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Abstract

In this paper, we consider a finite network of unmanned aerial vehicles (UAVs) serving a given
region. Modeling this network as a uniform binomial point process (BPP), we derive the downlink
coverage probability of a reference receiver located at an arbitrary position on the ground assuming
Nakagami-m fading for all wireless links. The reference receiver is assumed to connect to its closest
transmitting node as is usually the case in cellular systems. After deriving the distribution of distances
from the reference receiver to the serving and interfering nodes, we derive an exact expression for
downlink coverage probability in terms of the derivative of Laplace transform of interference power
distribution. In the downlink of this system, it is not unusual to encounter scenarios in which the line-
of-sight (LOS) component is significantly stronger than the reflected multipath components. To emulate
such scenarios, we also derive the coverage probability in the absence of fading from the results of
Nakagami-m fading by taking the limit m — co. Using asymptotic expansion of incomplete gamma
function, we concretely show that this limit reduces to a redundant condition. Consequently, we derive
an accurate coverage probability approximation for this case using dominant interferer-based approach
in which the effect of dominant interferer is exactly captured and the residual interference from other
interferers is carefully approximated. We then derive the bounds of the approximate coverage probability
using Berry-Esseen theorem. Our analyses reveal several useful trends in coverage probability as a

function of height of the transmitting nodes and the location of reference receiver on the ground.
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I. INTRODUCTION

With significant advancements in the drone technology, like increased payload capacity, longer
average flight time, better power management techniques, and the capability to harvest solar
energy, unmanned aerial vehicles (UAVs) can serve a multitude of purposes such as surveillance,
localization and communication, making them a flexible solution to augment and enhance the
capabilities of the current cellular systems. They provide an especially attractive solution to
provide connectivity in the wake of disasters and accidents, which may completely cripple the
terrestrial networks due to damaged equipment and/or loss of power [2], [3]. In general, UAVs
provide a realistic solution in scenarios where there is a temporary need for network resources.
These could include first responder situations, such as the one discussed above, or even usual
civilian scenarios, such as football games or concerts. In order to provide short-term connectivity
in such scenarios, temporary deployment of UAVs may be faster and more cost-effective com-
pared to the temporary installation of conventional base stations. They are also currently being
investigated as a possible candidate for providing ubiquitous connectivity in remote areas that
lack traditional cellular infrastructure. While there is no doubt about the deployment flexibility
and general benefits of UAVs, their performance in terms of the coverage and capacity provided
to the terrestrial users is not quite well understood. This is especially true for a realistic use
case of finite UAV networks, where we have a given number of UAVs serving users in a given
region (such as a city). In this paper, we use tools from stochastic geometry to derive downlink
signal-to-interference ratio distribution for this setup, which immediately provides useful insights
into the coverage performance of the resulting three-dimensional network. Several intermediate

results derived in this paper are also of general interest for the analysis of finite wireless networks.

A. Motivation and Related Work

The improvements in payload capacity and prolonged flight times have enabled the commer-
cial use of UAVs, especially for communication purposes. UAV networks differ significantly
from conventional wireless networks in terms of the mobility, energy constraints, as well as
the propagation conditions. This has stimulated interest in the design of application-oriented
protocols for the effective utilization of aerial networks [4]-[6]. For instance, a cluster-based
protocol, which improves the resilience to frequent link failures resulting from the motion of
UAVs, has been proposed in [5]. The flexibility offered by the mobility of UAVs has motivated a

lot of algorithmic research efforts towards finding efficient trajectories and deployment strategies



aimed at optimizing different network resources [7]-[13]. For instance, an algorithm to optimize
transmit power and frequency spectrum for autonomous self-deployment was proposed in [7].
An adaptive algorithm for adjusting the UAV heading was proposed in [8] to improve the uplink
performance and minimize mutual interference. An approach to optimize the altitude of UAVs
to maximize coverage on the ground was proposed in [9]. The performance of UAVs acting
as relays between terrestrial users and base stations was investigated in [10]. The problem of
efficient placement of UAVs with slightly different objectives was studied in [11], [12].

Another direction of research, which is somewhat complementary to the one discussed above,
is to develop techniques for the realistic system-level analysis of UAV networks. As is the case
in terrestrial networks, such as cellular networks, these techniques can then be used to compare
the performance of different deployment strategies and to benchmark their performance against
standard baselines. In the case of UAV networks, the system-level performance has mostly been
studied through field tests and simulations [14]-[16]. For instance, in [15] the outage time and
average goodput were compared for different routing algorithms using real-world experiments.
While field-tests or simulations can provide initial insights into the behavior of the network,
these methods are usually not scalable when the number of simulation parameters is large. One
way of reducing the dimensionality of such problems is to endow the locations of the nodes
with a distribution, which additionally allows the use of powerful tools from stochastic geometry
to derive easy-to-use expressions for key performance metrics. While stochastic geometry has
already emerged as a preferred tool for the analysis of ad hoc and cellular networks [17], its
potential has not yet been exploited for the analysis of UAV networks. One relevant prior art
is [18], which studies the co-existence of a device-to-device (D2D) communication network with
a single UAV. In this work, we will develop the first comprehensive model aimed at the downlink
analysis of a finite multi-UAV network using tools from stochastic geometry.

While infinite homogeneous Poisson Point Process (PPP) has become a canonical model for
the spatial locations of terrestrial base stations [17], it is not quite suitable for UAV networks,
especially when a given number (likely small) of UAVs is deployed to cover a given finite region.
For such scenarios, a simple yet reasonable model for the spatial distribution of UAVs is the
homogeneous binomial point process (BPP) [19], [20]. More sophisticated models incorporating
inter-point interaction are usually far less tractable. While BPP has not yet been used for the
analysis of UAVs, it has received significant attention for the analysis of terrestrial networks with

a given number of nodes. Until recently, however, the analysis was focused on ad hoc networks,



in which a given number of nodes were assumed to be distributed uniformly at random in a
circular region with the reference receiver located at the center of the circle [21]—[25]. The outage
probability for this reference receiver is then derived assuming that it is served by a reference
transmitter located at a fixed distance (not a part of the BPP). In order to model cellular systems
meaningfully with this setup, two key generalizations are required: (i) reference receiver can lie
anywhere in the region, and (ii) serving base station for the reference receiver will be chosen
from the BPP itself. For the latter, it is reasonable to assume that the reference receiver is served
by the closest base station from the BPP. The exact analysis of this finite cellular network setup
was done very recently in [26]. An approximate analysis of a related setup also appears in [27].
Building on the distance distributions derived in [26], [28], we will perform downlink analysis for
an arbitrarily located user on the ground that is served by a finite network of UAVs. In addition
to providing the first such system-level analysis of a finite UAV network, several intermediate
results provide constructs that are more generally applicable to the analysis of finite wireless

networks. With this brief discussion, we now provide a precise summary of our contributions.

B. Contributions

Modeling of finite three-dimensional network. We develop a general framework for the down-
link coverage analysis of finite three-dimensional networks under a fairly general channel fading
model. In particular, we consider a finite network of a given number of UAVs whose locations are
modeled as a uniform BPP in a plane at a fixed altitude above the ground. The reference receiver
is assumed to be located at some arbitrary position on the ground. As noted above, we assume
that the reference receiver connects to its closest transmitting UAV node. We then derive the
distribution of distances from the reference receiver to the serving and interfering nodes. As the
air-to-ground channel models are still under active investigation, we assume Nakagami-m fading,
which allows us to control the severity of multi-path fading (to emulate variety of scenarios)
while retaining analytical tractability. In some deployment scenarios, the LOS component may be
significantly stronger than the reflected multipath components, which means it may be reasonable
to study system performance in the absence of small-scale fading. Such scenarios, which will
henceforth be referred to as “no-fading” environments, are also studied in detail.

Coverage probability. We derive an exact expression for coverage probability of the reference
receiver located at some arbitrary position on the ground for Nakagami-m fading channel in terms
of the Laplace transform of interference power distribution. While this problem has been studied

in [25] for terrestrial networks, the complexity and form of the final expression forbids any further



analysis or simplifications. In this paper, we develop an approach that explores the possibility of
deriving the results for no-fading case from the results of Nakagami-m fading by applying the
limit m — oco. We use well-established mathematical results, especially asymptotic expansion
of incomplete gamma function, in the evaluation of this non-trivial limit. Quite interestingly,
we discover that this limit renders a redundant condition for coverage probability, thereby not
yielding an explicit expression for the no-fading case. As a result, we derive a simple yet accurate
approximation for coverage probability using dominant interferer-based approach in which the
effect of dominant interferer is accurately captured and the aggregate interference from the rest of
the interferers is carefully approximated. We then derive the bounds of the approximate coverage
probability using Berry-Esseen theorem (BET) [29].

Performance analysis. We analyze the trends in coverage probability for different system
parameters such as the altitude of the UAVs, the location of the reference receiver, the path-
loss exponent of the channel, and the Nakagami-m fading parameter. We demonstrate that the
coverage probability of the reference receiver degrades as the altitude of the transmitting nodes
increases when the area over which the transmitters are scattered remains unchanged. We also
observe that the coverage probability of the reference receiver increases as the path-loss exponent
of the channel increases. These observations offer useful guidelines for the system design. Several

intermediate mathematical results are of general interest to the analysis of finite networks.

II. SYSTEM MODEL

We consider a network of /V transmitting devices (UAVs) uniformly distributed in a finite area
forming a BPP. While the devices can be strategically placed to optimize the network utility,
in the absence of exact traffic patterns, these optimal locations are not known, which justifies
the BPP assumption. As discussed in the previous section, BPP is a finite-network analogue
of a PPP, which is a popular model for infinite networks. This is a simple yet reasonable first
step towards comprehensive understanding of these networks. The locations of the devices are
uniformly distributed in a disk b(o’,r,) of radius 7, centered at o’ = (0,0, %), as depicted in
Fig. 1. For simplicity, we assume that all the devices are positioned at the same height h. The
locations of the devices are denoted by {y,};=1.xn = ® C R2. The distance of the i** node from
o' is denoted by Z; = ||y; — o|| for 1 < ¢ < N. The sequence of distances {Z;} is unordered,
which means that the indices are assigned arbitrarily to the nodes. For this setup, we perform
downlink coverage analysis for a reference receiver located at some arbitrary position on the

ground, at a distance of xy from the origin o = (0,0,0). For brevity, the reference receiver
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will henceforth be referred to as only the receiver. Since the point process is invariant to the
orientation of the axes, we can assume, without loss of generality, that the receiver lies on the
x-axis, i.e., the location of the receiver is x = (zo,0,0). The distance between the receiver and
the projection of the location of i’ transmitting device onto the ground plane is denoted by S;,
as shown in Fig. 2. The angular separation between the receiver position and the projection of
the device location is denoted by ¢, which is uniformly distributed in the range [0, 27). Note
that S;, Z;, x¢, and @ are related by the cosine rule. The receiver is assumed to connect to its
closest transmitter from ®. The unordered set of distances from the receiver to the transmitters is
denoted by {W;} = {,/S? + h?}. The ordered set of distances is denoted by {W Yi=1:n, where
W(; is the distance between the receiver and the it" closest transmitter to the receiver. From this
set, the serving distance is denoted by 12 = W ,). The distance to the closest interfering node is
denoted by U; = W) and the unordered set of distances between the receiver and remaining
N — 2 interferers is denoted by {U; }i—o.n_1-

We assume that all the nodes transmit at the same power. For notational simplicity, we assume
that the thermal noise is negligible as compared to the interference experienced at the receiver
and is hence ignored. Owing to the limited knowledge of air-to-ground channel models for low
altitude platforms, we choose Nakagami-m fading, which is a generalized model that mimics
various fading environments. We denote the Nakagami-m fading parameter for the serving link
and interfering links by m and m, respectively. We restrict the values of m to integers for

analytical tractability. The signal-to-interference ratio (SIR) at the receiver is
GoR™
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where o > 2 is the path-loss exponent, and GGy and G; are channel fading gains corresponding
to serving and interfering links. The channel gains Gy and G; follow a gamma distribution with
the probability density function (PDF) [30]

mmgmfl

falg) = W exp(—mg).

III. COVERAGE PROBABILITY

In this section, we derive the coverage probability for the setup introduced in the previous
section. Using properties of gamma function, we will express it in terms of the derivative of
Laplace transform of interference power distribution. We also attempt to obtain the coverage
probability for no-fading channel from the results of Nakagami-m fading by taking the limits
m — oo and my — oo. Quite interestingly, we discover that this limit renders a redundant
condition for coverage probability, thereby not yielding an explicit expression for the no-fading
case. Hence, we provide an alternate approach to compute the coverage probability in this case
by approximating the aggregate interference from devices other than the dominant interferer with

a normal random variable and capturing the effect of dominant interferer exactly.

A. Relevant Distance Distributions

We begin our analysis by characterizing the distribution of distances between the receiver
and the transmitters in this subsection. While somewhat similar expositions about distance
distributions can be found in [26], [28] in the context of terrestrial networks, the distributions
corresponding to the dominant interferer-based approach are unique to this paper because this

paper is the first one to apply that approach to the analysis of finite cellular networks.

Lemma 1. The distances from the receiver to the set of independently and uniformly distributed
transmitting devices, denoted by {W;}, conditioned on xo = ||x||, are independent and identically

distributed (i.i.d.), with the cumulative distribution function (CDF) of each element given by

Fw,, (wilzo), h < wi < wp,
Fiy (wilarg) = 1 : ()
Fyy, ,(wilxo), wp < w; < wy

with
2 _ p? 2 _ p2 1 1 1
Fw, , (wilzo) = LR, Fy, ,(wilxo) = ST (07— Ssin207 ) + = " — 5sin2¢" |,
’ r2 ’ 2 T 2

H g
2)



where

. w?+ 23 — d? . 22+ d* — w?
0" = arccos | ————— |, ¢" = arccos [ —— |,

220/ w? — h? 291,
Wy, = /(T — 20)2 + h2, wy = \/(ra + 10)2 + h2, and d = /72 + h2.

Proof: See Appendix A. [ ]

Lemma 2. The PDF of W; conditioned on x is

Jwia (wilzo), h < w; < wpy
fw: (wilxo) = : 3)

fWi,Q(wi|I0)7 Wy, < Wy < Wy

with

ZUJZ' ZUJZ wf + IQ - d2
(pedzdy

fWi,l (wz’%) = Ea fWi,Q (UJZ’J?()) = 7T_7”Z arccos on\/m
where w,, = \/sy? + h?, w, = /s> + h% and d= /1% + h?.

Proof: fw,(w;|zo) can be derived by taking the derivative of Fyy, (w;|z¢) from Lemma 1
with respect to w;. [ ]
For a receiver located at the origin o, this piece-wise expression for the PDF reduces to a

simple expression, which is given in the following Corollary.

Corollary 1. The set of distances from a receiver located at the origin to the transmitting devices

are i.i.d. with the PDF of each element given by

2w;
fw,(w;) = ¢ "o : )
0, otherwise

Lemma 3. The PDF of the serving distance R conditioned on x is

fri(r|zo), h<r <w,
falrlrg) = 771 , ©)

fR72(T|:L‘U)7 Wy < T S Wy

with
fra(rlzo) = N (1= Fy,, (rl20)" " fw,, (r]o), @)
Fra(rlzo) = N(1= Fw,,(rlz0)" " fiw,,(r|z0). )
Proof: See Appendix B. |

If the receiver is located at the origin, the above result reduces to a simple expression, which

is given in the next Corollary.
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Corollary 2. The PDF of the serving distance R for a receiver located at the origin is

N—1
2r d? — r?

falr) =N >  h<r<d 9)

We now derive the distribution of distance between the receiver and interferers, conditioned
on the serving distance [2. This distribution will be useful in characterizing the interference

experienced at the receiver.

Lemma 4. Conditioned on the serving distance R, the unordered set of distances between the
interferers and the receiver, {U;};,—1.n_1, are i.i.d. with the PDF of each element given by

fw, , (wilzo)

r<u; <w,

fouluilr,xg) = § 1~ Fwalrleo) , (10)
0, otherwise
with
k=1,1=1, h<r<w, r<u<w,
k=21=1, h<r < wp, w, < u; < w,p
k=21=2, We, <7 < wp, 1T < u; < wp.
Proof: See Appendix C. [ ]

For the case where the receiver is located at the origin, the conditional PDF of distances

between the receiver and the interferers is given in the following Corollary.

Corollary 3. For a receiver situated at the origin, the PDF of distances between the receiver
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and the interferers U; conditioned on the serving distance R is given by

2u,;
: r<u; <d

fu ) = &= . (11)
0 otherwise

We now characterize the joint distribution of serving distance R and the distance between
the receiver and the dominant interferer U;. This distribution holds the key to the derivation
of approximate coverage probability using the dominant interferer approach (for the no-fading
case) as discussed in the sequel. Note that the dominant interferer in the absence of fading is
the second closest transmitter to the receiver. Since it is easy to visualize and understand these
cases in two dimensions, we consider the projections of the transmitting nodes onto the ground
plane. We will then use these results to derive the distributions in the actual three-dimensional
setup. Let the distance from the receiver to the projections of locations of serving transmitter
and dominant interferer be denoted by Sy and S, respectively. Using the same argument as
presented in Lemma 4, the piece-wise nature of joint distribution of R and U, can be attributed
to the following three cases: (i) both the disks b(x, so) and b(x, s1) are entirely contained in the
disk b(o,r,), (ii) the disk b(x, s¢) is entirely contained in b(o,r,), while b(x, s1) overlaps only
partially with b(o,r,), and (iii) both the disks b(x, sg) and b(x, s1) overlap only partially with

b(o,r,). Note that the converse of case (ii) is not valid since s; > s.

Lemma 5. The conditional joint PDF of serving distance R and the distance of the dominant

interferer from the receiver Uy is given by

N(N - 1)szk (r|$0)fWi,z(u1’x0)

Tru, (ryur|zo) = x[1 = Fy,, (ug]z)]¥ 2, h<r<u <w,, (12)
0 otherwise
with
k=1,1=1, h<r<w, r<u <w,
k=21=1, h<r <wy, w, <u <w,
k=21=2, Wy <7 < wp, T < up < w,p.
Proof: See Appendix D. [ |

For the case where the receiver is at the origin, this result reduces to a simple expression,

which is given in the next Corollary.
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Corollary 4. For a receiver located at the origin, the joint PDF of the serving distance R and

the distance of the dominant interferer from the receiver Uy is
N(N —1)(d? —u?)N—24
( zlg h;@\? Tul, h<r<u <d
fron(rou) = (& =12 . (13)

0 otherwise

We now determine the distribution of the set of distances between the receiver and the
interferers {U; };—2.ny_1, conditioned on the serving distance R, and the distance of the dominant
interferer from the receiver U;. Let the distances from the receiver to the projections of remaining
N — 2 interferers be denoted by {S;};—2.nv_1. The piece-wise distribution of these distances
depends on the following four cases: (i) all the disks b(x, s¢), b(x, s1), and b(x, s;) are completely
contained in b(o, 1), (ii) the disks b(x, sq) and b(x, s1) are completely contained in b(o, ), while
the disks b(x, s;) overlap only partially with b(o, ), (iii) the disk b(x, s¢) is completely contained
in the disk b(o,r,), while b(x,s1) and b(x,s;) partially overlap with b(o,7,), and (iv) all the
disks b(x, so), b(x, s1), and b(x, s;) overlap partially with b(o, r,). Note that other combinations

are not valid because sy < 51 < ;.

Lemma 6. Conditioned on the serving distance R and the distance of the dominant interferer
from the receiver Uy, the set of distances between the remaining interferers and the receiver,

{U;}izo.n—1, are ii.d. with the PDF of each element given by

W, . \Wi| Lo
1 ka( (l| |) ) up < up < wy,
Jui (wilr, u, 2) = Wi (U1fTo , (14)
0, otherwise
with
k=1,1=1, h<r<w,, r<u <w, u <u <w,
k=21=1h<r<wy, rguléwmywmguigwp
k=21=2, hgrgwmawmgulgwpa up < up S wy
k=2,1=2 w, <r<wy, r<u Sw, u Ju < w,.
Proof: The proof follows along the same lines as that of Lemma 4. [ |

The following Corollary gives the conditional PDF of distances of interferers from the receiver

U, for the special case where the receiver is located at the origin.

Corollary 5. Conditioned on the serving distance R and the distance of the dominant interferer

from the receiver Uy, the set of distances between the receiver and the interferers, {U,;}i—2.n_1,
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are i.i.d. with the PDF of each element given by
2u;
La w <u; <d
A2 — 2
fo, (wilr, uy) = ! : (15)
0 otherwise
Now that we have determined the necessary distance distributions, we will proceed to derive

the coverage probability for the receiver under Nakagami-m fading in the following subsection.

B. Coverage Probability under Nakagami-m Fading Channels

The coverage probability is formally defined as the probability with which the SIR at the
receiver exceeds a pre-determined threshold necessary for a successful communication. Recall

that the SIR at the receiver in Nakagami-m fading is given by
GoR™
Zf\gl Gi Uz‘ia ’

where o > 2 is the path-loss exponent, and Gy and G; are channel fading gains with parameters

SIR =

mg and m, respectively. We denote the set of gains for the interfering links by G = {G;} and the
set of distances of the interferers from the receiver by U = {U,}. We first calculate the coverage
probability, conditioned on R, as a derivative of conditional Laplace transform of interference

power distribution, which is given in the following Lemma.

Lemma 7. The Laplace transform of interference power distribution conditioned on the serving

distance R is

L1(s|r, z0) = B , (16)

where
o su; N\ " fw, (wilzo)
-A s Ty = 1 - - d’L
(o170 [/ (+%) TR o
" SN fwa(ule) ]
SUu, W; 2 \Ui| T
1 : ’ du; , 17
+/ () I~ Fu,, (rfo) “] 4
" N ()
su; W o (Wil Zo
(3,7”71'0) [[ ( + m ) 1_FW,L-,2<7”|:EO) U] ( )
Proof: See Appendix E. [ |

For the case where the receiver is located at the origin, this result reduces to a simple

expression, which is given in the next Corollary.
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Corollary 6. For a receiver located at the origin, the Laplace transform of the interference

power distribution conditioned on the serving distance R is

d —-m
su; @ 2u;
Li(s|r) = / <1 + 7;1 ) o 742dui (19)

Using the Laplace transform of conditional interference power distribution, we derive the

coverage probability in the following theorem.

Theorem 1. The coverage probability of the receiver in Nakagami-m fading channel is

W mo—1 (_1)k: ak N
Pe = Z k! {@A(S’ " {Eo):| _ N N(l - FWi,l (7’|ZL‘0)) fWi,l (’I“|1'0)d7’
b k=0 s=mopBr
“ mo—1
0 -1 k 8k
+ (Z ( k!) [@B(s,r,wo)}

k=0

)N(l — Fw,, (r\xo))N_lfWi’g(Mxo)dr. (20)

s=moBre
Wm

Proof: We first derive the conditional coverage probability as follows:
P(SIR > B|R,z0) = E; [P(Go > BRC“I|R,I,$0>}

_I‘(mo, moﬁro‘l)
BRI ]

k
mo—1 (moﬁro‘1>
i) N

@ g,

L &
mo—1 (—moﬁro‘)k a_k
Osk
k=0

where (a) follows from the CCDF of gamma random variable G, and (b) follows from the

Li(s|r, 1’0)} , 2D

s=moBr®

definition of incomplete gamma function for integer values of mg. The overall coverage prob-
ability can now be obtained by substituting the Laplace transform of interference distribution
from Lemma 7 in (21) and deconditioning the resulting expression over 1. This completes the

proof. [ ]

C. Limiting Case of No-fading

In this subsection, we attempt to derive the coverage probability for a no-fading environment
from the results of Nakagami-m fading by applying the limits m — oo and my — oo. This
approach has mostly been overlooked in the literature due to the complexity of the results of
Nakagami-m fading. A partial attempt to compute this limit was made in [31] where the limit

m — oo is applied only on the interfering links but not on the desired link. We show that it is
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more challenging to evaluate the limit for the desired link my — oco. Our analysis will rely on
an asymptotic expansion of incomplete gamma function.

From our approach, we observe that it is convenient to take this limit in one of the intermediate
steps in the derivation of P, under Nakagami-m fading. Substituting (46) in (21), we get the
conditional coverage probability in Nakagami-m fading as follows:

mo—1 . i N-1 oy —m
)5 G ()

k=0

mo—1 N-1 _ —m
(a) (—moBre)* [ oF sU
- Eu( Z k' 68k H 1 i m s=mofre

k=0 =1

R, .2?0:| :|
s=moBre

R7 .’170) )

(22)

where (a) follows from switching the order of differentiation and expectation by applying

=1

Dominated Convergence Theorem (DCT) [32]. Therefore, the coverage probability conditioned
on R and U can now be written as

mo—1 N-1 _ _
S~ (—mBre)* [ ok [ ( sU, O‘) m”
P(SIR > AR, U, zo) = Y ol L\ 2 T (1+ @3
( 0) k! 0sk m smmofre

k=0 i=1
The results obtained upon applying the limits on the conditional coverage probability are given

in the following Theorem.

Theorem 2. The coverage probability of the receiver for a no-fading channel conditioned on

the serving distance R and the set of interfering distances U is
0<z<l1

P (SIR > B|R, U, xp) = z=1 : (24)

S N =

z>1

where z = Bro SNt

Proof: Applying limits my — oo and m — oo in (23), we get the conditional coverage

probability as

& (—meBr) [ OF [y su; “\
P(SIR ~ BIRJ/{,:EO) B mlolglooﬂ}«l—rgo Z T [@{ i=1 (1 * m ) :|:|s moBr

mo—1 a\k kopNZ1 S\
@ (=moBr)* [ 0 ' ik
@y § Cmod)t [— IL e (=) )

= 1=

lim mozl mOBT 4 e S T u,
= — X — R
mo—00 Sk P i—1 ’ s=
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where (a) follows from applying the limit before differentiation and writing the limit of product
as product of limits, and (b) follows from the k'" derivative of exponential function followed by
the substitution z = r* SN Ty,

Now, we apply the limit my — oo to the above equation. Although the expression in (25)
resembles the Taylor series expansion of exponential function, it is not possible to directly take
the limit as both the limit of the summation and the summand approach oo. This problem has

been well studied in Mathematics [33]-[36] in relation to incomplete gamma function and this

sum is asymptotically equal to the following function.

F(mo,m()Z) 1 1 mo 1 2 mo(Z — 1)2 _7n0(zfl)2 1
SO 2t ()0 — 1) ) 4 =y 1 e =)
I'(myo) 2 T o 2 (z=1))+ 3V mom - 2 c + O(m())
(26)

For completeness, the proof of this asymptotic expansion is provided in Appendix F. Applying

the limit my — oo, we see that the limit converges to three values depending on the range of z.
This completes the proof. u

We notice that the condition under which the coverage probability converges to 1 is z < 1,
ie., fre Zf\:ll u; * < 1. This is nothing but the condition of SIR > [ in no-fading channels.
Therefore, quite interestingly, we obtain only a redundant condition when the coverage proba-
bility in no-fading channels is evaluated from the results of Nakagami-m fading. To the best of
our understanding, this insight has not been reported before in the context of the limiting case of
Nakagami-m fading. In the next subsection, we provide an accurate approximation to compute

coverage probability in the absence of fading.

D. Dominant Interferer Approach

In this method, we capture the effect of dominant interferer exactly and approximate the
aggregate interference from rest of the interferers to a Gaussian random variable. The SIR at

the receiver in the absence of fading is
R~ R™™
SIR= 7= = =2 S — 27)
> Ui Ur*+ i U;

Let In_g = Zf\;l U, . Since the distance of the interferers from the receiver U; conditioned

on R and U; are ii.d., the terms U, “ that constitute the sum [y_, are also conditionally
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1.1.d. Therefore, by central limit theorem (CLT), the sum of i.i.d. random variables /y_o can be
approximated by a normal random variable, whose mean and variance are given by the following

Lemmas.

Lemma 8. The conditional mean of the interference power at the receiver excluding the inter-

ference from the dominant interferer is

(2(N —2)(w, > — u%’a)+
(2 —a)(d? —u)
o fwia(uil2o)
Elln_ = N -2 < v du;, h < < w,, . 28
e fwia(wil2o)
N -2 u, ¢ “ duy, Wy, < up < w
\( )/’u)m ‘ 1_FWi,2(u1‘x0) ' P

Proof: The mean interference (excluding interference from the dominant interferer) condi-

tioned on the serving distance R and the distance to the dominant interferer U; is given by
E[In-2|R, Uy, 30) = (N — 2)E[U;|R, Uy, xo). (29)

This follows from the conditionally i.i.d. nature of the distances U;. Using the conditional
distribution of U; derived in Lemma 6 and solving the resulting integral gives the final result.

This completes the proof. [ ]

Lemma 9. The conditional variance of interference power at the receiver excluding the inter-

ference from the dominant interferer is

Var [Ix_o|R, Uy, 9] = (N —2) [/ u; > fu. (ui|r, uy, o) du;
h

wp 2
— (/ u; * fu, (ugr, ul,xo)dm) ] (30)
h

Proof: The proof follows from the definition of variance and conditionally i.i.d. distances

U; whose distribution is given in Lemma 6. [ ]
While these integrals can not be reduced to closed-form, it is easy to evaluate them numerically.
However, for a receiver located at the origin, these expressions can be simplified to closed-form

expressions given in the following Corollaries.

Corollary 7. The conditional mean of the interference power experienced by the receiver at the

origin excluding the interference from dominant interferer is
2(N = 2)[uf™™ — d*7°]
(o = 2)(d? — uf)

E[In_2|R, U] = 31
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Corollary 8. The conditional variance of the interference power experienced by the receiver
located at the origin excluding the interference from dominant interferer is

A — w0
(@ =)o =22 (@—w)a—1)

Var[Iy_s|R,Ui] = (N — 2) [ - ] . (32)

Using these results, we derive an accurate approximation for coverage probability in the

following Theorem.

Theorem 3. The coverage probability of the receiver can be approximated using dominant-

interferer approach as

wp wp Sl —a
P, ~ 1-Q pr “ Hiy s Jru, (ryur|zo)dudr,
h r O-IN72

where pr, , and U%\_Z are mean and variance of interference given by Lemmas 8 and 9,

respectively. Q(-) is the Q-function.

Proof: The coverage probability is given by
P. = /hwp /wp P(SIR > B|R, Uy, x0) fru, (1, ui|zo)dusdr, (33)
where the probability term in the integrand is
P(SIR > §|R,U;) = IP([N_Q < B R U{“). (34)

As stated earlier, /y_» 1s the sum of i.i.d. random variables. Therefore, by applying CLT, the

above probability is given by the CDF of a Gaussian random variable:

ﬁ_lr_a - ufa - ILLIN—2> ’ (35)

P(SIR > B|R,U;) =1 —-Q
OlIn_2

where pr,_, and a?N_2 are the mean and variance of [y_o, as given in Lemmas 8 and 9,

respectively. Substituting the above result and the joint distance distribution from Lemma 5 in

(33), we obtain the coverage probability. [ ]

E. Bounds of Coverage Probability Approximation

In this subsection, using BET, we analyze the tightness of the coverage probability approxima-
tion proposed in the previous subsection. BET gives a bound on the maximal deviation of the nor-
mal distribution from the true distribution in terms of the moments of the distribution. By BET, for
a sequence of random variables X1, Xy, ....X,,, with E[X;|R, Uy, zo] = 0, E[X?|R, Uy, 2] = o2,
E[|X;]*|R,Uy,z9] = p, and sample mean M, = +3 " X, the error between the actual
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M,/n

o

distribution F),(z) of the random variable and the standard normal distribution ®,,(x)

is bounded by %ﬁ, 1.e.,
Cp
aiy/n

where C' is a constant. The best known estimate of C' is C' < 0.4748 [37]. We now rewrite

|Fn(2) = ®p(2)] < (36)

the expression for interference in a form that will allow us to conveniently apply BET. Let

Vi =U; " and X; = V; — py, where py; is the mean interference from Lemma 8. Therefore, we
have E[X;|R,U,] = 0 and E[X?|R, Uy, z0) = Var[U; *|R, Uy, xo), which is given by Lemma 9.

The third moment of absolute value of X, p, is computed in the following Lemma.

Lemma 10. The third moment of absolute value of X; conditioned on R and U, is

¢ 0
/ —a fu, (i + p) ™, w0 da
wp ¥ —py;
E||X; 3 U = R 3 -1/« —a
[| il 1@0] = + xifUi((xi + ;) |7, ul,xg)dxi, u; =y, >0
0
uy “—py;
/ =} fo, (s + pv) ™%y, o) ey, ur® = py; <0
(37)
Proof: See Appendix G. [ ]

While it is difficult to get a simple closed-form expression for the above result, it can be
easily evaluated numerically. Using this result, along with the first and second moments of X;,

we derive the bounds of coverage probability in the following Theorem.

Theorem 4. The coverage probabilty P. of the receiver, at a distance xo from the origin, is
bounded as

P <P.< Py

with

Wp Wp C -
P = / / q’(Q(ﬂaa,N? R, U1>930)> - 03—]\?—2 fru, (7, ur|zo)dudr, (38)

_ o ]
/ / (g (8,a, N, R, Ubﬂfo)) + a?’—]\fp—Q_ Jru, (1, u1]x0)dusdr, (39)

where ®(-) is the CDF of standard normal distribution, C = 0.4748, o? is the variance given

in Lemma 9 and p is the third moment given by Lemma 0.

Proof: See Appendix H. [ |
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While these bounds are loose for very small values of N, we observe that the error between
the normal distribution and true distribution decreases at the rate (N — 2)_%. In other words, as
the number of transmitting devices grows to a large value, the approximate coverage probability
converges to the actual value. However, in the next section, we show that this approximation is

surprisingly accurate even for a small number of nodes in the network.

IV. RESULTS AND DISCUSSION

In this section, we validate our analytical results by comparing the theoretical coverage
probabilities with the simulation results for a finite network of UAVs. In addition to providing
useful design insights, we also discuss the applicability of our proposed analytic approaches to

an urban setting in which the visibility of some UAVs is obstructed/blocked by buildings.

A. Numerical Results

We simulate a finite network of UAVs with N = 5, uniformly distributed in a disk of radius
rq, = 10 km. We evaluate the coverage probability for different system parameters and compare
them with the theoretical results obtained in Theorems 1 and 3. We find that our theoretical
results match exactly with the simulations as shown in Fig. 4. The key factors that affect the
coverage probability are: (i) channel fading parameter m, (ii) path-loss exponent «, (iii) the
height of UAVs £, and (iv) the distance of the receiver from the origin xy. We study the impact
of each parameter on the coverage probability in the rest of this Subsection.

Impact of fading. We compute the coverage probability of the receiver as a function of SIR
threshold 5 for m = 1, 2, 4 and oo. Note that m — oo is nothing but the no-fading scenario.
The other parameters of the simulation are A = 10 km, xqg = 4 km, and o = 2.5. As expected,
the variance of SIR decreases with the increase in m. In other words, SIR starts concentrating
as we move from Rayleigh fading (m = 1) case to the no-fading (m — oo) case.

Impact of path-loss exponent. We study the impact of path-loss exponent v on coverage in
Fig. 5, where we plot the coverage probability as a function of SIR threshold § for different
values of «. The simulations are run for h = 10 km, m = 1, and 2y = 4 km. It can be observed
that the coverage probability degrades with a decrease in the path-loss exponent. While reducing
« increases the received power of the desired signal, it also increases the interference power,
thereby degrading the overall SIR and hence the coverage probability.

Impact of height. We compare the coverage probability of the receiver as a function of SIR

threshold § for different values of the height of UAVs (2, 4, 6, and 8 km) . The other simulation
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Fig. 4. Coverage probability of the receiver as a function of Fig. 5. Coverage probability of the receiver as a function of
SIR threshold (h = 10 km, 7o = 4 km, and a = 2.5). SIR threshold (h = 10 km, m = 1, and o = 4 km).
parameters were fixed at m = 1, a = 2.5, and xg = 1 km. It can be observed from Fig. 6
that the coverage probability deteriorates as the height & of the UAVs increases. An increase in
the height of UAVs increases the distance between the receiver and the transmitters. Intuitively,
when viewed from a receiver that moves away from the transmitters, the separation between the
serving and interfering nodes tends to diminish. This worsens the SIR and hence the coverage.
Impact of receiver distance from the origin. The impact of receiver distance from the origin
x(o on coverage probability can be studied from Fig. 7 where we plot coverage as a function of
xo for different values of h. The other simulation parameters were r, = 10 km, a = 2.5, 3 =0
dB, and N = 5. It can be observed that the coverage probability varies significantly with the

location of the receiver, which highlights the importance of assuming arbitrarily located receiver.

B. Applicability of the Proposed Results to a Relevant Urban Model

As discussed already, the main technical objective of this paper was to develop a comprehen-
sive framework for the analysis of a reasonable canonical model for finite UAV networks. Before
concluding this Section, we demonstrate that this canonical model can be enriched to some extent
while retaining its tractability. In particular, we incorporate the effect of shadowing/blocking due
to high-rises that will be prominent in urban regions, especially at higher frequencies. The system
setup is illustrated in Fig. 8. The blockages may result in attenuation of the received signal and
hence affect the coverage probability. We begin with the spatial model considered in this paper,
where N transmitting devices are uniformly distributed in a disk b(¢’,7,) at an altitude h above

the ground. Due to the presence of buildings, all the UAVs may not be visible at the receiver.
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Fig. 6. Coverage probability of the receiver as a function of Fig. 7. Coverage probability as a function of receiver distance
SIR threshold (m = 1, a = 2.5, and zp = 1 km). from the origin (m =1, r, = 10 km, & = 2.5, and N = 5).
We denote the number of visible UAVs by N, < N. In our analytical treatment, we assume that
the LOS paths from the receiver to each UAV are blocked independently of each other. In other
words, we ignore the correlation in blocking introduced by the spatial distribution of buildings
in the area. As a result, N, can be modeled as a binomial random variable. This independence
assumption will be validated through a numerical comparison in Fig. 9.

For simplicity, we limit our discussion to direct path propagation and ignore multi-path fading.
We assume that if a UAV is hidden behind a building, its signal is attenuated by a fixed factor
1. While we can easily extend this discussion to a more general setup, this simple scenario is
sufficient to fix the key ideas. For this setup, the received signal power P; from the *" transmitter,
located at a distance W; from the receiver is P, = B;W,“, where B; =1 if the UAV is visible
at the receiver and 1 < 1 otherwise. Recall that the distribution of W; is given by Lemma 2.
Now conditioned on N, = n,, we get two independent BPPs: (i) a BPP formed by n, visible
UAVs, and (i1) a BPP formed by N — n, blocked UAVs. Conditional on N, = n,, the coverage
analysis can be performed following the proposed approach. We do not go into the mathematical
details due to lack of space. Note that if 7 = 0, we get only one BPP (of visible UAVs), which
reduces this setup to that of Theorem 3, which will be used for numerical comparisons below.

The key approximation made in the above analysis is the independent blocking assumption.
We validate this assumption numerically. In particular, we simulate a urban scenario in MATLAB
with 5 UAVs uniformly distributed over a circular area of radius of 10 km. We assume a uniform
distribution of 50 buildings that are of dimensions 50m x 50m x 150m. We choose the simple

case of n = 0, i.e., we receive signals from only those UAVs that are visible. For a receiver at
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Fig. 9. Coverage Probability as a function of SIR threshold
(h =10 km, o =1 km and o« = 2.5 ).

Fig. 8. [Illustration of blockage model

a distance of 1 km from the origin and path-loss exponent of o = 2.5, we obtain the coverage
probability from simulations. For each realization, we numerically obtain n,, which is used
instead of /V in Theorem 3 to obtain the conditional coverage probability analytically. Monte-
Carlo simulations are used to average over N,. Note that the purpose of this comparison is to
show that the independent blocking assumption is reasonable. This is quite evident in the results
presented in Fig. 9, where the simulation results are the ones obtained from actual numerical
experiments without any assumptions, and the analytical result is obtained under independent
blocking assumption. This discussion shows that the canonical setup introduced in this paper

can be extended in many meaningful ways to study various aspects of UAV networks.

V. CONCLUSION

In this paper, we have presented a comprehensive downlink coverage analysis for a finite three-
dimensional wireless network formed by N UAVs. Modeling the network of UAVs as a BPP, we
characterized the distribution of distances from the receiver to the serving and interfering nodes.
We first derived an exact expression for coverage probability for the reference receiver under
independent Nakagami-m fading channels in terms of the derivatives of the Laplace transform
of interference power distribution. Using asymptotic expansion of incomplete gamma function,
we showed that the coverage probability for an important special case of no-fading cannot be
obtained explicitly as the limiting case of Nakagami-m fading by taking the limit m — oco. As
a result, we developed an alternate approach to compute the approximate coverage probability

in which the interference from dominant interferer is modeled exactly and the distribution of
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residual interference from other interferers is approximated to a normal distribution by CLT. We
then obtained the bounds of the approximate coverage probability using Berry-Esseen theorem,
which quantifies the rate of convergence of the normal approximation to the true distribution.
Our analysis revealed several useful performance trends in terms of the heights of the UAVs
and channel propagation characteristics. We also discussed a possible extension of the proposed
canonical model to a simple urban scenario in which the the UAVs are shadowed by high-rises.

This work has numerous extensions. The mathematical tools developed in the paper can be
applied to the analysis of more general three-dimensional finite networks. The setup studied
in this paper can also be extended to study the co-existence of UAV networks and terrestrial
cellular networks. From modeling perspective, a useful direction of work wold be to develop
more sophisticated but tractable three-dimensional spatial models that account for the curvature
of the earth. In terms of performance evaluation, the proposed framework can be used to study

other useful metrics besides coverage, such as throughput and energy efficiency.

APPENDIX
A. Proof of Lemma 1

The cumulative distribution function (CDF) of each element of the sequence {W;} is

— F, (, fw? — h2>, (40)

where F,(s;) is the CDF of the distance between the receiver and the projection of the location
of i*" transmitter onto the ground plane. The projections of the locations of the transmitters
form a two dimensional BPP on the ground plane. Using the approach presented in [38], the
conditional CDF of .S; is computed as the the area of intersection of the disks b(o, 7,) and b(x, s;),
divided by the area of the disk b(o,r,). Depending on the range of s;, there are two possible
cases: (i) the disk b(x,s;) is entirely contained in the disk b(o,7,), and (ii) b(x,s;) partially
overlaps with b(o, r,). Therefore, we obtain a piece-wise conditional CDF of S; as given below:

Fs,, (siz0), 0< 8 < sy
Fs,(silzo) = , (41)
FSi,2(8i‘x0)7 Sm < 8 < Sp

with
512 812 * 1 . * 1 * 1 . *
Fs,  (silzo) = T—Z, Fs. ,(si|zo) 7T_7"g(9 b sin 20%) + %(qb b sin 2¢%), (42)
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where

2 2 2 2 .2 2
s;t+xg—r ro+r, —S;
6* = arccos | —2—2) ¢* = arccos [ 2—2+—L | s, =1, — 20, and Sp = Tq + Xo.
2!1308i 2-I'Ora

Substituting (41) in (40), we obtain the conditional CDF of W;. This completes the proof.

B. Proof of Lemma 3

Since the receiver connects to the closest transmitter, the serving distance R is by definition
R = min{W;}, where the distribution of W; is given in Lemma 1. The conditional CDF of R
can therefore be computed as
Fr(r|zo) = P(R < rlzg) = 1 — P(min{W;} > rlzg) =1 =P(Wi > r,Ws > r, ..., Wy > r|x)

91— (1= Fu, (rfao)) ™, 43)

where (a) follows from the i.i.d nature of the set of distances W,. Differentiating the above

expression w.r.t. r, the PDF of the serving distance is obtained as
N-1
Fr(rlwe) = N (1= Fii(rlzo)) " fw, (r|zo). (44)

The PDF of R can be obtained by substituting the results from Lemmas 1 and 2 in the above

equation. This completes the proof.

C. Proof of Lemma 4

The joint density function of the ordered subset {W(i)}l‘zzzj\[ conditioned on the serving

distance R, and zg is

(@) N!fw~(7”|9€0)H ng (wz|l‘0 fW wz’o”ﬁo
flwey, wesy, ..., wn |, T0) = : i= ®) _1|||
e a0 1 20) Talrlzo)

where (a) follows from the joint density function for the order statistics of a sample of size
N drawn from the distribution of W;, and (b) follows from the result derived in Lemma 3.
Following the same argument presented in Lemma 3 in [26], we can say that (N — 1)! indicates

all possible permutations of the elements in the ordered set {IW; },—o.n. Hence, by the joint

F fW (wilxo)

density function for ordered set, the unordered set of distances are i.i.d. with PD TRGEDE

D. Proof of Lemma 5

For a sequence of i.i.d. random variables, {X;};—;.,, with each element characterized by PDF

fx(z) and CDF Fx(x), the order statistics {X(;)}i=1., are random variables defined by sorting
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the realizations of the sequence in the increasing order. By order statistics [39], the joint PDF

of the smallest two random variables is

fxp)xe (@1, 22) =n(n —1)[1 — Fx (22)]" 72 fx (1) fx (22). (45)

In our case, the serving distance R and the distance of the dominant interferer from the receiver
U, are the smallest distances in the set {I¥/;}. The joint PDF of the two distances is obtained

by substituting the results from Lemmas 1 and 2 in (45). This completes the proof.

E. Proof of Lemma 7

The Laplace transform of interference power distribution conditioned on serving distance R

can be derived as follows:
N-1

exp ( -5 Z GZ-UZ-_Q)
N—IZ:1

H EGi (exp ( — SGiUia>) ‘R, To
i=1

N-1 SUZ-_a —-m SUi—a -m
H<1+ - ) EUZ.|:(1+ - >

where (a) follows from the independence of channel gains and the distances of interferers from

L’I(s\r,wo) :]El[exp (—s[)’R,xo} =E; R, x

R? Zo (:b) IEU

@

R,z ; (46)

R, I0:|

the receiver, (b) follows from rewriting the expectation of product as the product of expectation
owing to i.i.d. channel gains {G;}, (c) follows from the moment generating function (MGF)
of gamma random variable (G;, and (d) follows from conditionally i.i.d. distances of interferers
from the receiver. Now, by applying the definition of mean and using the conditional PDF of U;

from Lemma 4, we get the final result. This completes the proof.

F. Proof of Asymptotic Expansion of Incomplete Gamma Function

In order to prove the desired result, we first asymptotically estimate the following auxiliary

integral as o — o0,

B
(o, B) = /0 et (1 — 1)t @7)

where «, 8 are taken to be real for simplicity. Using Taylor series expansion, we have

—at? 1t ¢
Ml —1)* = t+log(l—1)) ) = L) A
1= 1) = exp (e +log(1 - 0) ) exp[2 o (Tetily
a2 o ()™, (1t "
= gl Z 424
L (3+4+5+ )
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From multinomial expansion, it follows that

1
(3+4+ + .. ) Zak 2 (m=0,1,2...)

where
(m) 1 (m) m (m) m(15m + 17)
9 Tgn M T3y 20T Tgnt 160

So, we can now write

o0

(1 . t 7# m' t3m i Clkm)tk Z Z m| flmmther' (48)

m=0 k=0 n=0 m=0

Substituting (48) in (47),

ZZ m, o, /0 Y o praamgy (49)

n=0 m=0

With the substitution ¢ = 4/u in the following integral, we get

B at2 2 1 2 1 1 OABQ’M n—1
e 2 Tt = 557”“ mt e 2z u 2z TMdu.
0 0

With a change of variable, %2“ = s, we get
1 2
B at2 1 2 %_‘—m % n—
/ e—Ttn+2mdt — §5n+1+2m (&_52) / 6_5871+md8. (50)
0 0
We know by definition that
v(a,x) = / e 't tdt = I'(a)z*y*(a, ). (51)
0

Here, the fractional powers of x are to be understood as having principal values. Substituting

(51) in (50),

B cxt2 1 1 1 i
/ e~ 2 VTImqt = —pgrtitmy P m v (2 AL m, o (52)
1 2
:iy(”; b, ) (53)

Now we define,

ntl )
[a) ? 1 iigompfm+1 n+1 afs
Fanta) = (5) g (Mt e m)r (M5 e m ) e

Substituting (54) and (52) in (49),

1 & 2\ 2
5 ; Ap(a, ) (a) ) (55)

U (@, B) (56)
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— . (57)

Note that,

_ [afp? 2 ff e 1 (1
Ao—ﬁerf( 5 ), where erf(z)—ﬁ/oe dt—ﬁ7<2,z),
O 2[ _ap? af?

Using this key intermediate result, we will now prove our main result by deriving an asymptotic

estimate for the incomplete gamma function y(a + 1, 4+ &) as a — oc.
a+& 1
Y+ 1, a+¢&) = / e~todt Y / e "7 (a1 = 7)) "adr
0 £/
— ¢t [J(Q, 1) - I(a, —5/04)} , (58)

where (a) follows from the substitution ¢ = a(1 — 7). For § = 1, we observe that

1 2 1
lim F, (o, 3) = £ lim y(i +m, %) = j;I‘(n;_ —|—m>.

a—00 a—00 2 2
For = —¢{/a, this limit results in three sub-cases depending on ¢ relative to «:
0, ¢ = o(Va)
lim F (e, B) = iv( 5 +tm, k’), lim(a ') =k
1
iF(”;L —|-m>, Va = o(€)

Using these limits in (55) and substituting the resulting expression in (58), we obtain the
asymptotic expansion of incomplete gamma function for the special case. Now, considering

& =V2ay, we get

O o = 2\n/?
’y(a—i—l,a—l—\/Zay)N\/;e a ;Bn(y)<a) ) a — 00 (59)
where,
"L (=2) 1
S e (M ), y<0
— m! 2
Bu(y) =14, - ) ) . (60)
(=2) aﬁf’j)m F(TH— +m> +(—1)m7(ﬂ+m,y2) , y >0
— m! 2 2
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Expanding the summation and ignoring the terms for n > 2, we obtain the same result for y < 0

as follows:

v(a+1,a+V2ay) = \/;ea « \/_+\/_erf(\/—) 2\/2(1+y2)e—92+(’)(a_1) .

3

(61)
We also know that [40]

I(a+1)=V2rae *a®*[1+ O(a™)]. (62)

Therefore, from (61) and (62),

Fa+l,a++v2ay) 1 1 1 /2 oy 2 .
Tatl) —§—ﬁerf(y)—l—— a(l—l—y)ey +0(a™). (63)

G. Proof of Lemma 10

Since X; = V; — uy, and V; = U;“, the conditional PDF of X is given by

Fx,(@ilr, ug, xo) = fu (@i + pv,) = fo, (2 + ;) ~1). (64)

Now, by definition,

—a
Uy —HV;

E[|X.P|R, Ur, o] = / sl f (sl wn, ) das. ©65)

wp, * —py,
We know that w, is the smallest interference that could be caused by any of the transmitting
nodes at the receiver. Since w,“ will always be smaller than the mean interference py;, w,* —
ty, < 0. Therefore, we split the integral and change the limits accordingly. Substituting (64) in

(65) and using the conditional distribution of U; from Lemma 6, we obtain the final expression.

H. Proof of Theorem 4

The coverage probability is given by

Ra
P.=P(SIR> ) = IP’( O‘+ZN1U‘1>B>

/ / (Z_ U7 < BR — U™

/ / (Z X; < ( BIR™™ —U*— (N — 2)/1\/2.) ‘R, Ul,:co) fru, (ryur|zo)dusdr.

Let MN 9 = \/W, where 0'2 = E[X?‘R, Ul,l'o], and FMN_2<mN,2|R, U1,1'0> be the

conditional CDF of My _». The coverage probability can now be written as

R “1pme T — (N = 2y,
e [ [ (P
A g V(N — 2)0?

950) fR,Ul (7"7 Uy !xo)duldr

T, U, xo) fru, (r,ui|zg)durdr.  (66)
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By BET, the CDF term in the integrand is related to the CDF of standard normal distribution

®(z) as follows:

C
FMN_Q (g(ﬁ,@,N, R> Ul,QZ'())‘R, Ul,{lﬁ'[)) - (I)<g(5aa7N7 R7 U17$0)>‘ S 0'3—]\7p—2
ie.
Cp
@(g(ﬁ,&,N, R7 U1,$0)> - m S FMNfz (g(ﬁvaaNa R7 Ul,.f())‘R, Ulax())
Cp
Sq)(g(ﬁ,@,N,R,Ul,xo)) +m, (67)
B-LR=O—U7® —(N-2)p,

where G(B,a, N, R, Uy, x) = . Substituting (67) in (66) and integrating

\/ (N—-2)o2
the resulting inequality, we get the bounds of coverage probability.
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