memory to learn mobility pattern 2. However, the conceptor ESN needs to use more memory to
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Fig. 4. Content request probability predictions.

learn mobility pattern 6. Clearly, when a new mobility pattern needs to be learned, the proposed

approach only needs to learn the difference between the learned mobility patterns and the new

one.

In Fig. 4, we show the variations of two content request probabilities of a selected user during

one day. The user is randomly chosen from the set of users in the network. From Fig. 4, we can

see that, the probability with which this user requests content 1 decreases during working hours

(9:00-11:00 and 14:00-18:00) and increases at all other times. Similarly, the request probability

of content 2 increases during working hours and decreases during the rest of the time. This

is due to the fact that content 1 is an entertainment content while content 2 is a work-related

content. Fig. 4 also shows that the sum of the probability with which this user requests content

1 and content 2 exceeds 0.5 during each hour. This is because the user always requests a small

amount of contents during one day.

Fig. 5 shows how the average minimum transmit power of each UAV in a time period changes

as the number of the users varies. In Fig. 5, we can see that the average UAV transmit power

of all algorithms increases as the number of the users increases. This is due to the fact that the

number of the users associated with the RRHs and the capacity of the wireless fronthaul link

of UAVs are limited. Therefore, the UAVs need to increase their transmit power to satisfy the

QoE requirement of each user. From Fig. 5(a), we can also see that the proposed approach can

reduce the average transmit power of the UAVs of about 20% compared to the ESN algorithm

used to predict the content request and mobility for a network with 70 users. This is because the

conceptor ESN that separates the users’ behavior into multiple patterns and uses the conceptor
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Fig. 5. Average minimum transmit power as the number of the users varies. (K = 5 and C = 1.)
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Fig. 6. Rate required to maximize the users QoE as the fronnthaul rate of each user changes.

to learn these patterns, can predict the users’ behavior more accurately compared to the ESN

algorithm. Fig. 5(b) shows that the proposed algorithm can yield, respectively, 40% and 25%

gains with respect to reducing the average transmit power compared to the proposed algorithm

without cache and the proposed algorithm without optimizing the UAVs’ locations.

Fig. 6 shows the rate needed for satisfying the QoE requirement of each user versus the

wireless fronthaul rate of each user. In Fig. 6, we can see that the rate required to maximize the

users QoE of BBUs-UAV-user link decreases as the wireless fronthaul rate increases. However,

the rate needed to maximize the user’s QoE of UAV-user link not change when the fronthaul

rate varies. Clearly, the use of caching at the UAVs can significantly reduce the rate required to

reach the QoE threshold of each user when the wireless fronthaul rate for each user is low.

In Fig. 7, we show how the percentage of users with satisfied QoE requirement changes as
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Fig. 8. Average minimum transmit power as the number of UAVs changes (U = 70 and C = 1).

the number of the users varies. From Fig. 7, we can see that the percentage of the satisfied

users decreases as the number of the users increases for the case with no UAVs. However, using

the proposed approach, the QoE remains maximum for all number of users when the UAVs are

deployed. The proposed algorithm can yield a gain of 61% gain in terms of the percentage of

the users with satisfied QoE compared to the proposed algorithm without UAVs for the network

with 120 users. This is due to the fact that the UAVs can maximize the users’ QoE when the

RRHs are not able to satisfy the QoE requirements.

In Fig. 8, we show how the average minimum transmit power of UAVs changes as the number

of the UAVs varies. From Fig. 8, we can see that the average minimum transmit power of each

UAV decreases from as the number of the UAVs increases. In particular, using the proposed

algorithm, the average transmit power of the UAVs decreases by 85% when the number of

UAVs increases from 3 to 7. This is due to the fact that for a higher number of UAVs the

number of users associated with each UAV decreases, and, hence, the average transmit power
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Fig. 9. Average minimum transmit power as the number of the contents stored in a UAV cache varies (U = 70 and K = 5).
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Fig. 10. Average minimum transmit power and average altitude vs. the number of the UAVs.

per UAV also decreases. As shown in Fig. 8, the proposed approach becomes closer to the

optimal one as the number of UAVs increases. The reason is that the location prediction error

is higher for a lower number of UAVs (or equivalently the clusters).

Fig. 9 shows the average minimum transmit power of each UAV as a function of the number

of the contents stored at the UAV cache. As shown in Fig. 9, the average minimum transmit

powers of all considered algorithms increase as the number of storage units increases. This is

due to the fact that the probability that the requested contents of the users are stored at the UAV

cache increases, and, consequently, the UAV will directly transmit the requested contents to the

users. Fig. 9 also shows that the ESN algorithm that predicts the content request and mobility

can yield up to 49% power reduction compared to the ESN algorithm that predicts the mobility

with the random caching scheme.

In Fig. 10, we show how the average transmit power and average altitude of the UAVs change
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as the number of UAVs varies. In this case, we compare the result of our proposed approach

with the optimal result obtained by an exhaustive search method. For the learning algorithm,

the interval of the neighboring action of each coordinate is 3 m. Figs. 10(a) shows that the

optimal location of the UAV approached by Theorem 3 has only 5.8% deviation compared to

the exhaustive search. Furthermore, as shown in Fig. 10(b), by increasing the number of UAVs

from 3 to 7, the average altitude of the UAVs decreases from 980 m to 302 m in the proposed

algorithm case. This is due to the fact that for a higher number of the UAVs, each UAV needs

to provide coverage for a smaller area and, hence, it can be deployed at a lower altitude. From

Figs. 10(a) and 10(b), we can also see that, as the number of the UAVs increases, the result of

Theorem 3 approaches the optimal solution that is obtained by the exhaustive search. This is

due to the fact that for a higher number of UAVs, the coverage area of each UAV decreases,

and, hence, the approximation condition in Theorem 3 will hold with a tighter bound.

VI. CONCLUSIONS

In this paper, we have proposed a novel framework that uses flying UAVs to provide service

for the mobile users in a CRAN system. First, we have presented an optimization problem that

seeks to guarantee the QoE rquirement of each user using the minimmum transmit power of

the UAVs. Next, to solve this problem, we have developed a novel algorithm based on the echo

state networks and concepters. The proposed algorithm allows predicting the content request

distribution of each user with limited information on the network state and user context. The

proposed algorithm also enables the ESNs separate the users behavior into several patterns and

learn these patterns with various non-linear systems. Simulation results have shown that the

proposed approach yields significant performance gains in terms of minimum transmit power

compared to conventional ESN approaches.
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