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Abstract

In this paper, the problem of proactive deployment of cache-enabled unmanned aerial vehicles
(UAVs) for optimizing the quality-of-experience (QoE) of wireless devices in a cloud radio access
network (CRAN) is studied. In the considered model, the network can leverage human-centric infor-
mation such as users’ visited locations, requested contents, gender, job, and device type to predict the
content request distribution and mobility pattern of each user. Then, given these behavior predictions,
the proposed approach seeks to find the user-UAV associations, the optimal UAVs’ locations, and the
contents to cache at UAVs. This problem is formulated as an optimization problem whose goal is
to maximize the users’ QoE while minimizing the transmit power used by the UAVs. To solve this
problem, a novel algorithm based on the machine learning framework of conceptor-based echo state
networks (ESNs) is proposed. Using ESNs, the network can effectively predict each user’s content
request distribution and its mobility pattern when limited information on the states of users and the
network is available. Based on the predictions of the users’ content request distribution and their mobility
patterns, we derive the optimal user-UAV association, optimal locations of the UAVs as well as the
content to cache at UAVs. Simulation results using real pedestrian mobility patterns from BUPT and
actual content transmission data from Youku show that the proposed algorithm can yield 40% and 61%
gains, respectively, in terms of the average transmit power and the percentage of the users with satisfied

QoE compared to a benchmark algorithm without caching and a benchmark solution without UAVs.
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I. INTRODUCTION

The next-generation of cellular systems is expected to be largely user centric and, as such, it
must be cognizant of human-related information such as users’ behavior, mobility patterns, and
quality-of-experience (QoE) expectations [1]. One promising approach to introduce such wireless
network designs with human-in-the-loop is through the use of cloud radio access networks
(CRANS) [2]. In CRANS, a central cloud processor can parse through the massive users’ data to
learn the users’ information such as content request distribution and mobility patterns and, then,
determine how to manage resources in the network. However, an effective exploration of human-
in-the-loop features in a CRAN faces many challenges that range from effective predictions to
user behavior tracking, effective caching, and optimized resource management.

Some recent works such as in [3]-[13] have studied a number of ideas related to CRANSs
with human-in-the-loop. In [3] and [4], a new approach is proposed for predicting the users’
mobility patterns using a deep learning algorithm and a semi-Markov process. The authors
in [5] proposes a new type of user-initiated network for cellular users to trade data plans by
leveraging personal hotspots with users’ smartphones. The work in [6] investigated the probability
of predicting users’ mobility patterns. Nevertheless, the mobility prediction works in [3]-[6]
focused only on the prediction phase and did not study how the users’ mobility patterns can
be used to optimize the wireless performance using user-centric caching and resource allocation
techniques. The authors in [7] developed a data extraction method using the Hadoop platform
to predict content popularity. The work in [8] proposed a fast threshold spread model to predict
the future access patterns of multimedia content based on social information. In [9], the authors
exploited the instantaneous demands of wireless users to estimate the content popularity and
devise an optimal random caching strategy. The authors in [10] proposed an echo state network
to predict the users’ content request distribution and mobility patterns in CRANs. The work in
[11] proposed a caching-based milimiter wave (mmWave) framework, which pre-caches video
contents at the base stations for handover users to reduce the connection delay. In [12] and [13],
the authors proposed a novel resource allocation approach based on the social context of wireless
users. However, most of these existing caching works [7]-[13] were typically restricted to static
networks without mobility and ultra dense users. Note that, in these contributions [7]-[13], the

cache content is stored at the terrestrial static base stations. However, the cache content at a



static base station cannot be effectively used to serve the mobile users as they move outside
the coverage range of the base station. In addition, while a mobile user moves to a new cell,
its requested content may not be available at the new base station and, consequently, the users
cannot be serviced properly. In such case, to serve the mobile user, one content needs to cached
at multiple base stations which will not be efficient. Therefore, there is a need to track the users’
mobility patterns so as to improve the caching efficiency. To this end, unmanned aerial vehicles
(UAVs) can be used as flying base stations to dynamically cache the popular contents, track the
mobility pattern of the corresponding users and, then, effectively serve them. In this case, due to
the high altitude and flexible deployment of the UAVs, they can establish reliable communication
links to the users by mitigating the blockage effect.

The use of UAVs for enhancing wireless communications in cellular and ad hoc networks was
studied in [14]-[20]. However, this existing literature [14]—[20] was focused on performance
analysis and did not consider prediction of user-centric patterns such as mobility nor does it
study the use of UAVs for caching purposes. The prediction of the users’ mobility patterns can
enable the UAVs to effectively move and provide service for the ground users. Moreover, when
UAVs are considered within a CRAN system, the network must take into account the fact that
the fronthaul links that connect the UAVs to the cloud will be capacity-limited. This is due to the
fact that the bandwidth of the UAVs fronthaul links is limited. To overcome this limited-fronthaul
capacity challenge, one can use content caching techniques to proactively download and cache
content at the UAVs during off peak hours or when the UAVs are back at their docking stations.
The use of caching enables the UAVs directly transmit the content to its requested user, thus
reducing the fronthaul traffic load.

The main contribution of this paper is to develop a novel framework that leverages user-centric
information, such as content request distribution and mobility patterns, to effectively deploy
cache-enabled UAVs while maximizing the users’ QoE using a minimum total transmit power
of the UAVs. The adopted QoE metric captures human-in-the-loop features such as transmission
delay and the users’ perceptions on the rate requirement, depending on their device type. In
the proposed framework, the cloud can accurately predict the content request distribution and
mobility patterns of each user. These predictions of user’s behavior can then be used to find
the optimal locations and content caching strategies for the UAVs. Unlike previous studies such

as [7]-[11] that predict the users’ behavior using only one non-linear system, we propose a



conceptor-based echo state network (ESN) approach to perform users’ behavior prediction. Such
an ESN model with conceptors enables the cloud to separate the users’ behaviors into different
patterns and learn these patterns independently, thus leading to a significant improvement in the
accuracy of predictions. Moreover, unlike previous studies such as [14]—-[20] that consider the
deployment of the UAV's assuming static users, we study the deployment of cache-enabled UAV's
in CRANs with mobile users. In the proposed CRANs model, we derive the optimal user-UAV
association, the optimal locations of the UAVs as well as the content to cache at the UAVs. To our
best knowledge, this work is the first to analyze the use of caching at the level of UAVs, given ESN-
based predictions on the users’ behavior. To evaluate the performance of the proposed approach,
we use real data from Youku for content requests as well as realistic measured mobility data from
the Beijing University of Posts and Telecommunications for mobility simulations. Simulation
results show that the proposed algorithm can yield 40% gain in terms of the average transmit
power of the UAVs compared to a baseline algorithm without cache. Moreover, the proposed
algorithm can also yield 61% gain in terms of the percentage of the users with satisfied QoE
compared to a benchmark scenario without UAVs.

The rest of this paper is organized as follows. The system model and problem formulation are
presented in Section II. The conceptor ESN for content request distribution and mobility patterns
predictions is proposed in Section III. The proposed approach for user-UAV association, content
caching, and optimal location of each UAV is presented in Section IV. In Section V, we provide

numerical and simulation results. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a CRAN system servicing a set ¢/ of U mobile users via a set R
of R remote radio heads (RRHs) acting as distributed antennas. The RRHs are grouped into £
clusters using K-mean clustering approach [21] so that zero-forcing beamforming (ZFBF) [22]
can be used to service the users. In this system, a set K of KX UAVs equipped with cache storage
units can be deployed to act as flying cache-enabled RRHs to serve the ground users along with
the terrestrial RRHs. For the UAV-to-users communication links, since the high altitude of the
UAVs can significantly reduce the blocking effect due to obstacles, we consider air-to-ground
UAV transmissions using the millimeter wave (mmWave) frequency spectrum. Meanwhile, the

terrestrial RRHs transmit over the cellular band and are connected to the cloud’s pool of the



Jay )

\‘

y 3 I

0O

@ User @A0 RRH ":g UAV 9 Cache _l Content server
{¢—= MmWavelink 4== Cellular link <¢== DSL link

Fig. 1. A CRAN with cache-enabled UAVs.

baseband units (BBUs) via capacity-constrained, digital subscriber line (DSL) fronthaul links.
Further, the cloud connects to the content servers via fiber backhaul links. The transmissions
from the cloud to the UAVs occurs over wireless fronthaul links using the licensed cellular band.
Consequently, the UAVs’ wireless fronthaul links may interfere with the transmission links from
the RRHs to the users when the user’s requested content needs to be transmitted from the content
Server.

In our model, the content server stores a set A of all NV contents required by all users. The
contents are of equal size L. Caching at the UAVs, referred to as “UAV cache” hereinafter, will
be used to store the popular content that the users request. By caching predicted content, the
transmission delay from the content server to the UAVs can be significantly reduced as each
UAV can directly transmit its stored content to the users. Different from caching at the RRHs or
BBUs, caching at UAVs allows servicing mobile users when their QoE requirement cannot be
satisfied by the RRHs. We denote the set of C' cached contents in the storage units of UAV k&
by Cx, where C' < N and k£ € K. For simplicity, we assume that each user can request at most
one content during each specified time slot 7. We also let A7 be the duration of time slot 7 that
also represents the maximum transmission duration of each content. The maximum transmission
duration A7 is determined by the proposed algorithm in Section IV. We assume that the content
stored at the UAV cache will be refreshed every period that consists of 7' time slots and this
UAVs caching is performed at off peak hours when the UAVs return to their cloud-based docking

stations for purposes such as battery charge. Table I provides a summary of the notations used



TABLE 1
LIST OF NOTATIONS

Notation Description Notation Description
U Number of users C Number of the contents that are stored at UAV cache
K Number of UAVs F Number of intervals in each time slot
R Number of RRHs H Number of time slots to collect user mobility
Pr Transmit power of RRHs P i Transmitted power of UAV or RRH
N Number of contents T, AT Time slot index, Time slot duration
i, ki Path loss of UAVs-users dt ki Distance between RRHs or UAVs and users
Tr ks Yr ks Pk Coordinates of UAVs 05, Rate requirement of device type
Lrs Free space path loss do Free-space reference distance
fe Carrier frequency lf ki Path loss of fronthaul links
LoSs MNLoS Path loss exponents XoLes s XONLos Shadowing random variable
Ve ko> Veki SINR of user i LYo, LYS LoS/NLoS path loss from the BBUs to UAV k
t Small interval 1%, 1S LoS/NLoS path loss from the to UAV k to users
c Speed of light hi ki Channel gains between the RRHs k and user ¢
Drin Delay Crhi Fronthaul rate of UAV or RRH k
CX, ki Rate of UAV-user link Cf, g Rate of RRH-user link
Qrin QoE of each user ¢ T Number of time slots for caching update
Tt,iy Yt Coordinates of users Pr Transmit power of the BBUs

throughout this paper.

A. Mobility Model

In our system, we assume that the users can move continuously. In this case, we consider
a realistic model for periodic, daily, and pedestrian mobility patterns according to which each
user will regularly visit a certain location of interest. For example, certain users will often go
to the same office for work at the same time during weekdays. The locations of each user are
collected by the BBUs once every H time slots. Here, the duration of H time slots is considered
a period of one hour for each user. In addition, we assume that each user moves between two
collected locations at a constant speed. The mobility pattern for each user will then be used to
determine the content that must be cached as well as the optimal location of each UAV which
will naturally impact the QoE of each user.

In this model, the associations of the mobile users with the UAVs or the RRHs can change
depending on the QoE requirement. Since the users are moving continuously, the locations of the
UAVs must change accordingly so as to serve the users effectively. However, for tractability, we
assume that the UAVs will remain static during each content transmission. In essence, the UAVs
will update their locations according to the mobility of the users after each content transmission

is complete at a current location.



B. Transmission Model

Next, we introduce the models for transmission links between BBUs and UAVs, UAVs and
users, and RRHs and users. For ease of exposition, a time slot 7 is discretized into F' equally
spaced time intervals ¢, i.e., A7 = F't. The time interval ¢ is chosen to be sufficiently small so
that each user’s location can be considered constant during ¢ as in [15] and [23].

1) UAVs-Users Links: The mmWave propagation channel of the UAVs-user link is modeled
using the standard log-normal shadowing model of [24]. The standard log-normal shadowing
model can be used to model the line-of-sight (LoS) and non-line-of-sight (NLoS) links by
choosing specific channel parameters. Therefore, the LoS and NLoS path loss of UAV £ located

at (T,x, Yrk, hr ) transmitting a content to user ¢ at interval ¢ of time slot 7 is [25] (in dB):

55 (e, Wryi) = Lis (do) 4 10105 10g (dy ki (Wi, Wrti)) + Xopess 6))
B (e o, Wr i) = Lips (do) +10pNLos 108 (di i (Wr by Wrti)) F Xowes ()

where w, ¢ = [Trk, Yrk, Rri) 18 the coordinate of UAV k during time slot 7 with A, being
the altitude of UAV £ at time slot 7. Also, w, = [%1,, y:;] is the time-varying coordinate of
user ¢ at interval ¢. Lpg (dp) is the free space path loss given by 20 log (dy f.4m/c) with dy being

the free-space reference distance, f. being the carrier frequency and c being the speed of light.

di i (Wrp g, Wryi) = \/(xm — xTvk)Q + (Y — yﬁk)z + hi,k is the distance between user 7 and
UAV E. ppos and pinpos are the path loss exponents for LoS and NLoS links. x,, ¢ and Xoy
are the shadowing random variables which are, respectively, represented as the Gaussian random
variables in dB with zero mean and oy,5, OnLos dB standard deviations.

In our model, the probability of LoS connection depends on the environment, density and
height of buildings, the locations of the user and the UAV, and the elevation angle between the
user and the UAV. The LoS probability is given by [14] and [17]:

Pr (155) = (1+ Xexp (=Y [¢ — X])) ", 3)
where X and Y are constants which depend on the environment (rural, urban, dense urban, or
others) and ¢; = sin™" (h, x/d; ji (W41, Wy ;) is the elevation angle. Clearly, the average path

loss from the UAV £k to user ¢ at interval ¢ is [17]:
Lii (Wo ey Wrpi) = Pr(157) X 553 + Pr (%) < g, 4)

where Pr (IN:°5) = 1—Pr (143). Based on the path loss, the average signal-to-noise ratio (SNR)



of user ¢ located at w,.; from the associated UAV £k at interval ¢ is given by:
Py 1i
- ; (%)
10lt,ki(wr,t,kvwr,t,i)/loo-Q
where P, j; is the transmit power of UAV £ to the user ¢ at time ¢, and o? is the variance of

v o _
Veki =

the Gaussian noise. We assume that the total bandwidth available for each UAV is By, which
is equally divided among the associated users. The channel capacity between UAV £ and user ¢
for each content transmission will be C’X i = i g—ZlogQ (1 + 7;’ ,m) where U, is the number of
the users associated with UAV &. )

2) BBUs-UAVs Ground-to-Air Links: For the BBUs-UAVs (ground-to-air) link, we consider
probabilistic LoS and NLoS links over the licensed band. Since the distance of the UAVs
fronthaul link may be larger compared to the distance of the UAV-user link, the cellular band
can provide a more reliable transmission and a smaller path loss compared to the mmWave
channel. In such a model, NLoS links experience higher attenuations than LoS links due to the

shadowing and diffraction loss. The LoS and NLoS path loss from the BBUs to UAV k at time

t of time slot 7 can be given by [14]:

LoS —
LY = dy i (o wrs5) " (6)

S —
LS = ndy (Wi gy wre5) s (7)

where w,; g = [xp,yp] is the location of the BBUs, and / is the path loss exponent. The LoS
connection probability and the average SNR of the link between the BBUs and UAV £ can be
calculated using (3)-(5).

3) RRHs-Users Links: In our model, RRHs are grouped into F clusters. Then, the RRHs in
each cluster use ZFBF to improve the users’ rates. The received signals of the users associated

with RRHs cluster ¢ at interval ¢ is:

by =/ PrH, ,F; 0., +n, (8)
where H,, € RUs*#a ig the path loss matrix with U, being the number of users associated with
RRH cluster ¢, and R, is the number of RRHs’ antennas. Pr is the transmit power of each
RRH which is assumed to be equal for all RRHs. a;, € RYs*! is the transmitted content at
interval ¢ and n;, € RV~*! is the noise power. Also, Fy, = H}., (Ht,qHEq)_l € RExVa ig the
beamforming matrix [26]. We also assume that the bandwidth of each user associated wth the

RRHs is B. Then, the received signal-to-interference-plus-noise-ratio (SINR) of user ¢ in cluster



M, at interval ¢ will be:
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where M is the set of the RRHs in group j, {; is the set of the users associated with the
RRHs in group j, h;, € R is the channel gain between the RRHs in cluster M, and

user ¢ with hy 4 = Gt4ids g (xi,yi)_ﬁ , Ot.qi 1s the Rayleigh fading parameter at interval ¢, and

digi (i, y;) = \/ (g — :vtji)Q + (Yrqg — yt7i)2 is the distance between RRH ¢ and user 7 at interval
tofigi € REa<! is the beamforming vector. Given (9), the channel capacity between RRH cluster
M, and user ¢ for each content transmission is:

F
CH. =Y Blog, (1+7,). (10)

t=1
C. Quality-of-Experience Model

Given the proposed models in the previous subsections, here, we present the QoE model for
each user. The quality-of-experience of each user is formally defined as a concrete human-in-
the-loop metric that captures each user’s data rate, delay, and device type.

1) Delay: In the considered CRAN system, contents can be transmitted to the users via
three types of links: (a) content server-BBUs-RRHs-user, (b) content server-BBUs-UAV-user,
and (c¢) UAV cache-user. The backhaul link connecting the cloud to the core network is assumed
to be fiber and, therefore, its delay is neglected. We assume that the capacity of the wired
fronthaul links between the BBUs and the RRHSs is limited to a maximum rate of vy for all
users. Consequently, the fronthaul rate for each user receiving a content from the RRHs will be
vry = vp/Nrg with Npg being the number of the users receive contents from the RRHs. Thus,

the delay of a user 7 receiving content n over the three types of links at each time slot 7 can be

written as:
% + C':L,qz-’ link (a),
Drin= CLFk + ﬁ link (b), (11)
CVL ) link (c) ,

T,k

where CI) is the rate of content transmission from the BBUs to UAV k which is calculated

analogously to (9) and (10). Next, we derive the lower bound on the delay that each user can



10
tolerate for each content transmission.

Proposition 1. The lower bound of the delay for each user ¢ receiving content n are given by:

L L
min ¢ — < D:in (12)
v’ Cp o
where C'2** = Bylog, (1 + 10(LFS<d0)+10uL(,SIDIE§E(hmin)*4"Los)/1002) with P,,., being the maximum

transmit power of each UAV, and h,,;, being the minimum altitude of the UAV.

Proof. From (11), we can see that the delay of link (b) is larger than that of link (c) and the
minimum delay of the link (a) is L/vr. Hence, we only need to consider the delay values
between L/vpy and L/CY,;, k € K. To maximize CY,,, we consider dyj; (Wr sk, Wryi) = h,

and P, ,; = Ppax. Then, the rate of the UAV-user link CX i 1S given by:

Py g
CY.; = FByl 1 _ ’
ki Vi082 ( + 10lt,ki(w‘r,t,kyw‘r,t,i)/loo.Z)

Pmax
< FBylog, [ 1+
B ViR ( ]_Ol];?lii(wﬂ',t,kaw‘r,t,q‘,)/loo_Q>

(a)

P
- vios? ( * 10(Lrs (do)+10p10s log(h)4‘7h’5)/100'2) ’

(13)
where (a) follows from the fact that with a probability close to one (greater than 99.99%), the
Gaussian random variable x,, . will have a value larger than —4o0y,s. From (13), we can see
that, as h increases, the capacity C’X ; decreases. Therefore, we set h = hpi,. This completes

the proof. [

From Proposition 1, we can see that the minimum delay of each user depends on the rate of
the fronthaul links and the maximum transmit power of the UAVs. Therefore, we can improve the
QoE of each user by adjusting the UAV’s transmit power. In particular, as the number of users
increases and the rate of fronthaul links decreases, the QoE requirement of users can be satisfied
by adjusting the UAVs’ transmit power. Note that, the upper bound of the delay A7 is set by
the system requirement. Using the results of Proposition 1, we can categorize the sensitivity to
the delay into five groups using the popular mean opinion score (MOS) model [27] which is
often used to measure the QoE of a wireless user. The mapping between delay and MOS model

[27] is given by:

DT,i,n = A7 - DT7i7n ) (14)
AT — min {L, _Cr{:ax}
v w

which is shown in Table II.
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TABLE II
MEAN OPINION SCORE MODEL [27]

QoE Poor Fair Good | Very Good | Excellent
Interval scale | 0-0.2 | 0.2-0.4 | 0.4-0.6 0.6-0.8 0.8-1

2) Device Type: The screen size of each device type of the user will also affect the QoE
perception of the user, especially for video-oriented applications. Indeed, users who own devices
that have larger screens (such as tablets) will be more sensitive to QoE compared to those who
own smaller devices (such as small smartphones). We capture the impact of the screen size of
each user ¢ using a parameter S; that reflects the diameter length of the user’s device. Typically,
devices with a larger screen size, can display content at a higher resolution thus requiring a higher
data rate. We assume that the rate requirement of user ¢ with device .S; receiving a content n at
interval ¢ is dg, , = Sién, where C’n is the rate requirement of each user receiving content n.

The mapping from the rate requirement of user device to the MOS model can be written as:

1, j>6sm
Vi = =05 (15)
Oa .7 < 651-,717

where j € {C'tv Jis C{Iqi}. From (15), we can see that the device type score can be equal to 1 or 0
meaning that the MOS can be “Excellent” or “Poor”. The QoE of each user ¢ receiving content

n at time slot 7 can be given by [27]:

F
Qrin=0C Dm',n + (2 Z Viis (16)
t=1

where ¢; and ¢, are weighting parameters with (; + (o = 1.

D. Problem Formulation

Here, we first find the minimum rate required to meet the QoE requirement of each user asso-
ciated with the UAVs. Next, we determine the minimum transmit power of each UAV required to
meet the QoE threshold of the associated users. Finally, we formulate the minimization problem.
From Table II, we can see that, for 0.8 < Dmv,n < 1, the MOS of delay will be “Excellent”,
which means that the delay is minimized. In this case, Divin = 0.8 is the minimum value that
maximizes the delay component of user ¢’s QoE, during the transmission of a given content n.
We define the rate that achieves the optimal delay as the delay rate requirement and also, define

the rate that meets the rate requirement of device as the device rate requirement. Consider the



12

transmission between a UAV k located at w, . and a user ¢ located at coordinates w-; ;. From

(11), the delay rate requirement for UAV £ transmitting content n to user ¢ at time slot 7 is:

< L I ¢ Ck7

AT—Dipj (AT—min{L %})— L

R o min UF7Ck C‘II-«—'

Cﬂk’i,n - i " (17)
n € Ck

_ )
(T o
'UF k]

From (17), we can see that, by storing content n at cache of UAV £, the delay rate requirement
for minimizing delay decreases.

Let dg, », be the device rate requirement of user 7 associated with a UAV. Clearly, the QoE is
maximized when CY,; > max {CF,;

B 1 R J— R
the user’s QoE is 4%, = maX{Cﬂkm

/ F, 551.7”}. Hence, the minimum rate required to maximize
/ F ,551.,”}. Based on (5), the minimum transmit power

needed to guarantee the QoE requirement of user ¢ receiving content n at interval ¢ is:
min (SR _ 26R Uk /Bv _ 1 210Zﬁ,ki(wT,t,kyw-r,t,i)/l[] 18
tki (wT,t,k7 i n) =(2%n . ‘ (18)

From (18), we can see that the minimum transmit power of UAV £k transmitting content n to
user ¢ depends on the UAV’s location, the rate needed to satisfy the QoE requirement of user ¢,
and the transmitted content n.

Given this system model, our goal is to find an effective deployment of cache-enabled UAVs to
enhance the QoE of each user while minimizing the transmit power of the UAVs. This problem
involves predicting the content request distribution and periodic locations for each user, finding
the optimal contents to cache at the UAVs, determining the users’ associations and adjusting the
locations', and transmit power of the UAVs. This problem can be formulated as follows:

T F
min >N NN P (wrk 0 nn), (19)

CrUr ks Wr t &
TR T 1 keK icUy g, t=1

S. t. Apin < hrp k €K, (19a)
0 < Puin < PiclkeKk, (19)

"Typically, the speed of a UAV can reach up to 30 m/s while the average speed of each pedestrian ground user is less than
2 m/s. Therefore, in our model, we ignore the time duration that each UAV uses to change its location.
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where Tmt“,‘m is the minimum transmit power of UAV £k to user ¢ at interval ¢ during time slot 7.
n.; is the content that user ¢ requests at time slot 7, U, ;, is the set of the users that are associated
with UAV £k at time slot 7. A, 1s the minimum altitude that each UAV can reach at time slot
7. Here, (19b) captures the fact that each cache storage unit at the UAV stores a single, unique
content, and (19¢) indicates that the transmit power of the UAVs should be minimized. Since the
problem as per (19) is to satisfy the rate needed for meeting each user’s QoE requirement during
the next time period 7', the predictions of users behavior will directly impact the solution. From
(19), we can see that the prediction of the users’ mobility patterns enable the BBUs to find the
optimal locations of the UAVs. Moreover, by predicting the users’ content request distribution

the BBUs can determine the most popular content to cache at the UAVs.

ITI. CONCEPTOR ECHO STATE NETWORKS FOR CONTENT AND MOBILITY PREDICTIONS

In this section, we propose a prediction algorithm using the framework of ESN with conceptors,
to find the users’ content request distributions and their mobility patterns. The predictions of
the users’ content request distribution and their mobility patterns will then be used in Section
IV to find the user-UAV association, optimal locations of the UAVs and content caching at
the UAVs. Echo state networks are a special type of recurrent neural networks designed for
performing non-linear systems forecasting [28]. The ESN architecture is based on a randomly
connected recurrent neural network, called reservoir, which is driven by a temporal input. The
state of the reservoir is a rich representation of the history of the inputs so that a simple linear
combination of the reservoir units is a good predictor of the future inputs. In our model, the
reservoir will be combined with the input to store the users’ context information and will also be
combined with the trained output matrix to output the predictions of the users’ content request
distribution and mobility patterns. Here, a user’s context is defined as the current state and
attribute of a user including time, week, gender, occupation, age, and device type (e.g., tablet
or smartphone). Therefore, an ESN-based approach can use the users’ context to predict the
corresponding behavior such as content request and mobility.

Compared to traditional neural network and deep learning approaches such as in [3], an ESN-
based approach can quickly learn the mobility pattern and content request distribution without
requiring significant training data due to the use of the echo state property. However, traditional

ESN-based prediction algorithms such as in [10] can be trained to predict only one mobility
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pattern for each user. In particular, to predict the weekly mobility pattern of each user using the
traditional ESN approach, the users’ context information for an entire week need to be used as
input of the ESNs that act as one non-linear system. In this conventional ESN approach, it is
not possible to separate the users’ contexts in a week into several days and train the ESNs to
predict the user’s mobility in each day with one specific non-linear system. To enable the ESN
algorithm to predict the user’s mobility pattern and content request distribution with various
non-linear systems, the notion of a conceptor as defined in [29], is an effective solution that
allows characterizing the ESN’s reservoir. Conceptors enable an ESN to perform a large number
of mobility and content request patterns predictions. Moreover, new patterns can be added to the
reservoir of the ESN without interfering with previously acquired ones. For each ESN algorithm,
an ESN can record a limited number of history input data due to the echo state property of each
ESN. Consequently, the learned pattern will be removed as the recorded input data is updated.
Here, we call the ability of recording a limited number of history input data as the memory of
the ESN’s reservoir. The idea of a conceptor can be used to allocate any free memory of an
ESN’s reservoir to the new learned patterns of the mobility and content request distribution.
Next, we first introduce the components of a conceptor ESN-based prediction algorithm. Then,
we formulate the conceptor ESN algorithm to predict the content request distribution and mobility

patterns of the users.

A. Conceptor ESN Components

The conceptor ESN-based prediction approach consists of five components: a) agents, b)
input, ¢) output, d) ESN model, and e) conceptor. Since the content request and mobility pattern
are user-specific, we design the specific components for the algorithms of the content request
distribution and mobility pattern predictions, separately.

1) Content request distribution prediction: The content request distribution prediction algo-
rithm has the following components:

e Agent: The agent in our ESNs is the cloud. Since each ESN scheme typically performs a
content request distribution prediction for just one user, the cloud’s BBUs must implement U
conceptor ESN algorithms.

e Input: The conceptor ESN takes input as a vector & j = [xy1,- - , Ty NI]T that represents the

context of user j at time ¢ which includes gender, occupation, age, and device type (e.g., tablet
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or smartphone). Here, NV, is the number of properties that constitute the context information of
user j. The vector x; ; is then used to determine the content request distribution y, ; for user j.
Note that, the input of the ESNs is the information related to the users’ content requests. Our
goal is to predict the content request distribution using the context of each user.

e Output: The output of the content request distribution prediction ESN at time ¢ is a vector
of probabilities y, ; = [pij1, Pij2, - - -, Prn] that represents the probability distribution of content
request of user j with p.;, being the probability that user j requests content n at time ¢.

e ESN Model: An ESN model for each user j can find the relationship between the input x; ;
and output y, ;, thus building the function between the user’s context and the content request
distribution. Mathematically, the ESN model consists of the output weight matrix W?"Om €
RN*Nw and the dynamic reservoir containing the input weight matrix W?"i“ € RNwxNe  and
the recurrent matrix W7 € RNexNw with N,, being the number of the dynamic reservoir units.
For each user 7, the dynamic reservoir will be combined with the input @, ; to store the history
context of user j. The output weight matrix W;"Om with the reservior is trained to approximate
the prediction function. The ESN model of user j is initially randomly generated following a
uniform distribution. To ensure that the reservoir has the echo state property, W7 is defined as
a sparse matrix with a spectral radius less than one [30].

e Conceptors: For content request distribution prediction, we collect the users’ context infor-
mation and the corresponding content requests during the same time slots for different weeks
to train one content request distribution. We refer to each content request distribution as one
prediction pattern. Given a sequence of the reservoir states v = [vi . ... v} ] with v} =
[U;jl, e ,vti,j NJT being the reservoir state of prediction pattern ¢ at time ¢ and the state

correlation matrix R; =E [’ui j (vfe j)T], the conceptor of prediction pattern ¢ will be [29]:

1

M; = Ri(R; +x7°I) (20)
where Yy is aperture defined in [29]. The aperture x needs to be appropriately set for accurately
learning several mobility patterns. When the aperture is small, the reservoir of the ESN slightly
changes for learning each new pattern. However, for a large aperture, the reservoir of the ESN
changes significantly.

2) Mobility pattern prediction: The components of mobility pattern prediction algorithm are:

e Agents: The agents in our conceptor ESNs are the BBUs. Since each ESN scheme typically
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performs mobility prediction for only one user, the BBUs must also implement U conceptor
ESN algorithms.

o Input: My ; = [My 1, , My NIH]T represents the current location of user j and the context
of this user at time ¢. Using input m, ;, the future locations of user j can be predicted.

o Output: S, ; = [Sj1,"** , St NS]T represents the predicted locations of user j in the next time
slots, where NV, is the number of locations in the next /N, time duration H.

e ESN Model: The ESN model of mobility prediction consists of the output weight matrix
W € RN-Nv  the dynamic reservoir containing the input weight matrix W' € RNwx e,
and the recurrent matrix W; € RN»*Nv_ The generation of the mobility prediction ESN model
is similar to the one in the content request distribution prediction case.

e Conceptors: For mobility pattern prediction, we consider each user’s mobility in each day

during one week as one prediction pattern. The expression of the conceptors is the same as the

one for the content request distribution given in (20).

B. Conceptor ESN Algorithm for Content and Mobility Predictions

Here, we present the proposed conceptor ESN algorithm to predict the content request dis-
tribution and mobility. The proposed algorithm consists of two stages: training and prediction
stages.

1) Training Stage: The dynamic reservoir state v;j of prediction pattern ¢ for user j at time

t which is used to store the states of user j is given by [30]:

’Ui,j = f(W?vifl,j + W?,inth) s (21)

where f(z) = 75 Note that, we consider the input and corresponding prediction output
as a training data. In this case, we use Ny, training data that consists of N, users’ contexts
and the corresponding content request to calculate the conceptors and train the output weight
matrix W?""“t. Based on /V,, training data and (21), the reservoir states before update for each
prediction pattern j is vl = [0,v},,...,v%, _; ;| and the updated reservoir states are v’ =

i

old,j

will be used to train an input simulation matrix D; € RNv>Nw

[vi ..., v, ;] The matrix v
and vé- will be combined with the updated reservoir states of other prediction patterns to train
the output weight matrix.

Then, D; will be combined with output weight matrix W?’Out to predict the content request

distribution pattern for each user. For each added learning pattern ¢ of each user j, the update
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of D; will be [29]:

D; = D,q; + Diincdﬁ (22)

) T ) ) L
where Df,. ; = ((SST/NW +X’2I)TSTT/N“,> with § = Fi vl and T = W'z} —
Dy ;5 ;- Here, Fé‘l =V {Mjl, oM ;‘1} is the free memory of the reservoir with —
and V being the boolean operators [29], and ! = [} ;,... 2}, ;| is the input sequences of

prediction pattern 7. During the learning of each pattern 7 of user j, the conceptor M ; can be
computed using (20).
In our proposed ESN algorithm, the output weight matrix W?"O”t is trained in an offline

manner using ridge regression [30] to approximate the prediction function which is given by:

o,ou —1
W f = ijjT (v]ij + )\QI) , (23)

N
where v; = [v}, 0%, .. v}

T . ) )
1 (2 K3 K] 1 1
1ol | with v = [v},..., v}, ;] being the reservoir state sequence

of prediction pattern ¢ for user 7, and NV, being the number of the prediction patterns of each
user’s content request distribution. In (23), v;'» can also be used to calculate the conceptor M ;
for prediction pattern ¢ of user j.

2) Prediction Stage: Based on the learning stage, we can use the input simulation matrix D,

a,out

; to obtain the correspond-

conceptors M ; = [M ]1-, oM ;VM] , and output weight matrix W

ing predictions. In the prediction stage, the reservoir state of pattern ¢ of user j is [29]:

vy, = Cif(Wiv_,+ Djv,_, ;). (24)
From (24), we can see that the conceptor of pattern j, C;, controls the update of the reservoir
states. By changing the conceptor C, the ESN can predict different patterns in one ESN

architecture. The prediction of content request distribution ¢ for user j can be given by:

Y, = Wi, . (25)
From (24) and (25), we can see that the conceptor ESN algorithm exploits an input simulation
matrix D; to control the memory of ESN reservoir. The conceptor ESN algorithm for predicting
the content request distribution of each user j is shown in Table III.

As shown in Table III, the proposed conceptor ESN algorithm can learn each prediction pattern
by a unique non-linear system. This property of the proposed algorithm enables the ESNs to

perform the users’ behavior predictions using different non-linear systems during different time

periods. Furthermore, using the proposed algorithm, one can have the information of the reservoir
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TABLE IIT
PROPOSED CONCEPTOR ESN PREDICTION ALGORITHM

Inputs: Ny, training data,
Initialize: W™, W, Wy, =0, D; = 0.
Training Stage:
for each prediction pattern ¢ do.
if reservoir memory space F;-_l > 0 do.
(a) BBUs collect the reservoir states vg4 ; and v} to update Dj, using (22).
(b) BBUs use the reservoir states v to calculate the conceptor C; using (20).
else
(c) increase reservoir weight matrix W'§', re-train all the prediction patterns.
end if
end for
(c) BBUs collect the reservoir states for all patterns v; to train W?’O‘”, using (23).
Prediction Stage:
(a) BBUs chooses the conceptor to obtain the corresponding reservoir state, using (24).
(b) Get the prediction of content request distribution based on (25) .
Output: Prediction y, ;

memory and extract a specific prediction pattern from the learned patterns.

IV. OPTIMAL LOCATION AND CONTENT CACHING FOR UAVS

In this section, we use the content request distribution and mobility patterns predictions
resulting from the proposed conceptor ESN algorithm in Section III to solve the problem in
(19). In our model, a subset of the users selected by the BBUs are connected to the RRHs. The
remaining users are clustered into K clusters and each UAV provides service for one cluster.
Based on the associations and predictions, we determine which contents to cache at each UAV and
find the optimal location of each UAV. Finally, we analyze the implementation and complexity
of the proposed algorithm. Fig. 2 summarizes the proposed framework that is used to solve the

problem in (19).

A. Users-RRH Association

We find the user-RRH association based on the predicted users’ locations at the next time
interval. Clearly, the prediction accuracy of the users’ locations will directly affects the users

association. A user is associated with RRHs if the following condition is satisfied:

Theorem 1. Given minimum D,;, and device screen size S; of each user i, user ¢ will be
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Fig. 2. The procedure used for solving the optimization problem given in (19).

associated with a cluster k£ of RRHs if the following rate requirement is satisfied:

" L
> max —
F (AT — Doin (AT — min {—L , —C,fax }) — L
vEp k

VFU

C,

t,qi

) 08, m ¢ - (26)

Proof. Based on (14) and D, the delay is D, ;,, = AT — Dyin (AT — min{ L _L }), and,

o O
hence, the delay rate requirement for RRH cluster ¢ transmitting content n to user ¢ during time

slot 7 will be:
L
Cl, = ~ : (27)
AT—Dmin<AT—min{L L })— L

vp? O vEU

Therefore, the delay rate requirement during each interval is equal to qui / F'. Since the device

rate requirement is Jg, ,,, the rate of RRH cluster ¢ transmitting content n to user i, C . must

T,qt
satisfy C}'; > max {CF;

/ F, 651.@}. This completes the proof. [

From Theorem 1, we can see that the user-RRH association depends on the fronthaul rate of
each user, the delay rate requirement, and the device rate requirement. From (27), we can see
that the fronthaul rate of each user decreases as the number of the users associated with the
RRHs increases. Clearly, the decrease of the fronthaul rate for each user will improve the delay

rate requirement.

B. Optimal Content Caching for UAVs

In our model, the remaining users who are not associated with RRHs, will be served by the

UAVs. In this case, the users-UAVs associations need to be determined. To this end, we use K-
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mean clustering approach [21] in which the users are clustered into K groups. By implementing
the K-mean clustering approach, the users that are close to each other will be grouped into
one cluster. Thereby, each UAV services one cluster and the user-UAV association will be
determined. Then, based on the UAV association, we find the optimal contents to cache at
each UAV. The content caching will reduce the transmission delay and, hence, decrease the
delay rate requirement. From (17), we can see that, optimal contents to store at the UAV cache
lead to maximum reduction of the UAV’s transmit power. The reduction of UAV transmit power
is caused by the decrease of the delay rate requirement. Let p;; = [Dji1, Pji2, - - - Djin] be the
content request distribution of user ¢ during period j that consists of H time slots. The optimal

contents that will be stored at each UAV cache can be determined based on the following theorem.

Theorem 2. The optimal set of contents Cy to cache at each UAV k during period 7' is:
T/H H

Ck — argmaxzz Z Z Dy, m Tkz n) (28)

Jj=1 7=1i€l; j, n€Cy

CR
H R R T,ki,n(n€Cy
P (W, CRyon) P (wrp, CRn) ) > S, s
’ n¢ ’ neCy
here AP, R O ikin(neey) Crikiin(necy)
w Jimokin= Pmln(wT t,k>s 651,”7 )TLQC _P:—n];? (wT,t,ka 07—7]”'; Tl) ce ) : ’F k Z 55’7;,”2 - ’F k 9
n k
0, otherwise,

Proof. Since the delay rate requirement C¥,.  depends on the contents at the UAV cache, it

T,ki,n
b .tt (5R o kai,n(néck) kaz,n(n%Ck) (5 L t min __ F min Th th
can be written as 4;%, = max = : = ,05,m - Let P = 21 o ki- Then the
t=
reduction of UAV transmit power by content caching during time slot 7 of period ;7 will be:
CR
. 7. ki,n(neCy
PEi (wea e Cyim) = o (wrs, Cffom) o Zhslest) > 5
’ ng¢Cy ’ ? n€eCy
AP i i R CT ki n(neCk) C?kl n(nECk)
T kin™— Pgé?(w‘r,t,k? (531.7”, n)nﬁéck — P:_I’lér; (wﬂt’;“ Cr,ki7 TL) e’ —F > (SSi,n > —F
neCy
0, otherwise,

Considering the fact that the content request distribution changes once every [ time slots, the

power minimization problem for UAV £ during a period that consists of H time slots is:

T/H H T/H H T/H H
B a
mln E E iy —mln g E E T’jl)l,rcll _Hlll’l E E g ;nT"}ﬂ —max g E E APj r kins
T=1iclU, J=1 m;=14icl; J=1 7=1icl; 1 Jj=1 7=1icl,

®) TZ/HZH 3

—max E (pj,znAP , T,k n) + § (pj,znAP T,k n) )
j=1 17=1i€lr ) \n€Cy n¢Cy
T/H H

- maX Z Z Z Z pj ’L’ILAPJ T,k n) (29)

j=1 7=14i€l,  n€Cy
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where (a) follows the fact that minimizing the transmit power of the UAVs is equivalent to
maximizing the reduction of the UAVs’ transmit power caused by caching, and (b) is obtained
by computing the average power reduction using content request probability distribution of each

user. This completes the proof. O

From Theorem 2, we can see that when the fronthaul rates of all users are the same, the transmit
power reduction AP; ;1 ,, will be a constant. Subsequently, the optimal content caching becomes
T/H H
Crp =argmax », > > . Dj, Which corresponds to the result given in [10]. From Theorem
Ck Jj=1 t=1li€l, yneCy
2, we can see that the content caching depends on the pre-knowledge of users association as well
as the content request distribution of each user. Therefore, by predicting the mobility pattern and

content request distribution for each user, we can determine the optimal content to cache.

C. Optimal Locations of UAVs

Here, we determine the optimal UAVs’ locations where the UAVs can serve their associated
users using minimum transmit power. Once each UAV selects the suitable contents to cache, the
transmission link (BBUs-UAV-user or UAV-user) for each content and the delay rate requirement
kai,n in (17) are determined. In this case, the rate 55,%” which is used to meet the QoE requirment

of each user is also determined. Next, we derive a closed-form expression for the optimal location

of UAV £ during time slot 7 in two special cases.

Theorem 3. To minimize the transmit power of UAV £k, the optimal locations of UAV &k
during time slot 7 for cases: a) UAV k positioned at low altitudes compared to the size of its
corresponding coverage, hfjk < (x4 — xT,k)Q + (yri — yT,k)2 and pnLos = 2, b) UAV £ is placed
at high altitudes compared to the size of its corresponding coverage, hi,k > (x,; — $T7k)2 +

(Yei — yT,k)Q, are given by:

F F
Z Zﬂft,i%,ki Z Zym%,ki

iU,y t=1 i€y ), t=1

P »Yrk = F
> D ik > > ki

€U, t=1 €Uy t=1

: (30)

Lr g =

where ¥y ; = (255"/3—1> 5210(Lrs[@)Hx)/10 yih 5 = { NS for case a),

OLos, for caseb).

hr,k

dy ki ('wm,k Wt

Proof. At very low altitudes, h2, < (; — o)’ + (Wi — Yri)s

] ~ 0 leading



22

to ¢ = 0°, and, consequently, Pr (I}9°) = 1. Thus, we have Lii (Wo g, Wrpi) = 136 and

(18) can be rewritten as P2 = (2553»/3_1)0210<LFS(d°)+X"NL05)/mdt,ki (Wrt g, Wo i) N5,
Now, we find the optimal location (., ¥, ) of UAV k during time slot 7 in order to minimize
F

> > P%%. In this case, the derivation of 3 3 P™" with respect to x, is given by:

i€l j, =1 i€l t=1
F
min 1mMin
a%: tZP‘rtkz %: tZaP‘rtkz F MNLoS _ 1
1eUr €U K =1 2 9 9 0 —
& = o = Z ZMNLoS (Trk—Tt) ¢t,ki(($r,k = 2t3) +(Yrk — Yt,i) +h7‘,k}>
T,k T,k €Uy, t=1
(31)
F
F > let,ﬂl}t,ki
. . . . 1eU. t=
Given finLos = 2, (31) is simplified to > > 2 (@, —x4;) Y 2:i=0. As aresult, 7, = ———.
i€U, ), t=1 > > Yk
€U, p t=1
F
Z Z Yt,iVt, ki
. . iel/{‘r,k t=1
Likewise, we can show that vy, = =
>0 Vi
€U, g t=1
. 2 2
For case b), since h?;, > (x1; — Zrk)” + (Wi — Yrk) > depi (Wrpp, Wry i) = by and, hence,

hT,k

dt,ki('wr,t,k:wﬂ—,t,i

F
I;%;. The derivation of Y- > Pr}; will be:

] ~ 1 — ¢ = 90°. Consequently, Pr ({195) = 1. Then, we have Iy j; (Wrtk, Wryi) =

'L’EM—Rk t:1
a . % tzl P‘Ir'ntlrllcl a HLoS 1
1€Ur i 2 2 2 2
= Z ZMLOS (If,k*fl?t,i)%//t,ki((ﬂﬁﬂk —24) +Yrk — Ye,i) +h7_k) )
8.’17-,— k . ’
’ €U, t=1
o 2
~ Y Zum (Trh—200) Prpsh ™ = 0. (32)
i€UL , t=1
F F
g: 21 Ty iV ki %: 21 Yt,iP¢, ki
UL | 1= €U f t= .
Asaresult, 2, = —————— and Yy, = — . This completes the proof. O
) F 5 F
> > ik > > Uik
ieuﬂk t=1 ieuﬂk t=1

Using Theorem 3, we can find the optimal locations of the UAVs given the users association
and altitude h.j, for the two special cases. For more generic cases, it is highly challenging to
find the optimal UAVs’ locations using derivation, since the UAV’s altitude depends on the z
and y coordinates of the UAV. Therefore, we use a learning algorithm given in [31] and [32]
to find a sub-optimal solution. The learning algorithm can learn the network state and exploit
different actions to adapt the UAV’s location according to the network. After the learning step,

each UAV will find a sub-optimal location to service the users in a power efficient way.
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D. Implementation and Complexity

The BBUs implement the conceptor ESN algorithm to predict the content request distribution
and mobility patterns for each user. Hence, the BBUs have the prediction information for
each user. Moreover, the BBUs have the information of the RRHs cluster and their locations.
Therefore, the proposed solutions in Section III and IV to the problem in (19) are all implemented
in the BBUs. The centralized implementation enables the BBUs to quickly determine the optimal
location for each UAV without any information exchange. Furthermore, using a centralized
implementation, one can directly modify the UAVs’ locations and users’ associations directly
when the prediction of the conceptor ESN algorithm is not accurate.

The complexity of the proposed algorithm can be divided into two parts: the conceptor ESN
algorithm and the optimization algorithm. The complexity of the conceptor ESN algorithm
depends on the number of patterns that needs to be leaned for each user. Therefore, the complexity
of the conceptor ESN algorithm will be O(Ux2T'/H). Note that, the implementation of the
user-RRH association algorithm depends on the number of the RRH clusters, and, hence, the
complexity of this algorithm is O(E) where E is the number of the RRH clusters and 27"/ H is
the number of the patterns that each user needs to learn. Finally, the algorithm complexity for
finding the optimal content to cache and optimal location of each UAV all depend on the number

of the UAVs. Thus, the algorithm complexity is O(K) with K being the number of UAVs.

V. SIMULATION RESULTS

For our simulations, the content request data that the ESN uses to train and predict content
request distribution is obtained from Youku of China network video index*. Here, one circular
CRAN area with a radius » = 500 m is considered with U = 70 uniformly distributed users
and 1R = 20 uniformly distributed RRHs. The detailed parameters are listed in Table V. Actual
pedestrian mobility data is measured from the real data generated at the Beijing University of
Posts and Telecommunications. For comparison purposes, we investigate: a) optimal algorithm
with complete users’ information, b) ESN algorithm in [10] to predict the content request
distribution and mobility pattern, and c) random caching with ESN algorithm in [10] to predict
content request distribution. All statistical results are averaged over 5000 independent runs. The

accuracy of ESN prediction is measured by normalized root mean square error (NRMSE) [29].

>The data is available at http://index.youku.com/.
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TABLE 1V
SYSTEM PARAMETERS
Parameter | Value | Parameter Value Parameter Value
F 1000 Pr, Pp 20, 30 dBm K 5
B 1 MHz N 25 C 1
XoLes 5.3 H 10 T 120
Ny 1000 do 5m fe 38 GHz
B, 1 GHz A 0.01 Rmin 100 m
L 1 Mbit max 20 W 0s;,n 5 Mbit/s
J4LoS s [ANLoS 2,24 Ny, Ns 4,12 X 15
Ny 1000 o> -95 dBm ¢, G 0.5,0.5
X oNLos 5.27 1 2, 100 XY 11.9, 0.13
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Fig. 3. Mobility patterns predictions of Conceptor ESN algorithm. In this figure, the green curve represents the conceptor ESN
prediction, the black curve is the real positions, top rectangle j is the index of the mobility pattern learned by ESN, the legend

on the bottom left shows the total reservoir memory used by ESN and the legend on the bottom right shows the NRMSE of

each mobility pattern prediction.

Fig. 3 shows how the memory of the conceptor ESN reservoir changes as the number of the
mobility patterns that were learned by the conceptor ESN varies. Here, one mobility pattern
represents the users’ trajectory in one day and the colored region represents the memory used
by the conceptor ESN. In Fig. 3, we can see that the memory usage increases as the number of
the learned mobility patterns increases. This is due to the fact the conceptor ESN uses a limited
memory to learn mobility patterns. From Fig. 3, we can also see that the conceptor ESN uses
less memory for learning mobility pattern 2 compared to pattern 6. In fact, mobility pattern 2
is similar to mobility pattern 1, and, hence, the conceptor ESN requires only a small amount of

memory to learn mobility pattern 2. However, the conceptor ESN needs to use more memory to
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Fig. 4. Content request probability predictions.

learn mobility pattern 6. Clearly, when a new mobility pattern needs to be learned, the proposed
approach only needs to learn the difference between the learned mobility patterns and the new
one.

In Fig. 4, we show the variations of two content request probabilities of a selected user during
one day. The user is randomly chosen from the set of users in the network. From Fig. 4, we can
see that, the probability with which this user requests content 1 decreases during working hours
(9:00-11:00 and 14:00-18:00) and increases at all other times. Similarly, the request probability
of content 2 increases during working hours and decreases during the rest of the time. This
is due to the fact that content 1 is an entertainment content while content 2 is a work-related
content. Fig. 4 also shows that the sum of the probability with which this user requests content
1 and content 2 exceeds 0.5 during each hour. This is because the user always requests a small
amount of contents during one day.

Fig. 5 shows how the average minimum transmit power of each UAV in a time period changes
as the number of the users varies. In Fig. 5, we can see that the average UAV transmit power
of all algorithms increases as the number of the users increases. This is due to the fact that the
number of the users associated with the RRHs and the capacity of the wireless fronthaul link
of UAVs are limited. Therefore, the UAVs need to increase their transmit power to satisfy the
QoE requirement of each user. From Fig. 5(a), we can also see that the proposed approach can
reduce the average transmit power of the UAVs of about 20% compared to the ESN algorithm
used to predict the content request and mobility for a network with 70 users. This is because the

conceptor ESN that separates the users’ behavior into multiple patterns and uses the conceptor
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Fig. 5. Average minimum transmit power as the number of the users varies. (K =5 and C' = 1.)
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to learn these patterns, can predict the users’ behavior more accurately compared to the ESN
algorithm. Fig. 5(b) shows that the proposed algorithm can yield, respectively, 40% and 25%
gains with respect to reducing the average transmit power compared to the proposed algorithm
without cache and the proposed algorithm without optimizing the UAVs’ locations.

Fig. 6 shows the rate needed for satisfying the QoE requirement of each user versus the
wireless fronthaul rate of each user. In Fig. 6, we can see that the rate required to maximize the
users QoE of BBUs-UAV-user link decreases as the wireless fronthaul rate increases. However,
the rate needed to maximize the user’s QoE of UAV-user link not change when the fronthaul
rate varies. Clearly, the use of caching at the UAVs can significantly reduce the rate required to
reach the QoE threshold of each user when the wireless fronthaul rate for each user is low.

In Fig. 7, we show how the percentage of users with satisfied QoE requirement changes as
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Fig. 8. Average minimum transmit power as the number of UAVs changes (U = 70 and C' = 1).

the number of the users varies. From Fig. 7, we can see that the percentage of the satisfied
users decreases as the number of the users increases for the case with no UAVs. However, using
the proposed approach, the QoE remains maximum for all number of users when the UAVs are
deployed. The proposed algorithm can yield a gain of 61% gain in terms of the percentage of
the users with satisfied QoE compared to the proposed algorithm without UAVs for the network
with 120 users. This is due to the fact that the UAVs can maximize the users’ QoE when the
RRHs are not able to satisfy the QoE requirements.

In Fig. 8, we show how the average minimum transmit power of UAVs changes as the number
of the UAVs varies. From Fig. 8, we can see that the average minimum transmit power of each
UAV decreases from as the number of the UAVs increases. In particular, using the proposed
algorithm, the average transmit power of the UAVs decreases by 85% when the number of
UAVs increases from 3 to 7. This is due to the fact that for a higher number of UAVs the

number of users associated with each UAV decreases, and, hence, the average transmit power
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Fig. 10. Average minimum transmit power and average altitude vs. the number of the UAVs.

per UAV also decreases. As shown in Fig. 8, the proposed approach becomes closer to the
optimal one as the number of UAVs increases. The reason is that the location prediction error
is higher for a lower number of UAVs (or equivalently the clusters).

Fig. 9 shows the average minimum transmit power of each UAV as a function of the number
of the contents stored at the UAV cache. As shown in Fig. 9, the average minimum transmit
powers of all considered algorithms increase as the number of storage units increases. This is
due to the fact that the probability that the requested contents of the users are stored at the UAV
cache increases, and, consequently, the UAV will directly transmit the requested contents to the
users. Fig. 9 also shows that the ESN algorithm that predicts the content request and mobility
can yield up to 49% power reduction compared to the ESN algorithm that predicts the mobility
with the random caching scheme.

In Fig. 10, we show how the average transmit power and average altitude of the UAVs change
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as the number of UAVs varies. In this case, we compare the result of our proposed approach
with the optimal result obtained by an exhaustive search method. For the learning algorithm,
the interval of the neighboring action of each coordinate is 3 m. Figs. 10(a) shows that the
optimal location of the UAV approached by Theorem 3 has only 5.8% deviation compared to
the exhaustive search. Furthermore, as shown in Fig. 10(b), by increasing the number of UAVs
from 3 to 7, the average altitude of the UAVs decreases from 980 m to 302 m in the proposed
algorithm case. This is due to the fact that for a higher number of the UAVs, each UAV needs
to provide coverage for a smaller area and, hence, it can be deployed at a lower altitude. From
Figs. 10(a) and 10(b), we can also see that, as the number of the UAVs increases, the result of
Theorem 3 approaches the optimal solution that is obtained by the exhaustive search. This is
due to the fact that for a higher number of UAVs, the coverage area of each UAV decreases,

and, hence, the approximation condition in Theorem 3 will hold with a tighter bound.

VI. CONCLUSIONS

In this paper, we have proposed a novel framework that uses flying UAVs to provide service
for the mobile users in a CRAN system. First, we have presented an optimization problem that
seeks to guarantee the QOE rquirement of each user using the minimmum transmit power of
the UAVs. Next, to solve this problem, we have developed a novel algorithm based on the echo
state networks and concepters. The proposed algorithm allows predicting the content request
distribution of each user with limited information on the network state and user context. The
proposed algorithm also enables the ESNs separate the users behavior into several patterns and
learn these patterns with various non-linear systems. Simulation results have shown that the
proposed approach yields significant performance gains in terms of minimum transmit power

compared to conventional ESN approaches.
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