

Chiral Acoustics with NV Centers in Diamond

Spencer Alexander and Hailin Wang

Department of Physics, University of Oregon, Eugene, OR 97403

Strong confinement of electromagnetic waves transverse to the direction of propagation, such as fast-decaying evanescent electromagnetic waves, can lead to propagation-direction-dependent light matter interactions. These chiral optical processes have been explored extensively in interactions of quantum dots and cold atoms with optical fields in waveguides and whispery optical resonators[1]. The chiral interactions are not unique to optical processes. For example, chiral interactions can be pursued with surface acoustic waves in a crystal, which decay exponentially away from the crystal surface. In this paper, we present experimental studies on the chiral acoustic or strain coupling between surface acoustic waves and negatively-charged nitrogen vacancy (NV) centers in diamond. The surface acoustic waves are generated with interdigital transducers patterned on a piezoelectric ZnO layer sputtered on the surface of diamond (see Fig. 1). We will discuss and analyze propagation-direction-dependent acoustic absorption in a dense ensemble of NV centers.

FIG. 1 Optical image of a pair of interdigital transducers fabricated on the diamond surface.

References:

[1] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, *Chiral quantum optics*, *Nature* **541** (2017).