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In certain cavitation-based ultrasound techniques, the relative importance of thermally vs mechani-
cally induced damage is unclear. As a first step to investigate this matter, a numerical model for
bubble dynamics in tissue-like, viscoelastic media is presented in which full thermal effects are
included inside and outside the bubble, as well as interdiffusion of vapor and non-condensible gas
inside the bubble. Soft tissue is assumed to behave according to a Kelvin-Voigt model in which vis-
cous and elastic contributions are additive. A neo-Hookean formulation, appropriate for finite-
strain elasticity, accounts for the large deformations produced by cavitation. Numerical solutions to
problems of relevance to therapeutic ultrasound are examined, and linear analysis is used to explain
the underlying mechanisms. The dependence between the surrounding medium’s elasticity (shear
modulus) and the extent to which the effects of heat and mass transfer influence bubble dynamics is
quantified. In particular, the oscillation properties are related to the eigenvalues determined from
linear theory. Regimes under which a polytropic relation describes the heat transfer to sufficient
accuracy are identified, for which the complexity and computational expense associated with solv-

ing full partial differential equations can be avoided. © 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4976081]
[DLM]

I. INTRODUCTION

While the primary motivation for cavitation research
originally lay in hydrodynamics,' recent advances in ultra-
sound techniques, both diagnostic and therapeutic, have
given rise to increased interest in acoustic cavitation.>* For
instance, encapsulated microbubbles can serve to improve
contrast in ultrasound imaging or deliver drugs,” and several
focused ultrasound techniques for therapy rely on cavitation,
such as shock-wave lithotripsy,® high-intensity focused ultra-
sound (HIFU),” and histotripsy.® Bioeffects are common out-
comes in these applications,”'® whether desired or not. One
particular question related to bioeffects motivates the present
study, namely, the relative importance of mechanically vs
thermally induced damage in therapeutic ultrasound, specifi-
cally in HIFU and histotripsy.""

Analysis and modeling of cavitation dynamics are com-
monly conducted using the Rayleigh-Plesset equation,'>'? a
nonlinear ordinary differential equation (ODE) describing
the response of a spherical gas or vapor bubble subjected to
a far-field pressure change. Viscous, surface tension and
compressibility effects can readily be included, and thermal
transport has been investigated in the context of cavitation
dynamics in water.'* To improve the fidelity beyond a poly-
tropic description of the gas inside the bubble, an energy
equation can be solved inside the bubble to more accurately
represent the thin thermal boundary layers'> under the cold
liquid assumption. More sophisticated approaches have been
developed to account for the varying temperature in the sur-
roundings as well.'®!’
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Mass transfer may be of importance in therapeutic ultra-
sound due to high tensions and multiple cycles. This topic has
been the subject of several investigations. The conventional
description of gases inside the bubble assumes that the con-
tents include both vapor, which may condense, and non-
condensible gas obeying a polytropic relation.'"® Most com-
monly, the vapor pressure is taken to be constant under ther-
modynamic equilibrium,'* i.e., phase change is instantaneous
and therefore does not affect the dynamics. Several studies
have incorporated finite evaporation rates and other non-
equilibrium effects.'®>* Another aspect related to mass trans-
fer is the diffusion of vapor and non-condensible gas in the
bubble. Generally, the non-condensible gas is assumed insolu-
ble,* which appears to be a reasonable assumption.”” Based
on the understanding thereby gathered, reduced-order mod-
els??*2% were developed to decrease the cost and complexity
of solving partial differential equations (PDEs) for heat and
mass transfer, and were used to solve various bubble dynam-
ics problems.?’?® Such models have been used to investigate
bubble dynamics in the context of therapeutic ultrasound, >
although the surrounding medium was taken to be water.

One of the chief difficulties in modeling cavitation in
ultrasound applications lies in representing the rheology of soft
tissue, whose complex microstructure gives rise to a viscoelas-
tic response. Assuming the bubble oscillates in a homogeneous
medium, pioneering studies of cavitation in viscoelastic fluids
motivated by polymer processing focused on Maxwell and
Oldroyd constitutive models,”* " which introduce stress relax-
ation but do not enforce that the medium returns to its original
configuration. These models were subsequently used to inves-
tigate cavitation in tissue.*> > More recently, it was recog-
nized that models incorporating elasticity may represent soft
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tissue more accurately since they preserve the original configu-
ration after deformation. Examples include the Kelvin-Voigt
models of Yang and Church, strictly valid only for infinitesi-
mal deformations, and of Gaudron et al.,3 7 based on finite-
strain theory and thus capable of representing large deforma-
tions, as well as the Zener models of Hua and Johnsen®® and
Warnez and Johnsen,®® which in addition include relaxation.
Although only one such model incorporates heat transfer,”® no
systematic study has been performed to determine how heat
(and mass) transfer influences the bubble dynamics in visco-
elastic media.

Quantifying mechanical vs thermal effects of bubbles on
soft tissue requires an accurate representation of the mechan-
ics and heat transfer. At the present time, the effects of heat
and mass transport on bubbles oscillating in soft materials,
with application to therapeutic ultrasound, is unknown. Our
objective is to address this knowledge gap. In particular, we
use a numerical model for spherical bubble dynamics to repre-
sent a freely oscillating bubble under circumstances of rele-
vance to therapeutic ultrasound in a viscoelastic medium
representative of soft tissue. To elucidate the underlying
mechanisms, we theoretically and numerically investigate the
bubble oscillation properties. The key novelty of this work
lies in the inclusion of elasticity in investigations of heat and
mass transfer in bubble dynamics, both numerical and analyti-
cal. The article is laid out as follow. First, we describe our
physical and numerical models, as well as our linear analysis
approach. We then present numerical results and explain them
with the help of the linear analysis. We close by summarizing
our findings and discussing future research directions.

Il. PHYSICAL MODEL
A. Equations of motion

We consider the spherical dynamics of a bubble in an
infinite viscoelastic medium. Taking into account acoustic
radiation losses due to the compressibility of the medium,
the bubble dynamics are represented by the Keller-Miksis
ODE"

, ey
o

where R is the bubble radius, p and ¢ are the density and
sound speed of the surroundings, S the surface tension, p the
internal bubble pressure given by the sum of the partial pres-
sures of non-condensible gas (p,) and vapor (p,), ©,. is the
viscoelastic stress integral, and p(¢) is the far-field driving
pressure. The overdots denote derivatives with respect to
time 7.

The approach of Gaudron et al.®’ is followed to repre-
sent the soft tissue’s finite deformations created by large-
amplitude bubble oscillations of interest in the problems of
interest (from 10% to over 200% strains), and the corre-
sponding stresses described by nonlinear elastic theory, by
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contrast to infinitesimal strains and linear elastic theory. The
integral of the total stress is the sum of viscous and elastic

contributions
. 4
4uR G Ry (Ry
o= m D5 —4mt () 2
(O TR 5 R ( R) ] ()

where p is the viscosity of the surroundings, G is the (linear)
shear modulus, and R is the bubble radius corresponding to
stress-free surroundings; depending on the problem under
consideration, Ry may be the initial radius R,, or the equilib-
rium radius R,. This Kelvin-Voigt formulation implies that
the surrounding medium possesses an original configuration,
which is an attribute of most soft tissues. Given the large
deformations of the surroundings, the elastic stress is com-
puted based on a neo-Hookean constitutive relation, which
accounts for finite-strain (nonlinear) elasticity. In the sur-
rounding medium, the 7r- and 60-components of the elastic
stress tensor are given by

4 -\ 2 1
(’,—> - (;-) ] =5t )

where r,(r,1) = (P — R + R%)'? is the radial location in
the original configuration.

The bubble is assumed homobaric. Heat and mass trans-
fer both modify the bubble pressure evolution®!

2
rr :—G
=3

p = I% |:_W7R + (V - I)KW% |w + VRvam;/ ) (4)
where T(r, ) is the instantaneous, spatially varying tempera-
ture, K is the mixture thermal conductivity inside the bubble,
R, is the gas constant of vapor, and ), the vapor mass flux
across the interface. The subscript w denotes variables evalu-
ated at the bubble wall. The specific heats ratio y of vapor is
assumed equal to that of air.

To account for heat transfer, we compute PDEs for
energy balance inside and outside the bubble, with Fourier’s
law to describe heat conduction. Inside the bubble,

1 op(or @)_-_ .
(Tl =k o)

where only the radial terms are non-zero (denoted by the r
subscripts) and

1 or rp

The mixture thermal conductivity is given by K = AT + B,
where A and B are experimentally determined coefficients.">
Outside the bubble,

. N2
OT, R2R T, 5 12u <R2R>
E-ﬁ-r—zﬁ—l)s[v TSL—FP—CP - ) 7

where T, is the temperature in the surroundings, C,, is the
heat capacity at constant pressure, Dy = K;/(pC,) is the
thermal diffusivity, and K is the constant thermal conductiv-
ity of the surroundings.
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The boundary conditions imposed on Egs. (5) and (7)
are, for the temperature,

Ty =Ts, TS|rHOC — T, ®)
and for the fluxes,

oT oT. oT

- =0, L' =K,—| —K— , 9

or|._, or |~ "or|, ©)

where T, is the far-field temperature and L is the latent heat
of condensation/evaporation. Thus, the energy formulation
includes energy transfer due to phase change.

With regard to mass transfer, equilibrium phase change is
considered at the bubble wall, the interdiffusion of non-
condensible gas and vapor are computed inside the bubble; it
is assumed that no transfer of non-condensible gas takes place
from the surroundings into the bubble, e.g., rectified diffu-
sion.*? This assumption is valid due to the low solubility of
air in water (Cy ~ 1073) and the short time scales associated
with the bubble oscillations, compared to those of rectified
diffusion.”* Thus, the main challenge lies in determining the
vapor (alternately, the non-condensible gas) concentration
inside the bubble. Mass diffusion is represented by Fick’s law
such that the mass balance equation for vapor reads®'

oc ~ ac V- (Dp,NC),

-~ = 1
ot T or Pm 7 ( 0)
where
Ry — R, 0C
= _ 11
u=U+ = o (1D

C = p,/p,, is the vapor mass concentration, p, is the vapor
density, p,, is the mixture density, D is the diffusion coeffi-
cient between water vapor and air, R, is the gas constant of
air, and R = CR, + (1 — C)R, is the mixture gas constant.
The boundary conditions are

ac

or (12

Pv sal(Tw)
— O’ ,C = T
o Pwlw RUT\/V )

with the latter equality arising from assuming equilibrium
phase change. The saturated vapor pressure at the bubble
wall is given by

T,
pv,sat(Tw) = Pref €Xp (_ ,Iief), (13)

where p.r and T, are empirically determined parameters.24
In tissue, phase change is expected to be inhibited by the

TABLE I. Baseline values for the material properties used in the present study.

constraining effect of tissue on water, the extent of which is
presently unknown; Eq. (13) thus provides an upper limit for
vaporization and condensation across the bubble wall, since
it strictly applies to water. Assuming the mixture obeys the
ideal gas law, C and p,), are related by

1 P
= (L. _Rr,). 14
c RU_Rg <me Rg) ( )

Finally, the vapor mass flux is written

I’i’l” -D pm,w a_C

v 1-C, or

15)

w

Accurate measurement of the viscoelastic properties of
soft materials at the rates of interest are challenging.** Table I
lists the material properties used in this study, selected to be
relevant in the context of therapeutic ultrasound.*®*** Since
soft tissue exhibits a range of stiffnesses,** an important goal
of the present study is to describe different behaviors of the
bubble dynamics as G is varied.

B. Non-dimensionalization and geometry

It is convenient to numerically solve the equations in
dimensionless form. For non-dimensionalization, we use the
initial bubble radius R,, atmospheric pressure p.,, the
medium density p, and the far-field temperature 7 ; from these
quantities, a characteristic velocity Uc = \/poo/p is con-
structed. This gives rise to the following dimensionless parame-
ters: Reynolds number Re = pU.R(/u, Cauchy number
Ca = P,/G, Weber number We = pR(/2S, mass Fourier
number Fo,, = D/(U.Ry), heat Fourier number Fo, = D,/
(UcRy), Brinkman number Br= U?/C,T, dimensionless
sound speed C = ¢/U,, and y = TooKoo / (PocRoU, ). Time and
frequency are non-dimensionalized by Ry/U¢. From here on,
we refer to ¢ as dimensionless time.

We transform the spherically symmetric domain with
radial coordinate r into a new variable y = r/R. Outside the
bubble, we further implement the following transformation,
x=2/(1+(y—1)/L,) — 1, to set the integration limits to
x € [1,—1]. L, is a scaling factor for the domain.'” Finally, to
simplify the energy Eq. (5) inside the bubble, we transform
the temperature,

1 T / /
e:K_J K(T0)d0. (16)

oo J1

As a result, we re-write the two nonlinear ODEs and
three PDEs in dimensionless form

Property Nominal value Property Nominal value Property Nominal value
A 5.3 x 107> W/mK> S 5.6 x 1072 N/m C, 4.18 kJ/kgK
B 1.17 x 1072 W/mK u 15 cP L 2.264 x 10° J/kg
D 24.2 x 107° m%s Poo 101.3kPa y 1.4

K, 0.55W/m Ts 298.15K DPref 1.17 x 10® kPa
Tret 5200K p 1060 kg/m? c 1430 m/s

910  J. Acoust. Soc. Am. 141 (2), February 2017

Carlos Barajas and Eric Johnsen



<1 —E)Rk M (1 —£>R2
C 2 3C

= (1 +1—é+£i) [p—poo(t) K

C Cdt ReR
1 1 4R Rsf“)
WeR 2Ca (5 R R 17
.3 . (y—=1)x00 yR,Fo,p  OC
=— | — R S —_—
PER|TPRTTR oy RO -CORL Oy ||
(18)
y p (00 U—yRd0 . L e
P (Y TN s =LV 1
)= 1TK (aﬁ R ooy) PV 9
" V- (p, VC
oc L u YROC _Fo, [V -(p )]y’ 20
ot R 09y R? Om
OT, (14x)° [Fo, (14x 1 +1é1—y3 aT,
oo LR | R \ 2L, y) 2 y* | Ox
Fo, (1 +x)*&T, _Br R’ on
4 L2R* 0x% Re R%y0’
with
1 [(y—1); Rp
_ LG =1)z90 yRp| 22)
p R Oy 3
Fo, R, — R, C
= B Dokl 2
u="U+ R R o (23)

lll. NUMERICAL METHOD

A fifth-order explicit Dormand-Prince Runge-Kutta
method*® with adaptive stepsize control is used to march the
ODEs and PDEs forward in time. At each substep, the PDEs
are discretized using N, + 1 equidistant points in y-space
inside the bubble and solved using second-order central dif-
ferences following directly,'® e.g., for the concentration

oc ~ Cit1 —Ciy 7 24)
Oy |y 2Ay
AY AY
(1+y )C,»+lzc,-+(1y )c,»_l
V| ~ il i1 ’
a -
(25)

where Ay = 1/Ny and y; = (i — 1)/Ay. A second-order one-
sided difference is used at the bubble wall. The same discre-
tization is used for the temperature. Outside the bubble, the
energy equation is treated in a similar manner, by discretiz-
ing x-space with N, + 1 equidistant points. All simulations
were carried out with Ny = N, = 1000. The treatment of
the interface conditions deserves additional explanations.
Expanding the finite difference expressions at the boundary
results in an algebraic expression for T, which is solved
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using an algorithm based on a combination of bisection,
secant, and inverse quadratic intelrpolation.46 The conver-
gence of the overall method is evaluated in Appendix A 1.

IV. LINEAR ANALYSIS

We use linear analysis to explain the contributions of
heat and mass transfer on the bubble dynamics. For simplic-
ity, we use reduced-order models®* to describe the heat and
mass transfer at the bubble wall,

oc

dy

- ar
= _ﬁC(C - CW)7 a.

. oy | =~ —pr(T —T,), (26)

where C and T are the volume-averaged concentration and
temperature, respectively,

n, P 3 Romyo + RgmgO

—t  T=2EprT 8 (27)
my + Mg po Remy + Ryng

C =
The expression for the volume averaged temperature differs
from that in Ref. 24 in that we take into consideration the
dependence of R on concentration.

The mass of non-condensible gas inside the bubble i,
is constant, while the mass of vapor in the bubble m, is
obtained by assuming equilibrium phase change,

dm,
dt

= 4nR%*m’. (28)

The coefficients 8, in Eq. (26) are given by**
1 3 -1
B(J) =R ( (VT coth V7] — j) : (29)

where J = iwy/l, | = y for mass transfer and /=Fo,, for
heat transfer, and the isothermal bubble natural frequency
oy = \/3(px — pv) +2/We +4/Ca. Thus, in the analysis,
Egs. (19), (20), and (21) are no longer solved. Instead, we
end up with a 4 x 4 system of first-order nonlinear ODEs,

d .
GX=F X=(RRpm), (30)
where F(X) = (f1(X), £2(X),/3(X),f4(X)) is defined via Egs.
(17), (18), and (28). This system of equations is linearized
about its fixed points X,, yielding

) €2y

where X = X — X, for small perturbations from X,, and the
Jacobian matrix A;; is evaluated at the fixed points given by
the following algebraic system of equations:

1 1 4Ry R%
e — (1 = —5-="-=) (32
pe— (141 WeR€+2Ca< R, R 32)

R, =0, (33)
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L, (34)
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My 1
= (35)
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The subscript e indicates equilibrium conditions (fixed
points). For harmonic forcing f=0, and for Rayleigh col-
lapse f = Ap.

The four eigenvalue and eigenvector pairs of A,
(A1,v1), (A2, V2), (43, v3), and (A4,v4), can be numerically
computed, with

4
X = Zciviei"’, c=v'X,, (36)
=1

where C = (cy, ¢2, ¢3, c4)T and V = (vy, vz, V3, v4). The bub-
ble radius is then R(f) ~ R, + X (7). By considering the
eigenvalue (/gom) that dominates X (¢), the damped natural
frequency w, and the time constant #, can be calculated:

—1

Wq = %()Ldam)a tg = %(/Ld ) . (37)

We demonstrate in Appendix A 2 that the linear analysis dis-
plays good agreement with our numerical results for suffi-
ciently low-amplitude oscillations.

V. RESULTS AND DISCUSSION

To illustrate the salient features of heat and mass trans-
fer on free oscillations of a bubble in tissue-like media, two
forms of bubble collapse problems’”* are solved, driven by
pressure ratios of relevance to therapeutic ultrasound, and
three different approaches are evaluated: polytropic (adia-
batic), heat transfer only, and heat and mass transfer (full
model). To facilitate comparisons with the linear analysis,
the present Keller-Miksis simulations are run with the heat
and mass transfer models of Ref. 24 including the cold water
assumption, except at the very end of each section where the
temperature field is shown.

A. Step increase in surrounding pressure (classical
Rayleigh collapse)

We first consider the classical Rayleigh collapse prob-
lem'? wherein the bubble, initially in equilibrium with its
surroundings, undergoes collapse due to the instantaneous
increase in the far-field pressure (Ap = 35p,). This pressure
increase causes the bubble to collapse and oscillate to a new
equilibrium radius. Initially the medium is stress free
(R = R,) and the pressure inside the bubble is given by
Do = Poo + 1/(WeR,), unless otherwise mentioned. The ini-
tial radius is 3 um and the initial velocity is Ap/(pc).'"* We
first recall the results of Ref. 38, and consider in Fig. 1 the
time evolution of the bubble radius for different shear mod-
uli using the polytropic model. Note that the initial bubble
radii considered in that study was R, = 5 um. As the shear
modulus is increased (decreasing Cauchy number), the
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FIG. 1. (Color online) Time evolution of the bubble radius for different
shear moduli for classical Rayleigh collapse using the polytropic model
(Ap = 35ps, R, =5 pm). Ca=0.005 (solid blue), 0.030 (dotted red),
0.600 (dashed orange), and 1000 (dashed-dotted black). Results presented in
dimensionless form.

equilibrium radius becomes larger since the final state of
stress increases accordingly. Starting from the lowest shear
modulus, the persistence of the oscillations first increases as
the Cauchy number is decreased, and then decreases for
0.030 = Ca = 0.005; in other words, the damping decreases
with increasing Ca, reaches a minimum between 0.030 and
0.005, and increases again thereafter. For this problem, the
solution with Ca=1000 is nearly identical to that of a
Newtonian liquid.

The effects of heat and mass transfer as a function of
elasticity are assessed in Fig. 2. For the larger Cauchy num-
bers (Ca=0.6,1000), i.e., lower shear moduli, the equilib-
rium radius and oscillation properties of the solution with
thermal effects exhibit clear discrepancies from the poly-
tropic case: the equilibrium radius is smaller, and the oscilla-
tions die out sooner, thus suggesting increased damping. An
illustration of the complexity of the high-order system is dis-
cerned in the Ca= 1000 case: in addition to “conventional”
damping observed in the peak-to-peak decrease of the
rebounds, the full model exhibits an additional, slower, over-
damped time scale visible in the non-zero slope between 1.0
and 2.0. For these parameters, mass transfer inside the bub-
ble does not visibly affect the results, i.e., vapor trapping® is
negligible because the vapor pressure is far smaller than the
gas pressure.

Small-amplitude (linear) perturbation analysis can be
used to investigate the behavior observed above. We con-
sider the dependence of the equilibrium radius, time con-
stant, and damped natural frequency on the Cauchy number
in Fig. 3. The polytropic results are consistent with those
observed in past studies.”® As the Cauchy number is
increased (shear modulus decreased), the equilibrium radius
becomes smaller due to the reduced final stress state; the
same non-monotonic behavior of the time constant and
damped natural frequency as a function of Cauchy number is
observed. At low Ca (high shear modulus), the oscillation
amplitude is small such that the bubble temperature never
reaches sufficiently high values for substantial heat transfer;

Carlos Barajas and Eric Johnsen



(a)1.2

1.0

0.8}
& 0.6}
0.4}

0.2}

(b) 1.2
1.0
0.8}

& 0.6}

0.4}

0.2}

& 0.6}

0.4}

0.2}

0.0
0.0 0.5 1.0 1.5 2.0

t

FIG. 2. (Color online) Time evolution of the bubble radius for different
shear moduli for classical Rayleigh collapse using the polytropic (dashed-
dotted blue), heat transfer only (solid red), heat/mass transfer (dotted black)
models (Ap = 35p, R, =3 um). Ca=0.03 (top), 0.60 (middle), 1000
(bottom). Results presented in dimensionless form.

the full model agrees with the polytropic solution. At
Ca=0.1, the equilibrium radius when including heat trans-
fer starts to diverge from the adiabatic solution. The oscilla-
tion amplitude is larger, leading to higher -collapse
temperatures and thus non-negligible heat transfer. For
Ca=0.60 and 1000, the discrepancy in the equilibrium
radius between the polytropic solution and that including
heat (and mass) transfer is due to the fact that no heat trans-
fer takes place in the polytropic (adiabatic) case. Thus, the
equilibrium temperature need not relax to the temperature of
the surroundings at late times and in fact remains higher
since no heat is lost. When accounting for heat transfer, the
equilibrium temperature eventually ends up equal to the
ambient temperature, as expected.

The time constant, determined by considering the real
part of the dominant eigenvalue, exhibits a complicated
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FIG. 3. (Color online) Dependence of the equilibrium radius (top), time con-
stant (middle), and damped natural frequency (bottom) on the Cauchy num-
ber for classical Rayleigh collapse based on linear analysis using the
polytropic (dashed-dotted blue), heat transfer only (solid red), and heat/mass
transfer (dotted black) models (Ap = 35p~, R, = 3 pm). Results presented
in dimensionless form.

dependence on Cauchy number when accounting for heat
transfer. Since the polytropic model includes only compress-
ible and viscous damping and since the corresponding char-
acteristic polynomial only has two roots, the interpretation is
straightforward:*® compressible damping is dominant at low
Cauchy number and decreases with increasing Ca, while vis-
cous damping follows the opposite behavior; thus, the addi-
tion of the viscous and compressible damping contributions
gives rise to a non-monotonic behavior. Thermal damping
can be inferred by comparing the results with heat transfer to
the polytropic case. At low Ca, there is little difference
with the polytropic case; thermal damping is negligible and
compressible damping dominates, as in Ref. 38. For 0.01
=<Ca=<O0(l), the time constant follows a trend similar to
that of the polytropic case, but with a lower value. We thus
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infer that in this range of shear modulus thermal damping is
important, but does not significantly change the dynamics.
At Ca =~ 1, there is a sudden increase in the time constant
beyond the corresponding polytropic value, after which the
time constant tends to an asymptotic value of ~0.35 (by con-
trast to 0.22 in the polytropic case). This behavior indicates
that thermal damping becomes important for Ca= 1. In the
presence of heat transfer, the damped natural frequency is
almost identical to the polytropic case at low Cauchy num-
ber. At Ca = O(1), thermal effects give rise to a high fre-
quency and thus shorter oscillation period observed in Fig. 2
compared to the polytropic solution. Unlike the behavior of
the time constant, no drastic change is observed in w, at
Ca ~ O(1).

Additional insight is gained by mapping the eigenvalues
of the system for different shear moduli in Fig. 4. When ther-
mal effects are included, the governing system is third order,
so a third eigenvalue exists (and a fourth when mass transfer
is included). In the full model, there are two real and two
imaginary eigenvalues for the parameters of interest. The
corresponding polytropic equation system has only two
poles, which are complex as long as the system is not over-
damped. At the lowest elasticity (Ca = 1000), the pair of
complex eigenvalues dominate the system as illustrated by
the persistence of oscillations; the right-most purely real
eigenvalue governs a second, exponential decaying time
scale observable in the oscillations shown in Fig. 2 (bottom).
As the Cauchy number is decreased, the right-most real
eigenvalue moves to the left while the pair of complex
eigenvalues move to the right; at some Cauchy number
between 0.03 and 0.60, the complex eigenvalues “overtake”
the right-most purely real eigenvalue—their real part is far-
ther to the right, thus, explaining the sharp increase in the
time constant (Fig. 3, middle). At the highest elasticity
(Ca=0.03) the system is dominated by the two complex
poles; the relative magnitude of the purely real eigenvalues
makes them irrelevant.

However, the dynamics are not completely governed by
the dominant eigenvalues; one must also consider the initial
conditions and account for the contributions of all eigenvalues.

Given the computational expense incurred to model
heat/mass transfer, it is of practical interest to know whether

60
40 >
20 u )
50 > m @ onm )
-20
- [ )
40 >
-60 .
—10% —10t —10°
R(N)

FIG. 4. (Color online) Eigenvalue map for classical Rayleigh collapse
(Ap = 35p~, R, =3 pm), with Ca=0.03 (black circle), 0.60 (blue square),
and 1000 (green triangle). Results presented in dimensionless form.
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the full PDEs must be solved. Overall, the linear analysis
and simulations indicate that the effects of heat (and mass)
transfer are negligible for Ca < 0.03, given this value of Ap.
Since most soft tissues are in the 1-100kPa range—well
within the 3.4 MPa corresponding to Ca = 0.03, the full sys-
tem should be solved.

The simulations for this problem setup were executed
using the cold liquid assumption to allow a direct compari-
son to the linear results. This assumption can be relaxed to
calculate the temperature field in the surroundings, as shown
in Fig. 5. The bubble dynamics are nearly identical to those
obtained with the cold liquid simulation. For this problem, a
particle in the surrounding medium very near the bubble
wall experiences a temperature rise of approximately 45 °C
during the first collapse.

B. Step decrease in internal pressure
(“Flynn collapse”)

The alternate bubble collapse problem wherein the sur-
rounding pressure is kept constant but the internal pressure is
reduced is considered next. This problem, particularly relevant
to cavitation bubble growth and collapse in ultrasound- and
laser-induced cavitation, was studied in detail by Flynn;47’48 for
conciseness, we refer to this problem as “Flynn collapse.”
Reducing the internal pressure corresponds to starting the prob-
lem with an initial radius larger than the equilibrium radius. To
facilitate comparisons, we consider the bubble to be in a stress-
free state at equilibrium (Rgs = R,); in practice (e.g., laser cavi-
tation), the equilibrium radius is larger than the nucleus size,
such that the bubble is not in a stress-free state at equilibrium.

The initial bubble pressure is p, = p, + p., Where p,
= prsat(T) = 3.09 kPa and p, = 8 kPa; this corresponds to
a pressure ratio driving the collapse of 8.5. As the shear
modulus is increased, an additional elastic stress acts on the
bubble. The initial radius R, = 3 um is 2.09 times greater
than the equilibrium radius for the polytropic model; when
accounting for full thermal effects, R,/R, = 2.97 for this
pressure ratio. The initial velocity is Ap,/(pc)."* In Fig. 6,
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FIG. 5. (Color online) Temperature distribution in the surroundings for clas-
sical Rayleigh collapse (Ap = 35p, R, =3 pum, Ca=1000). Results pre-
sented in dimensionless form except for temperature (degrees Celsius).
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we examine the time evolution of the bubble radius for dif-
ferent shear moduli using the polytropic model. At the high-
est Cauchy number, the damping is near critical. As the
Cauchy number is decreased (shear modulus increased), the
oscillation amplitude Although seemingly
counter-intuitive, this behavior is explained by considering
the state of stress at t =0, which increases as the shear mod-
ulus is increased, thus, leading to more violent collapse.

The dependence of heat and mass transfer effects on
elasticity is assessed in Fig. 7. As the Cauchy number is
increased (shear modulus is reduced), the oscillations
become overdamped. By contrast to the results in Sec. IV,
the polytropic solution never agrees with the solution with
heat transfer: the equilibrium radius in Eq. (32) does not
change as the shear modulus is varied, as expected since the
equilibrium conditions are the same in all cases. Again, the
equilibrium radius is larger for the polytropic case, since
heat is not dissipated. For these parameters, mass transfer
inside the bubble again does not visibly affect the results.

As in Sec. 1V, linear analysis is invoked to explain the
results. We consider the dependence of the time constant and
damped natural frequency on the Cauchy number in Fig. 8. In
the polytropic case, the time constant increases rapidly with
Cauchy number before reaching a plateau of ~2.4 at
Ca =~ O(1). When heat transfer is included, the growth at low
Ca is slower than for the polytropic case and appears to reach
a plateau; then, at Ca =~ 1 the regime changes. The damped
natural frequency monotonically decreases with increasing Ca
in the polytropic case. When heat transfer is included, w,, starts
from a higher value than the polytropic solution at low Cauchy
numbers, decreases before crossing the polytropic solution at
Ca =~ 1, and becomes zero at Ca = 1, at which point the sys-
tem is overdamped. It is thus clear that the change in regime in
the time constant is due to the solution being overdamped
beyond Ca ~ O(1). These results explain the increased damp-
ing observed in Fig. 6 as the Cauchy number is increased.

The eigenvalue map (Fig. 9) confirms the results shown
in Sec. V B. For the lowest Cauchy numbers, the system is
dominated by a pair of complex poles, with two small,
purely real poles. As Ca is increased, these poles move
toward the real axis and reach it by Ca=10. Beyond this

increases.
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FIG. 6. (Color online) Time evolution of the bubble radius for different
shear moduli for Flynn collapse using the polytropic model (R, /R, = 2.09).
Ca=0.1 (solid blue), 1.0 (dashede-dotted red), and 10 (dotted yellow).
Results presented in dimensionless form.
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FIG. 7. (Color online) Time evolution of the bubble radius for different val-
ues of shear modulus for Flynn collapse using the polytropic (dashed-dotted
blue), heat transfer only (solid red), and heat/mass transfer (dotted black)
models (R,/R, =2.09 for the polytropic model, R,/R, = 2.97 with full
thermal effects). Ca=0.1 (top), 1.0 (middle), and 10 (bottom). Results pre-
sented in dimensionless form.

Cauchy number, the oscillations are overdamped. The other
two fast real poles do not change with elasticity.

As for the classical Rayleigh collapse problem, the cold
liquid assumption is relaxed to determine the temperature
field in the surroundings (Fig. 10). Again, due to the small
radius at collapse, a particle in the surrounding medium very
near the bubble wall experiences a temperature rise of
~20 °C. The thermal boundary layer in the surroundings dif-
fuses over time. The bubble dynamics are nearly identical to
those obtained with the cold liquid assumption.

VI. CONCLUSIONS

In this study, free oscillations of a vapor bubble in
tissue-like, viscoelastic media under conditions relevant to
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FIG. 8. (Color online) Dependence of the time constant (top) and damped
natural frequency (bottom) on the Cauchy number for Flynn collapse based
on linear analysis using the polytropic (dashed-dotted blue), heat transfer
only (solid red), and heat/mass transfer (dotted black) models
(R,/R, =2.09 for the polytropic model, R,/R, =2.97 with full thermal
effects). Results presented in dimensionless form.

diagnostic and therapeutic ultrasound were investigated.
Energy transport inside and outside the bubble is included in
the numerical model, as well as the diffusion of vapor and
non-condensible gas inside the bubble, assuming equilibrium
phase change at the bubble wall. The soft material is
described by a Kelvin-Voigt constitutive model with neo-
Hookean (nonlinear) elasticity, appropriate for the finite
deformations produced by large-amplitude bubble oscilla-
tions. A finite difference scheme was implemented to solve
the PDEs for heat and mass transfer. Two collapse problems
were considered: the classical Rayleigh and out-of-
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FIG. 9. (Color online) Eigenvalue map for Flynn collapse (R,/R, = 2.97
with full thermal effects), with Ca=0.1 (black circle), 1.0 (blue square),
and 10 (green triangle). Results presented in dimensionless form.
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FIG. 10. (Color online) Temperature distribution in the surroundings for
Flynn collapse (R,/R, = 2.97, Ca = 0.1). Results presented in dimension-
less form, except for temperature (degrees Celsius).

equilibrium Flynn collapse problems. Small-amplitude (lin-
ear) perturbation analysis was used to explain the oscillatory
behavior as the tissue stiffness is varied. We quantified the
extent to which heat and mass transfer influence bubble
dynamics depending on the stiffness. For Rayleigh collapse,
we discovered that heat transfer significantly changes the
behavior of the time constant (i.e., damping) at large Cauchy
numbers (low shear moduli) where small radii at collapse are
achieved, thus, facilitating heat transfer. This finding is sub-
stantiated by considering the eigenvalues corresponding to
these thermal effects, which becomes dominant at small shear
moduli. For the Flynn collapse, thermal effects matter at all
Cauchy numbers. The oscillations become overdamped
beyond a critical Cauchy number; due to the problem setup,
elasticity enhances the violence of the collapse as an initial
stress acts on the bubble. We further identify regimes under
which a polytropic relation describes the heat transfer to suffi-
cient accuracy, thus, avoiding the complexity and computa-
tional expense associated with solving full PDEs. This model
provides a starting point for investigating the relative impor-
tance of thermal vs mechanical effects in ultrasound proce-
dures. However, more accurate constitutive models and tissue
characterization are required to make progress in this field.
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APPENDIX A

1. Convergence of the numerical scheme

The convergence of the numerical scheme is evaluated
by considering the peak wall temperature and minimum bub-
ble radius produced during Rayleigh collapse. The L., errors

Carlos Barajas and Eric Johnsen



in these quantities in both the interior and exterior calcula-
tions are shown as a function of number of points in Fig. 11.
The “exact” solution is taken as the solution obtained with
N, = N, = 1000; the convergence of the interior scheme is
evaluated holding N,=1000 while varying N,, and vice
versa for the exterior scheme. The L., error is the difference
between the “exact” and numerical solutions at the relevant
time. As expected, the overall convergence rate is close to
second order. The non-monotonic behavior observed in the
interior solution is due to the change in direction of the root-
finding algorithm for T,,. Additionally, we tracked the mass
of non-condensible gas during our simulations,

1

My, = 3R3 JO pm(l - C)y2 dy'

(A)

Although this value should remain constant throughout the
simulation, the discretization errors compound to produce
small deviations. However, no noticeable differences are
observed in the bubble dynamics when the deviation is
<5%.

2. Validity of the linear analysis

We compare in Fig. 12 results with linear analysis to
those with our numerical solution of the full PDE model
with heat and mass transfer, for Rayleigh collapse with
Ca=0.03. The excellent agreement supports the use of
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FIG. 11. (Color online) L., error in peak temperature at the bubble wall T,
(solid blue) and minimum bubble radius (dotted red) for a typical Rayleigh
collapse problem as the number of points in the bubble and medium are var-
ied. The dashed-dotted lines denote O(N) and O(N?). (Top) Interior
(Ny=1000), (Bottom) exterior (N, = 1000).
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FIG. 12. (Color online) Time evolution of the bubble radius for the classical
Rayleigh collapse problem (Ap = 35p,,) with Ca=0.03 (solid blue: full
PDE model; red dotted: linearized solution). Results presented in dimension-
less form.

linear analysis to explain our findings. For larger oscillation
amplitudes, additional higher-order terms are required to
accurately represent the solution;*® however, linear analysis
provides a qualitative description of the dominating physics.
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