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Abstract. In “The Logic of Campaigning”, Dean and Parikh consider
a candidate making campaign statements to appeal to the voters. They
model these statements as Boolean formulas over variables that repre-
sent stances on the issues, and study optimal candidate strategies under
three proposed models of voter preferences based on the assignments that
satisfy these formulas. We prove that voter utility evaluation is compu-
tationally hard under these preference models (in one case, #P -hard),
along with certain problems related to candidate strategic reasoning. Our
results raise questions about the desirable characteristics of a voter pref-
erence model and to what extent a polynomial-time-evaluable function
can capture them.

1 Introduction

In light of some fairly surprising election outcomes around the world, we are
very interested in understanding how politicians construct their platforms. For
instance, what motivates many candidates to speak in platitudes that reveal little
information about their views? On the other hand, what motivates candidates
to commit to specific and sometimes audacious policies? The focus of this paper
is a logical formalism introduced by Dean and Parikh [7] (and extended by
Parikh and Taşdemir [13]) that aims to explain candidates’ choices of campaign
statements to make; these statements are modeled as propositional formulas over
variables representing stances on issues, and Dean and Parikh consider different
definitions of voters’ utility for a candidate as functions of the possible sets of
policies that the candidate might implement based on these statements.

Political scientists have also taken interest in candidates’ decisions about
what to say when campaigning; Petrocik [15] found empirical evidence that a
candidate will try to focus on issues where the candidate has a good record
and their opponents have bad records. Game theorists have a shared interest
with Dean and Parikh in what might motivate a candidate to be ambiguous
[1, 2, 5]. The game-theoretic models take into account the interaction between
multiple candidates (and in the case of Baghdasaryan and Manzoni’s model [5],
voters’ uncertainty about their most-preferred policies), but often with simplified
representations of a platform (e.g., points on a one-dimensional spectrum or
probability distributions over a small set of alternatives). In contrast, Dean and
Parikh’s framework abstracts away details of the electoral system like multi-agent



interactions and voter strategy to focus on the implications for an individual
candidate of communicating using more expressive logic-based statements.

This expressivity, however, brings computational costs. In this paper, we con-
sider the computational complexity of problems related to voter and candidate
reasoning. Although Dean and Parikh’s formulations capture many desirable
characteristics of possible voters, and go a long way toward explaining the as-
sumptions about voters that both vague and overspecific candidates might be
making, our results raise some questions about whether these are the right mod-
els of how voters evaluate candidates’ platforms.

In Section 2 we introduce Dean and Parikh’s model and some computational
complexity classes we will use later. We then find computational complexity
results for problems related to the model — in Section 3, evaluating voters’ utility
for a candidate; in Section 4, choosing campaign statements that optimize total
voter utility for the candidate; and in Section 5, choosing campaign statements
that motivate enough individual voters to vote for the candidate. In Section 6,
we conclude with directions for future work in modeling campaigns, including
questions about desirable characteristics of voter evaluation.

2 Preliminaries

2.1 Candidates, Voters, and Statements

In Dean and Parikh’s model, political views are expressed in terms of Boolean
variables (atomic propositions) X = {x1, . . . , xn} (e.g., x1 = “Every citizen is
entitled to a free pony.”, x2 = “Tooth-brushing should be mandatory.”, x3 = “We
must invest in zombie-based renewable energy sources.”). A candidate makes
statements about their platform in the form of propositional formulas over these
variables (e.g., ¬x1, or x1 → x2). The candidate’s current theory1 T consists of
the statements the candidate has issued so far and their logical closure. In our
discussion of complexity, we will assume that T is given as a set of statements
and that anything in the logical closure besides the statements themselves must
be computed. In general we assume that T is self-consistent.

A voter v has a preference function pv : X → [−1, 1] indicating which direc-
tion and how strongly v stands on each issue xi:

2 A negative pv(xi) indicates
that v prefers xi to be false and a positive pv(xi) indicates that v prefers xi to
be true, with the magnitude reflecting the strength of preference (and 0 being
indifference). If, for example, v was against mandatory tooth-brushing and cared
greatly about this issue, then we might have pv(x2) = −0.9. We assume that
candidates have complete knowledge of the voters’ preference functions.

We let W be the set of all possible assignments (worlds) to the variables X .
Hence, |W| = 2|X | = 2n. We denote a specific world as ω ∈ W. We say that ω

1 Some sources, particularly in the belief revision literature, use the term belief base.
2 Note that we modify our notation from Dean and Parikh’s. In particular, they rep-

resent this preference function using two quantities — a weight in [0, 1] and a truth-
value preference in {−1, 0, 1} — which we combine into the single function pv.



models a theory T , ω |= T , if ω is consistent with the logical closure of T . For
the purpose of defining voter utilities, we treat ω as a function ω : X → {−1, 1}
where ω(xi) = 1 if xi is true in that world and ω(xi) = −1 if xi is false in that
world. The voter’s utility for some ω ∈ W is

uv(ω) =
∑
xi∈X

pv(xi) · ω(xi).

The voter’s utility for a candidate is a function of the possible worlds modeled
by the current theory T of what the candidate has said so far. Dean and Parikh
consider three classes of voters:

– Optimistic voters evaluate the candidate on the best world modeled by the
theory, utv(T ) = max{uv(ω) : ω |= T}.

– Pessimistic voters evaluate the candidate on the worst world modeled by
the theory, utv(T ) = min{uv(ω) : ω |= T}.

– Expected-value voters take the average3 utility over modeled worlds,4

utv(T ) =

∑
ω|=T uv(ω)

|{ω : ω |= T}|
.

Dean and Parikh consider the case of a single candidate who wants to choose
statements that maximize the total utility of a population of voters. They prove
that with expected-value voters, an optimal strategy involves announcing a
stance on every issue, creating a theory that models only one world. (We will
refer to such a theory as a complete theory; when a theory T ′ is complete and
T ⊆ T ′, we call T ′ a completion of T .) Furthermore, they observe that with pes-
simistic voters, it is also advantageous for the candidate to announce a stance on
every issue, since eliminating possible worlds can never result in a loss of utility.
Only with optimistic voters is it advantageous to remain silent, since eliminating
possible worlds can never result in a gain of utility.

2.2 Computational Complexity Classes

We assume familiarity with P and NP. In addition, we will invoke some well-
studied but less common complexity notions, which we describe here.

Let C andD be computational complexity classes defined via resource bounds
on Turing machines. We denote by CD those languages or functions computable
by a C Turing machine with an oracle for D. In other words, we modify a C
Turing machine to have an additional tape and state q. If d is a language or
function computable by a D Turing machine, then we allow computations of the
modified Turing machine to write a string x on the new tape, enter state q, and

3 Dean and Parikh assume that for the purpose of determining “expected value” of
the worlds, all worlds are considered equally likely.

4 One consequence of this definition is that the utility of an empty or otherwise tau-
tological theory is 0 for any expected-value voter.



in the next step, the new tape contains d(x). We write A ≤PT B if A ∈ PB ,
meaning “A is polynomial-time Turing reducible to B”.

The class NPO is an analogue to NP for optimization problems, i.e., problems
that are specified in terms of a definition of valid instances, a definition of valid
solutions with respect to an instance, and a value function over the solutions,
and ask for a solution with maximum or minimum value. Such a problem is in
NPO if and only if it meets the following criteria defined by Ausiello et al. [4]:
Instances can be verified as valid in polynomial time, solutions can be verified
as valid in time polynomial in the instance size, and the value of a solution can
be computed in polynomial time. Note that NPO ⊆ PNP.

The function class #P , introduced by Valiant [17], contains those problems
that are equivalent to determining the number of accepting paths in an NP
Turing machine. If a problem is in NP, then the problem of counting how many
witness strings satisfy the NP machine for a given instance is in #P . Since a
nonzero answer for a #P problem instance entails a positive answer for the
corresponding NP problem instance and a zero answer for the #P problem
entails a negative answer for the NP problem, NP ≤PT #P .

We have P ⊆ NP ⊆ PNP ⊆ P#P ⊆ PSPACE ⊆ EXPTIME .

3 Complexity of Finding Voter Utility

One important factor in the epistemology of campaigns that Dean and Parikh’s
framework (with its implicit assumption of “logical omniscience”) does not ex-
plicitly model is cognitive complexity (for which we use computational complex-
ity as a proxy) as it pertains to the voters. We argue that even a superficially
simple series of campaign statements may induce a complex underlying theory:
Though we, and Dean and Parikh, have introduced the set of variables X in
terms of high-level issues (x1 =“Every citizen is entitled to a free pony”) for
explanatory purposes, in reality such issues might more accurately be viewed
as complex interplays of finer-granularity subissues (“Every citizen is entitled
to a free pony” = (x′1 ∨ x′2 ∨ x′3) ∧ (x′1 → x′4 ∨ ¬x′5) ∧ . . ., where x′1, x

′
2, x
′
3 are

potential taxes to fund the pony giveaway, x′4, x
′
5 are about the logistics of pony

distribution, and so on).

Furthermore, as Dean and Parikh note, additional information can arise from
a statement through implicature — that which is suggested by a speaker without
directly being part of or entailed by “what is said”. For instance, when Vermin
Supreme says, “When I’m president everyone gets a free pony”, we discount the
possibility that he plans to give everyone two free ponies; if he did, that would not
contradict his promise, but his omission of information would be infelicitous.5

5 In Grice’s account of implicature [8], participants in a conversation assume each
other to be obeying certain maxims of cooperativity (for instance, illustrated here is
the maxim of Quantity — roughly, give as much information as necessary, and do
not give more information than necessary); they interpret each other’s statements
in light of this mutual assumption.



A potential source of discrepancies between the framework’s predictions and
the reality of campaigns is that, given an elaborate body of information about
a candidate’s policies, voters have trouble evaluating the candidate due to the
intractability of their utility functions. We will consider the computational com-
plexity of the function problems of determining exact voter utility, but also of
decision problems of determining whether the utility meets a given threshold,
which are particularly relevant for the “stay-at-home voter” scenario we will
discuss in Section 5.

3.1 Optimistic Voter Evaluation

Theorem 1. Given a theory T , an optimistic voter v, and a value k, the problem
of deciding whether utv(T ) ≥ k is NP-complete.

Proof. For NP membership, observe that given a world modeled by T for which
v’s utility is at least k, we can verify the consistency and utility in polynomial
time.

We will show NP -hardness with a polynomial-time reduction from Boolean
satisfiability (SAT). Let φ be a propositional formula over a set of variables
X . We construct the theory as T = {x∗ → φ}, where x∗ is a new variable. We
construct an optimistic voter v with preferences set as pv(x∗) = 1 and pv(xi) = 0
for all xi ∈ X . And we let k = 1. Let A = {ω : ω |= T}. If φ is unsatisfiable,
then A = {ω : ω(x∗) = −1}, hence utv(T ) = −1. However, if φ is satisfiable then
there are some ω ∈ A where w(x∗) = 1 and hence utv(T ) = 1. Finally, we have
utv(T ) ≥ 1 = k if and only if φ is satisfiable.

Theorem 2. Given a theory T and an optimistic voter v, the problem of com-
puting utv(T ) and a corresponding best world modeled by T is NPO-complete.

Proof. The problem satisfies the criteria for NPO-membership [4]: Instances
(i.e., the theory and voter specification) and solutions (i.e., worlds modeled by
the theory) are recognizable as such in time polynomial in the instance size, and
the value function (i.e., voter utility) is computable in polynomial time.

We will show NPO-hardness with a polynomial-time reduction from the max-
imum weighted satisfiability problem (MAX-WSAT),6 for which Ausiello et al.
[4] prove NPO-completeness. A MAX-WSAT instance consists of a propositional
formula φ and a positive weight ri for each variable xi; the problem is to find a
satisfying assignment that maximizes the total weight of the variables assigned

6 The name “weighted satisfiability” (WSAT) has been used by different sources to
refer to two different groups of problems — one where an instance consists only of a
propositional formula and the value of a solution is the number of true variables (the
Hamming weight), and the generalization we use here where the instance includes
weights for the variables. The maximization/minimization versions of the former are
sometimes called “maximum number of ones” (MAX-ONES) / “minimum number
of ones” (MIN-ONES), and are complete for NPO-PB [12], a subclass of NPO where
the magnitude of a solution’s value is polynomially bounded by the size of the input.



to be true. Let R = max{ri : 1 ≤ i ≤ n}. We construct the theory as T = {φ}
and the voter preferences as pv(xi) = ri/R for each xi.

7 Then the voter’s best
world ω is the optimal assignment for the MAX-WSAT instance, and given
uv(ω) ∈ [−

∑
i ri/R,

∑
i ri/R] we can retrieve the corresponding total weight for

the MAX-WSAT assignment by mapping this range onto [0,
∑
i ri].

3.2 Pessimistic Voter Evaluation

Theorem 3. Given a theory T , a pessimistic voter v, and a value k, the problem
of deciding whether utv(T ) ≥ k is coNP-complete.

Proof. For coNP membership, observe that given a world modeled by T for which
v’s utility is less than k, we can verify the consistency and utility in polynomial
time.

We can show coNP -hardness by polynomial-time reduction to this problem
from Boolean unsatisfiability (UNSAT). Given a formula φ, we construct the
theory T and the voter v’s preferences in the same way as in the proof of Theorem
1, except that v prefers the new variable x∗ to be false, pv(x∗) = −1. Then
utv(T ) ≥ 1 = k if and only if φ is unsatisfiable.

Theorem 4. Given a theory T and a pessimistic voter v, the problem of com-
puting utv(T ) and a corresponding worst world modeled by T is NPO-complete.

Proof. NPO membership applies by the same argument as in the proof of The-
orem 2. We can show NPO-hardness by polynomial-time reduction from the
minimum weighted satisfiability problem (MIN-WSAT), the minimization coun-
terpart to MAX-WSAT; the mapping is constructed in the same manner as in
the proof of Theorem 2.

3.3 Expected-Value Voter Evaluation

Lemma 1. Given a theory T and an expected-value voter v, the problem of
computing utv(T ) is ≤PT -hard for #P .

Proof. Let φ be a Boolean formula over {x1, . . . , xn} and let S = #SAT (φ)
be the number of satisfying assignments of φ. We define a formula ψ′ over
{x1, . . . , xn} ∪ {y, z} as follows. First we define ψ = (φ ∧ y ∧ z), and set

ψ′ = ψ ∨ (y ∧ ¬z ∧
n∧
i=1

xi).

Define a voter D with preferences pD(y) = pD(z) = 1 and pD(xi) = 0 for each
xi ∈ {x1, . . . , xn}. (So this voter is defined over n+ 2 variables.)

Let A = {−1, 1}n and B = {−1, 1}n+2 be the possible worlds for φ and ψ,
respectively. Then we have

S = |{a ∈ A : a |= φ}| = |{b ∈ B : b |= ψ}| = |{b ∈ B : b |= ψ′}| − 1.

7 We divide through by the maximum weight so that the pv(xi)’s are in [0, 1].



That is, φ has as many satisfying assignments over n variables as ψ has over
n+ 2 variables, and ψ′ has one more satisfying assignment than ψ. Then we get
the critical equalities:

utD({ψ})
utD({ψ′})

=
(
∑
b|=ψ uD(b))/|{b ∈ B : b |= ψ}|

(
∑
b|=ψ′ uD(b))/|{b ∈ B : b |= ψ′}|

=
(
∑
b|=ψ uD(b))/S

(
∑
b|=ψ′ uD(b))/(S + 1)

=
(
∑
b|=ψ uD(b))/S

(0 +
∑
b|=ψ uD(b))/(S + 1)

=
S + 1

S
.

(The third equality is valid because the only world in {b ∈ B : b |= ψ′} \ {b ∈
B : b |= ψ} has utility 0 for voter D.) This allows us to derive an equation to
get #SAT from utD:

1

utD(ψ)/utD(ψ′)− 1
=

1

(S + 1)/S − S/S
=

1

1/S
= S = #SAT (φ).

Thus, we can use two calls to an oracle for expected-value utility to compute
#SAT (φ) in polynomial time.

Lemma 2. Given a theory T and an expected-value voter v, the problem of
computing utv(T ) is in P#P .

Proof. Let T be some theory and let v be some expected-value voter. We assume
pv is represented as a vector of rational binary numbers and we set b as the
number of bits in the ‘longest’ number. We describe an NP Turing machine M
whose number of witness strings is proportional to uv(T ).

The machine M takes in a Boolean formula φ and a voter’s preference
function pv. Then M guesses an assignment ω and a binary integer k where
1 ≤ k ≤ 2b. If both ω |= φ and k ≤ uv(ω) · 2b, then the machine accepts.
Otherwise, the machine rejects. Note that both checks take polynomial time.

Given φ and b and pv, how many ways can M accept? If ω does not satisfy,
then M cannot accept. If ω does satisfy, then M accepts in exactly uv(ω) · 2b
different ways. Hence, #M(φ, pv, b) = 2b

∑
w|=φ uv(ω). Finally, we can compute

the utility:

utv(T ) =
#M(

∧
T, pv, b)

#SAT (
∧
T ) · 2b

.

Theorem 5. Given a theory T and an expected-value voter v, the problem of
computing utv(T ) is ≤PT -complete for #P .

Proof. This follows from Lemmas 1 and 2.



4 Complexity of Making an Optimal Theory

Dean and Parikh observe that when all voters are optimistic, a candidate look-
ing to increase total voter utility is best off simply saying nothing; as such,
this situation does not raise any nontrivial computational issues from the candi-
date’s perspective. On the other hand, when appealing to an expected-value or
pessimistic voter population, the candidate is best off taking an explicit stance
on every issue. The candidate’s ability to do so, of course, depends on their
knowing which stance to take. This has two aspects: Firstly, the candidate must
know the voters’ stances on each issue; given the increasing availability of tools
like mass surveys and data analytics that let politicians gauge the attitudes of
their constituents, this is a reasonable assumption (though models of candidate
uncertainty about voter stances are of interest for future study). Secondly, the
candidate must be able to compute the best announcements for appealing to
the overall voter population, given the individual voter preferences; this is the
family of problems we examine here. When we say “optimal theory” in the fol-
lowing results, we mean a theory T that maximizes

∑
v∈V utv(T ) for the voter

population V .
In general, we assume that the candidate starts with an empty theory, and

that the candidate is willing to craft whatever platform is most advantageous
(being what Dean and Parikh call a “Machiavellian” candidate) rather than
being committed to personal beliefs. However, in Section 4.3, we show that
having to remain consistent with an existing theory raises the complexity of
some relevant problems.

4.1 Appealing to Expected-Value Voters

Theorem 6. Given n variables and a set V = {v1, · · · , vm} of expected-value
voters, a candidate can construct an optimal theory in time O(n ·m).

Proof. In particular, we will describe a procedure for finding a complete optimal
theory (since Dean and Parikh have established that with expected-value voters
there always exists a complete theory that is optimal).

We can reformulate the set V of m voters with possibly many different
preference functions into a new set V ′ of m voters with all the same pref-
erence function such that the candidate receives the same total utility, i.e.,∑
v∈V utv(T ) =

∑
v′∈V ′ utv′(T ) for any theory T . We define

pv′(xi) =
∑
v∈V

pv(xi)

|V |

for each variable xi, for each v′ ∈ V ′. This reformulation takes time O(m)
to compute for each of the n variables. The candidate can then construct a
theory that models only the world with the preferred assignment to each variable
according to the new preference function.



4.2 Appealing to Pessimistic Voters

Theorem 7. Given n variables and a set V = {v1, · · · , vm} of pessimistic vot-
ers, a candidate can construct an optimal theory in time O(n ·m).

Proof. The procedure from the proof of Theorem 6 can also be used to construct
a complete optimal theory for pessimistic voters; while the equality between the
total utilities of the original and reformulated sets of voters no longer holds in
general, it still holds for theories like the constructed one that model only a
single world (since the utility for this world is both the pessimistic and expected
value for the theory).

4.3 Extending an Existing Theory

Until now, we have assumed that a candidate starts with a “blank slate”, able and
willing to shape the voters’ beliefs with no restrictions. However, there are many
reasons why the candidate may instead need to stay consistent with particular
set of formulas — the candidate may be an experienced politician who has
revealed platform information in prior elections and incumbencies, may be a
member of a political party with established doctrine, or may be “tactically
honest” [13] — willing to make strategic statements only insofar as they do
not contradict certain deeply-held opinions. The strategy of choosing the most
informative theory possible to appeal to expected-value or pessimistic voters
becomes harder when the candidate must also remain consistent with an existing
theory:

Theorem 8. Given an expected-value or pessimistic voter v and current theory
T , the problem of computing an optimal completion of T is NPO-complete.

Proof. Observe that this problem is equivalent to the optimistic voter utility
problem from Theorem 2 (except that instead of yielding a best world ω mod-
eled by a theory, we are yielding a theory that models only ω, which can be
accomplished by inserting into T a conjunction of literals with their assignments
in ω); thus, the proof of Theorem 2 applies here as well.

5 Complexity of Motivating Enough Voters to Vote

While having an enthusiastic constituency is no doubt correlated with a candi-
date’s success, the more direct measure is whether enough supporters actually
turn up to vote. A 2006 Pew Research Center study addressed the question of
when people vote — since so many people do not, at least in the US. Their find-
ings included the following, which addresses the questions of showing up, rather
than the decision about how to vote:

The Pew analysis identifies basic attitudes and lifestyles that keep
these intermittent voters less engaged in politics and the political pro-
cess. Political knowledge is key: Six-in-ten intermittent voters say they



sometimes don’t know enough about candidates to vote compared with
44% of regular voters the single most important attitudinal difference
between intermittent and regular voters identified in the survey. [...] One
other key difference: Regular voters are more likely than intermittent
voters to say they have been contacted by a candidate or political group
encouraging them to vote, underscoring the value of get-out-to-vote cam-
paigns and other forms of party outreach for encouraging political par-
ticipation.

Pew Research Center [16]

Refusal to vote does not necessarily indicate irrationality on the voter’s part;
under decision-theoretic models of expressive voting [3, 9], where a voter’s fore-
most goal is expressing their views rather than bringing about an outcome, ab-
stinence from voting is a rational choice under certain circumstances. Parikh and
Taşdemir [13] suggest the presence of “stay-at-home voters”, whose utility for a
candidate must meet a certain threshold before they will vote, to explain why
a candidate might remain silent in situations where Dean and Parikh’s model
would otherwise suggest a strategy of explicitness.

5.1 Appealing to Optimistic Voters

Theorem 9. Given an integer h and a set of optimistic voters V = {v1, · · · , vm}
with thresholds {k1, · · · , km}, the problem of deciding the existence of a theory
T such that utvi(T ) ≥ ki for at least h voters is in P .

Proof. Since the empty theory T = ∅ has the maximum utility for any opti-
mistic voter, it suffices to compute the utility of each voter vi’s best world,∑
xj∈X |pvi(xj)|, and check whether at least h of these utilities meet their re-

spective voters’ thresholds.

5.2 Appealing to Pessimistic Voters

Theorem 10. Given an integer h and a set of pessimistic voters V = {v1, · · · , vm}
with thresholds {k1, · · · , km}, the problem deciding the existence of a theory T
such that utvi(T ) ≥ ki for at least h voters is NP-complete.

Proof. For NP membership: If there exists a theory for which at least h pes-
simistic voters meet their thresholds, then these voters also meet their thresh-
olds in any completion of this theory (since eliminating worlds never decreases
pessimistic voter utility); given the world modeled by one of these completions,
we can verify in polynomial time that the thresholds are met.

We will show NP -hardness with a reduction from conjunctive normal form
Boolean satisfiability (CNF-SAT). Let φ be a Boolean formula in conjunctive
normal form. For each clause containing r literals, we construct a pessimistic
voter vi with preferences as follows: For each variable xj , pvi(xj) = 1

r if xj



appears in the clause with positive polarity, pvi(xj) = − 1
r if xj appears in the

clause with negative polarity (¬xj), and pvi(xj) = 0 if xj does not appear in the
clause. We set vi’s threshold as ki = − r−1r so that utvi(T ) ≥ ki if and only if all
worlds modeled by T have at least one variable assigned to match its polarity in
the clause. Finally, we set h equal to the number of clauses to require that all
worlds modeled by T have at least one variable assigned to match its polarity
for every clause; such a T exists if and only if φ is satisfiable.

5.3 Appealing to Mixed Voters

Theorem 11. Given an integer h, a set of voters V = {v1, · · · , vm} = V o ∪ V p
where V o consists of optimistic voters and V p consists of pessimistic voters, and
thresholds {k1, · · · , km}, the problem of deciding the existence of a theory T such
that utvi(T ) ≥ ki for at least h voters is NP-complete.

Proof. NP -hardness follows from the fact that this is a generalization of the
problem with only pessimistic voters from Theorem 10.

For NP -membership: Let V ′ ⊆ V be a set of h or more voters. We could guess
an acceptable world (not necessarily distinct) ωi for each optimistic voter vi ∈
V ′ ∩ V o (i.e., uvi(ωi) > ki), such that ωi is also acceptable for each pessimistic
voter vj ∈ V ′ ∩ V p (i.e., uvj (ωi) > kj). Then the disjunction T = {∨iwi} would
satisfy all the voters in V ′, and each voter can verify this in polynomial time,
since there will only be as many modeled worlds as there are optimistic voters.
Furthermore, if there exist theories that satisfy h or more voters, then there
exists at least one in the aforementioned form.

6 Conclusions

There are many bodies of research that are, or might be, relevant to whether
voters show up to vote, and once there, how they vote. We have explored the
computational side of one such theory, and showed that it proposes computa-
tionally intensive methods for voter evaluation of platforms and for multi-voter
satisficing. Given the basic premise that voter satisfaction or satisficing is a
combinatorial problem, the intractability is not surprising.

There are many ways this investigation of the computational complexity of
modeling voters’ behavior can be extended. They include:

– adding value to informativeness of the candidate(s)’ platform when predict-
ing whether a voter will show up to vote, as per the Pew study [16];

– decreasing the complexity of candidates’ platforms (conjunctions or disjunc-
tions of atomic propositions; Horn formulas; . . . );

– modeling change over time in voter priorities [10] or opinions;
– adding affective variables to the voter models [14];
– investigating social-network models of voter interaction and influence [6];
– using game-theoretic models of candidate-candidate interactions and voter

choices [11];



– including group-based identity in the decision to show up as well as the
choice of candidate.

In addition, we could start from axiomatic characterizations of models of
candidate platforms and voter choice. What are good properties to model? (For
instance, if a candidate adds to the specificity of their platform in ways that
agree with a voter’s preferences, should that increase the likelihood that a voter
chooses that candidate, or the likelihood that the voter shows up to vote?) Will
we run into Arrow-style impossibility results for achieving all the desiderata we
propose?
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I will promise your electorate heart anything you desire, because you
are my constituents, you are the informed voting public, and I have no
intention of keeping any promise that I make.

Vermin Supreme8

8 From Revolution PAC’s 2012 interview (https://www.youtube.com/watch?v=9jKszduiK8E)
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