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In certain cavitation-based ultrasound techniques, the relative importance of thermally vs mechani-

cally induced damage is unclear. As a first step to investigate this matter, a numerical model for

bubble dynamics in tissue-like, viscoelastic media is presented in which full thermal effects are

included inside and outside the bubble, as well as interdiffusion of vapor and non-condensible gas

inside the bubble. Soft tissue is assumed to behave according to a Kelvin-Voigt model in which vis-

cous and elastic contributions are additive. A neo-Hookean formulation, appropriate for finite-

strain elasticity, accounts for the large deformations produced by cavitation. Numerical solutions to

problems of relevance to therapeutic ultrasound are examined, and linear analysis is used to explain

the underlying mechanisms. The dependence between the surrounding medium’s elasticity (shear

modulus) and the extent to which the effects of heat and mass transfer influence bubble dynamics is

quantified. In particular, the oscillation properties are related to the eigenvalues determined from

linear theory. Regimes under which a polytropic relation describes the heat transfer to sufficient

accuracy are identified, for which the complexity and computational expense associated with solv-

ing full partial differential equations can be avoided.VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4976081]

[DLM] Pages: 908–918

I. INTRODUCTION

While the primary motivation for cavitation research

originally lay in hydrodynamics,1,2 recent advances in ultra-

sound techniques, both diagnostic and therapeutic, have

given rise to increased interest in acoustic cavitation.3,4 For

instance, encapsulated microbubbles can serve to improve

contrast in ultrasound imaging or deliver drugs,5 and several

focused ultrasound techniques for therapy rely on cavitation,

such as shock-wave lithotripsy,6 high-intensity focused ultra-

sound (HIFU),7 and histotripsy.8 Bioeffects are common out-

comes in these applications,9,10 whether desired or not. One

particular question related to bioeffects motivates the present

study, namely, the relative importance of mechanically vs

thermally induced damage in therapeutic ultrasound, specifi-

cally in HIFU and histotripsy.11

Analysis and modeling of cavitation dynamics are com-

monly conducted using the Rayleigh-Plesset equation,12,13 a

nonlinear ordinary differential equation (ODE) describing

the response of a spherical gas or vapor bubble subjected to

a far-field pressure change. Viscous, surface tension and

compressibility effects can readily be included, and thermal

transport has been investigated in the context of cavitation

dynamics in water.14 To improve the fidelity beyond a poly-

tropic description of the gas inside the bubble, an energy

equation can be solved inside the bubble to more accurately

represent the thin thermal boundary layers15 under the cold

liquid assumption. More sophisticated approaches have been

developed to account for the varying temperature in the sur-

roundings as well.16,17

Mass transfer may be of importance in therapeutic ultra-

sound due to high tensions and multiple cycles. This topic has

been the subject of several investigations. The conventional

description of gases inside the bubble assumes that the con-

tents include both vapor, which may condense, and non-

condensible gas obeying a polytropic relation.18 Most com-

monly, the vapor pressure is taken to be constant under ther-

modynamic equilibrium,14 i.e., phase change is instantaneous

and therefore does not affect the dynamics. Several studies

have incorporated finite evaporation rates and other non-

equilibrium effects.19–23 Another aspect related to mass trans-

fer is the diffusion of vapor and non-condensible gas in the

bubble. Generally, the non-condensible gas is assumed insolu-

ble,24 which appears to be a reasonable assumption.25 Based

on the understanding thereby gathered, reduced-order mod-

els22–24,26 were developed to decrease the cost and complexity

of solving partial differential equations (PDEs) for heat and

mass transfer, and were used to solve various bubble dynam-

ics problems.27,28 Such models have been used to investigate

bubble dynamics in the context of therapeutic ultrasound,22,23

although the surrounding medium was taken to be water.

One of the chief difficulties in modeling cavitation in

ultrasound applications lies in representing the rheology of soft

tissue, whose complex microstructure gives rise to a viscoelas-

tic response. Assuming the bubble oscillates in a homogeneous

medium, pioneering studies of cavitation in viscoelastic fluids

motivated by polymer processing focused on Maxwell and

Oldroyd constitutive models,29–31 which introduce stress relax-

ation but do not enforce that the medium returns to its original

configuration. These models were subsequently used to inves-

tigate cavitation in tissue.32–35 More recently, it was recog-

nized that models incorporating elasticity may represent softa)Electronic mail: carlobar@umich.edu
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tissue more accurately since they preserve the original configu-

ration after deformation. Examples include the Kelvin-Voigt

models of Yang and Church,36 strictly valid only for infinitesi-

mal deformations, and of Gaudron et al.,37 based on finite-

strain theory and thus capable of representing large deforma-

tions, as well as the Zener models of Hua and Johnsen38 and

Warnez and Johnsen,39 which in addition include relaxation.

Although only one such model incorporates heat transfer,39 no

systematic study has been performed to determine how heat

(and mass) transfer influences the bubble dynamics in visco-

elastic media.

Quantifying mechanical vs thermal effects of bubbles on

soft tissue requires an accurate representation of the mechan-

ics and heat transfer. At the present time, the effects of heat

and mass transport on bubbles oscillating in soft materials,

with application to therapeutic ultrasound, is unknown. Our

objective is to address this knowledge gap. In particular, we

use a numerical model for spherical bubble dynamics to repre-

sent a freely oscillating bubble under circumstances of rele-

vance to therapeutic ultrasound in a viscoelastic medium

representative of soft tissue. To elucidate the underlying

mechanisms, we theoretically and numerically investigate the

bubble oscillation properties. The key novelty of this work

lies in the inclusion of elasticity in investigations of heat and

mass transfer in bubble dynamics, both numerical and analyti-

cal. The article is laid out as follow. First, we describe our

physical and numerical models, as well as our linear analysis

approach. We then present numerical results and explain them

with the help of the linear analysis. We close by summarizing

our findings and discussing future research directions.

II. PHYSICAL MODEL

A. Equations of motion

We consider the spherical dynamics of a bubble in an

infinite viscoelastic medium. Taking into account acoustic

radiation losses due to the compressibility of the medium,

the bubble dynamics are represented by the Keller-Miksis

ODE40

1�
_R

c

� �

R €R þ 3

2
1�

_R

3c

� �

_R
2

¼ 1þ
_R

c
þ R

c

d

dt

� �

p� p1 tð Þ �Hve �
2S

R
q

; (1)

where R is the bubble radius, q and c are the density and

sound speed of the surroundings, S the surface tension, p the

internal bubble pressure given by the sum of the partial pres-

sures of non-condensible gas (pg) and vapor (p
v
), Hve is the

viscoelastic stress integral, and p1ðtÞ is the far-field driving

pressure. The overdots denote derivatives with respect to

time t.

The approach of Gaudron et al.37 is followed to repre-

sent the soft tissue’s finite deformations created by large-

amplitude bubble oscillations of interest in the problems of

interest (from 10% to over 200% strains), and the corre-

sponding stresses described by nonlinear elastic theory, by

contrast to infinitesimal strains and linear elastic theory. The

integral of the total stress is the sum of viscous and elastic

contributions

Hve ¼
4l _R

R
þ G

2
5� 4

Rsf

R
� Rsf

R

� �4
" #

; (2)

where l is the viscosity of the surroundings, G is the (linear)

shear modulus, and Rsf is the bubble radius corresponding to

stress-free surroundings; depending on the problem under

consideration, Rsf may be the initial radius Ro or the equilib-

rium radius Re. This Kelvin-Voigt formulation implies that

the surrounding medium possesses an original configuration,

which is an attribute of most soft tissues. Given the large

deformations of the surroundings, the elastic stress is com-

puted based on a neo-Hookean constitutive relation, which

accounts for finite-strain (nonlinear) elasticity. In the sur-

rounding medium, the rr- and hh-components of the elastic

stress tensor are given by

srr ¼
2

3
G

ro

r

� �4

� r

ro

� �2
" #

; shh ¼ � 1

2
srr; (3)

where roðr; tÞ ¼ ðr3 � R3 þ R3
sfÞ

1=3
is the radial location in

the original configuration.

The bubble is assumed homobaric. Heat and mass trans-

fer both modify the bubble pressure evolution41

_p ¼ 3

R
�cp _R þ c� 1ð ÞKw

@T

@r
jw þ cRvTw _m00

v

� �

; (4)

where T(r, t) is the instantaneous, spatially varying tempera-

ture, K is the mixture thermal conductivity inside the bubble,

Rv is the gas constant of vapor, and _m00
v
the vapor mass flux

across the interface. The subscript w denotes variables evalu-

ated at the bubble wall. The specific heats ratio c of vapor is

assumed equal to that of air.

To account for heat transfer, we compute PDEs for

energy balance inside and outside the bubble, with Fourier’s

law to describe heat conduction. Inside the bubble,

c

c� 1

p

T

@T

@t
þ U

@T

@r

� �

� _p ¼ r � KrTð Þ½ �r; (5)

where only the radial terms are non-zero (denoted by the r

subscripts) and

U ¼ 1

cp
c� 1ð ÞK @T

@r
� r _p

3

� �

: (6)

The mixture thermal conductivity is given by K ¼ AT þ B,

where A and B are experimentally determined coefficients.15

Outside the bubble,

@Ts
@t

þ R2 _R

r2
@Ts
@r

¼ Ds r2Ts
� �

r þ
12l

qCp

R2 _R

r3

� �2

; (7)

where Ts is the temperature in the surroundings, Cp is the

heat capacity at constant pressure, Ds ¼ Ks=ðqCpÞ is the

thermal diffusivity, and Ks is the constant thermal conductiv-

ity of the surroundings.
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The boundary conditions imposed on Eqs. (5) and (7)

are, for the temperature,

Tw ¼ Ts;w; Tsjr!1 ! T1; (8)

and for the fluxes,
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�

�

�
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�

�

�

�

w

; (9)

where T1 is the far-field temperature and L is the latent heat

of condensation/evaporation. Thus, the energy formulation

includes energy transfer due to phase change.

With regard to mass transfer, equilibrium phase change is

considered at the bubble wall, the interdiffusion of non-

condensible gas and vapor are computed inside the bubble; it

is assumed that no transfer of non-condensible gas takes place

from the surroundings into the bubble, e.g., rectified diffu-

sion.42 This assumption is valid due to the low solubility of

air in water (Cg � 10�5) and the short time scales associated

with the bubble oscillations, compared to those of rectified

diffusion.24 Thus, the main challenge lies in determining the

vapor (alternately, the non-condensible gas) concentration

inside the bubble. Mass diffusion is represented by Fick’s law

such that the mass balance equation for vapor reads21

@C

@t
þ u

@C

@r
¼ r � DqmrCð Þ½ �r

qm
; (10)

where

u ¼ U þRv �Rg

R
@C

@r
; (11)

C ¼ q
v
=qm is the vapor mass concentration, qv is the vapor

density, qm is the mixture density, D is the diffusion coeffi-

cient between water vapor and air, Rg is the gas constant of

air, and R ¼ CRv þ ð1� CÞRg is the mixture gas constant.

The boundary conditions are

@C

@r

�

�

�

�

r¼0

¼ 0; qwCw ¼ pv;sat Twð Þ
RvTw

; (12)

with the latter equality arising from assuming equilibrium

phase change. The saturated vapor pressure at the bubble

wall is given by

pv;sat Twð Þ ¼ pref exp � Tref

Tw

� �

; (13)

where pref and Tref are empirically determined parameters.24

In tissue, phase change is expected to be inhibited by the

constraining effect of tissue on water, the extent of which is

presently unknown; Eq. (13) thus provides an upper limit for

vaporization and condensation across the bubble wall, since

it strictly applies to water. Assuming the mixture obeys the

ideal gas law, C and qm are related by

C ¼ 1

Rv �Rg

p

qmT
�Rg

� �

: (14)

Finally, the vapor mass flux is written

_m00
v
¼ D

qm;w

1� Cw

@C

@r

�

�

�

�

w

: (15)

Accurate measurement of the viscoelastic properties of

soft materials at the rates of interest are challenging.43 Table I

lists the material properties used in this study, selected to be

relevant in the context of therapeutic ultrasound.36,38,39 Since

soft tissue exhibits a range of stiffnesses,44 an important goal

of the present study is to describe different behaviors of the

bubble dynamics as G is varied.

B. Non-dimensionalization and geometry

It is convenient to numerically solve the equations in

dimensionless form. For non-dimensionalization, we use the

initial bubble radius R0, atmospheric pressure p1, the

medium density q, and the far-field temperature T1; from these

quantities, a characteristic velocity UC ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p1=q
p

is con-

structed. This gives rise to the following dimensionless parame-

ters: Reynolds number Re ¼ qUcR0=l, Cauchy number

Ca ¼ P1=G, Weber number We ¼ p1R0=2S, mass Fourier

number Fom ¼ D=ðUcR0Þ, heat Fourier number Foh ¼ Ds=

ðUcR0Þ, Brinkman number Br ¼ U2
c=CpT1, dimensionless

sound speed C ¼ c=Uc, and v ¼ T1K1=ðp1R0UcÞ. Time and

frequency are non-dimensionalized by R0=UC. From here on,

we refer to t as dimensionless time.

We transform the spherically symmetric domain with

radial coordinate r into a new variable y ¼ r=R. Outside the

bubble, we further implement the following transformation,

x ¼ 2=ð1þ ðy� 1Þ=LtÞ � 1, to set the integration limits to

x 2 ½1;�1�. Lt is a scaling factor for the domain.17 Finally, to

simplify the energy Eq. (5) inside the bubble, we transform

the temperature,

h ¼ 1

K1

ðT

1

K T1h0ð Þdh0: (16)

As a result, we re-write the two nonlinear ODEs and

three PDEs in dimensionless form

TABLE I. Baseline values for the material properties used in the present study.

Property Nominal value Property Nominal value Property Nominal value

A 5:3� 10�5 W/mK2 S 5:6� 10�2 N/m Cp 4.18 kJ/kgK

B 1:17� 10�2 W/mK l 15 cP L 2:264� 106 J/kg

D 24:2� 10�6 m2/s p1 101.3 kPa c 1.4

Kl 0.55W/m T1 298.15K pref 1:17� 108 kPa

Tref 5200K q 1060 kg/m3 c 1430m/s
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with

U ¼ 1

cp

c� 1ð Þv
R
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� yR _p
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; (22)

u ¼ U þ Fom

R
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III. NUMERICAL METHOD

A fifth-order explicit Dormand-Prince Runge-Kutta

method45 with adaptive stepsize control is used to march the

ODEs and PDEs forward in time. At each substep, the PDEs

are discretized using Ny þ 1 equidistant points in y-space

inside the bubble and solved using second-order central dif-

ferences following directly,15 e.g., for the concentration

@C

@y

�

�

�

�

y¼i

� Ciþ1 � Ci�1

2Dy
; (24)

r2Cjy¼i �
1þ DY

yiþ1

� �

Ciþ1 � 2Ci þ 1� DY

yi�1

� �

Ci�1

Dy2
;

(25)

where Dy ¼ 1=Ny and yi ¼ ði� 1Þ=Dy. A second-order one-

sided difference is used at the bubble wall. The same discre-

tization is used for the temperature. Outside the bubble, the

energy equation is treated in a similar manner, by discretiz-

ing x-space with Nx þ 1 equidistant points. All simulations

were carried out with Nx ¼ Ny ¼ 1000. The treatment of

the interface conditions deserves additional explanations.

Expanding the finite difference expressions at the boundary

results in an algebraic expression for Tw, which is solved

using an algorithm based on a combination of bisection,

secant, and inverse quadratic interpolation.46 The conver-

gence of the overall method is evaluated in Appendix A 1.

IV. LINEAR ANALYSIS

We use linear analysis to explain the contributions of

heat and mass transfer on the bubble dynamics. For simplic-

ity, we use reduced-order models24 to describe the heat and

mass transfer at the bubble wall,

@C

@y
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�
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�C � Cwð Þ; @T
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w

ffi �bT �T � Twð Þ; (26)

where �C and �T are the volume-averaged concentration and

temperature, respectively,

�C ¼ mv

mv þ mg0

; �T ¼ p

p0
R3 Rvmv0 þRgmg0

Rvmv þRgmg0

: (27)

The expression for the volume averaged temperature differs

from that in Ref. 24 in that we take into consideration the

dependence ofR on concentration.

The mass of non-condensible gas inside the bubble mg0

is constant, while the mass of vapor in the bubble m
v
is

obtained by assuming equilibrium phase change,

dmv

dt
¼ 4pR2

_m00
v
: (28)

The coefficients bl in Eq. (26) are given by24

bl Jð Þ ¼ <
ffiffiffi

J
p

coth
ffiffiffi

J
p� ��1

� 3

J

� ��1

; (29)

where J ¼ ixN=l; l ¼ v for mass transfer and l¼ Fom for

heat transfer, and the isothermal bubble natural frequency

xN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðp1 � pvÞ þ 2=Weþ 4=Ca
p

. Thus, in the analysis,

Eqs. (19), (20), and (21) are no longer solved. Instead, we

end up with a 4� 4 system of first-order nonlinear ODEs,

d

dt
X ¼ F; X ¼ R; _R; p;mv


 �T
; (30)

where FðXÞ ¼ ðf1ðXÞ; f2ðXÞ; f3ðXÞ; f4ðXÞÞ is defined via Eqs.

(17), (18), and (28). This system of equations is linearized

about its fixed points Xe, yielding

d

dt
~X ¼ A~X; Aij ¼

@Fi

@Xj

�

�

�

�

Xe

; (31)

where ~X ¼ X� Xe for small perturbations from Xe, and the

Jacobian matrix Aij is evaluated at the fixed points given by

the following algebraic system of equations:

pe � 1þ fð Þ ¼ 1

WeRe

þ 1

2Ca
5� 4Rsf

Re

� R4
sf

R4
e

 !

; (32)

_Re ¼ 0; (33)
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pe

p0
R3
e

Rvmv0 þRgmg0

Rvmve þRgmg0

¼ 1; (34)

mve

mv0 þ mg0

¼ 1

1þ Rv

Rg

pe

pv;sat Twð Þ � 1

� � : (35)

The subscript e indicates equilibrium conditions (fixed

points). For harmonic forcing f¼ 0, and for Rayleigh col-

lapse f ¼ Dp.

The four eigenvalue and eigenvector pairs of A,

ðk1; v1Þ; ðk2; v2Þ; ðk3; v3Þ, and ðk4; v4Þ, can be numerically

computed, with

~X ¼
X

4

i¼1

civie
kit; C ¼ V

�1 ~Xo; (36)

where C ¼ ðc1; c2; c3; c4ÞT and V ¼ ðv1; v2; v3; v4Þ. The bub-
ble radius is then RðtÞ � Re þ ~X1ðtÞ. By considering the

eigenvalue (kdom) that dominates X1ðtÞ, the damped natural

frequency xd and the time constant td can be calculated:

xd ¼ = kdomð Þ; td ¼
�1

< kdomð Þ : (37)

We demonstrate in Appendix A 2 that the linear analysis dis-

plays good agreement with our numerical results for suffi-

ciently low-amplitude oscillations.

V. RESULTS AND DISCUSSION

To illustrate the salient features of heat and mass trans-

fer on free oscillations of a bubble in tissue-like media, two

forms of bubble collapse problems37,39 are solved, driven by

pressure ratios of relevance to therapeutic ultrasound, and

three different approaches are evaluated: polytropic (adia-

batic), heat transfer only, and heat and mass transfer (full

model). To facilitate comparisons with the linear analysis,

the present Keller-Miksis simulations are run with the heat

and mass transfer models of Ref. 24 including the cold water

assumption, except at the very end of each section where the

temperature field is shown.

A. Step increase in surrounding pressure (classical
Rayleigh collapse)

We first consider the classical Rayleigh collapse prob-

lem12 wherein the bubble, initially in equilibrium with its

surroundings, undergoes collapse due to the instantaneous

increase in the far-field pressure (Dp ¼ 35p1). This pressure

increase causes the bubble to collapse and oscillate to a new

equilibrium radius. Initially the medium is stress free

(Rsf ¼ Ro) and the pressure inside the bubble is given by

po ¼ p1 þ 1=ðWeRoÞ, unless otherwise mentioned. The ini-

tial radius is 3lm and the initial velocity is Dp=ðqcÞ.14 We

first recall the results of Ref. 38, and consider in Fig. 1 the

time evolution of the bubble radius for different shear mod-

uli using the polytropic model. Note that the initial bubble

radii considered in that study was Ro ¼ 5 lm. As the shear

modulus is increased (decreasing Cauchy number), the

equilibrium radius becomes larger since the final state of

stress increases accordingly. Starting from the lowest shear

modulus, the persistence of the oscillations first increases as

the Cauchy number is decreased, and then decreases for

0.030 � Ca � 0.005; in other words, the damping decreases

with increasing Ca, reaches a minimum between 0.030 and

0.005, and increases again thereafter. For this problem, the

solution with Ca¼ 1000 is nearly identical to that of a

Newtonian liquid.

The effects of heat and mass transfer as a function of

elasticity are assessed in Fig. 2. For the larger Cauchy num-

bers (Ca¼ 0.6,1000), i.e., lower shear moduli, the equilib-

rium radius and oscillation properties of the solution with

thermal effects exhibit clear discrepancies from the poly-

tropic case: the equilibrium radius is smaller, and the oscilla-

tions die out sooner, thus suggesting increased damping. An

illustration of the complexity of the high-order system is dis-

cerned in the Ca¼ 1000 case: in addition to “conventional”

damping observed in the peak-to-peak decrease of the

rebounds, the full model exhibits an additional, slower, over-

damped time scale visible in the non-zero slope between 1.0

and 2.0. For these parameters, mass transfer inside the bub-

ble does not visibly affect the results, i.e., vapor trapping20 is

negligible because the vapor pressure is far smaller than the

gas pressure.

Small-amplitude (linear) perturbation analysis can be

used to investigate the behavior observed above. We con-

sider the dependence of the equilibrium radius, time con-

stant, and damped natural frequency on the Cauchy number

in Fig. 3. The polytropic results are consistent with those

observed in past studies.38 As the Cauchy number is

increased (shear modulus decreased), the equilibrium radius

becomes smaller due to the reduced final stress state; the

same non-monotonic behavior of the time constant and

damped natural frequency as a function of Cauchy number is

observed. At low Ca (high shear modulus), the oscillation

amplitude is small such that the bubble temperature never

reaches sufficiently high values for substantial heat transfer;

FIG. 1. (Color online) Time evolution of the bubble radius for different

shear moduli for classical Rayleigh collapse using the polytropic model

(Dp ¼ 35p1; Ro ¼ 5 lm). Ca¼ 0.005 (solid blue), 0.030 (dotted red),

0.600 (dashed orange), and 1000 (dashed-dotted black). Results presented in

dimensionless form.
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the full model agrees with the polytropic solution. At

Ca� 0:1, the equilibrium radius when including heat trans-

fer starts to diverge from the adiabatic solution. The oscilla-

tion amplitude is larger, leading to higher collapse

temperatures and thus non-negligible heat transfer. For

Ca¼ 0.60 and 1000, the discrepancy in the equilibrium

radius between the polytropic solution and that including

heat (and mass) transfer is due to the fact that no heat trans-

fer takes place in the polytropic (adiabatic) case. Thus, the

equilibrium temperature need not relax to the temperature of

the surroundings at late times and in fact remains higher

since no heat is lost. When accounting for heat transfer, the

equilibrium temperature eventually ends up equal to the

ambient temperature, as expected.

The time constant, determined by considering the real

part of the dominant eigenvalue, exhibits a complicated

dependence on Cauchy number when accounting for heat

transfer. Since the polytropic model includes only compress-

ible and viscous damping and since the corresponding char-

acteristic polynomial only has two roots, the interpretation is

straightforward:38 compressible damping is dominant at low

Cauchy number and decreases with increasing Ca, while vis-

cous damping follows the opposite behavior; thus, the addi-

tion of the viscous and compressible damping contributions

gives rise to a non-monotonic behavior. Thermal damping

can be inferred by comparing the results with heat transfer to

the polytropic case. At low Ca, there is little difference

with the polytropic case; thermal damping is negligible and

compressible damping dominates, as in Ref. 38. For 0:01
�Ca�Oð1Þ, the time constant follows a trend similar to

that of the polytropic case, but with a lower value. We thus

(a)

(b)

(c)

FIG. 2. (Color online) Time evolution of the bubble radius for different

shear moduli for classical Rayleigh collapse using the polytropic (dashed-

dotted blue), heat transfer only (solid red), heat/mass transfer (dotted black)

models (Dp ¼ 35p1; Ro ¼ 3 lm). Ca¼ 0.03 (top), 0.60 (middle), 1000

(bottom). Results presented in dimensionless form.

(a)

(b)

(c)

FIG. 3. (Color online) Dependence of the equilibrium radius (top), time con-

stant (middle), and damped natural frequency (bottom) on the Cauchy num-

ber for classical Rayleigh collapse based on linear analysis using the

polytropic (dashed-dotted blue), heat transfer only (solid red), and heat/mass

transfer (dotted black) models (Dp ¼ 35p1; Ro ¼ 3 lm). Results presented

in dimensionless form.
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infer that in this range of shear modulus thermal damping is

important, but does not significantly change the dynamics.

At Ca � 1, there is a sudden increase in the time constant

beyond the corresponding polytropic value, after which the

time constant tends to an asymptotic value of �0.35 (by con-

trast to 0.22 in the polytropic case). This behavior indicates

that thermal damping becomes important for Ca� 1. In the

presence of heat transfer, the damped natural frequency is

almost identical to the polytropic case at low Cauchy num-

ber. At Ca � Oð1Þ, thermal effects give rise to a high fre-

quency and thus shorter oscillation period observed in Fig. 2

compared to the polytropic solution. Unlike the behavior of

the time constant, no drastic change is observed in xd at

Ca � Oð1Þ.
Additional insight is gained by mapping the eigenvalues

of the system for different shear moduli in Fig. 4. When ther-

mal effects are included, the governing system is third order,

so a third eigenvalue exists (and a fourth when mass transfer

is included). In the full model, there are two real and two

imaginary eigenvalues for the parameters of interest. The

corresponding polytropic equation system has only two

poles, which are complex as long as the system is not over-

damped. At the lowest elasticity (Ca ¼ 1000), the pair of

complex eigenvalues dominate the system as illustrated by

the persistence of oscillations; the right-most purely real

eigenvalue governs a second, exponential decaying time

scale observable in the oscillations shown in Fig. 2 (bottom).

As the Cauchy number is decreased, the right-most real

eigenvalue moves to the left while the pair of complex

eigenvalues move to the right; at some Cauchy number

between 0.03 and 0.60, the complex eigenvalues “overtake”

the right-most purely real eigenvalue—their real part is far-

ther to the right, thus, explaining the sharp increase in the

time constant (Fig. 3, middle). At the highest elasticity

(Ca¼ 0.03) the system is dominated by the two complex

poles; the relative magnitude of the purely real eigenvalues

makes them irrelevant.

However, the dynamics are not completely governed by

the dominant eigenvalues; one must also consider the initial

conditions and account for the contributions of all eigenvalues.

Given the computational expense incurred to model

heat/mass transfer, it is of practical interest to know whether

the full PDEs must be solved. Overall, the linear analysis

and simulations indicate that the effects of heat (and mass)

transfer are negligible for Ca� 0:03, given this value of Dp.

Since most soft tissues are in the 1–100 kPa range—well

within the 3.4MPa corresponding to Ca¼ 0.03, the full sys-

tem should be solved.

The simulations for this problem setup were executed

using the cold liquid assumption to allow a direct compari-

son to the linear results. This assumption can be relaxed to

calculate the temperature field in the surroundings, as shown

in Fig. 5. The bubble dynamics are nearly identical to those

obtained with the cold liquid simulation. For this problem, a

particle in the surrounding medium very near the bubble

wall experiences a temperature rise of approximately 45 	C
during the first collapse.

B. Step decrease in internal pressure
(“Flynn collapse”)

The alternate bubble collapse problem wherein the sur-

rounding pressure is kept constant but the internal pressure is

reduced is considered next. This problem, particularly relevant

to cavitation bubble growth and collapse in ultrasound- and

laser-induced cavitation, was studied in detail by Flynn;47,48 for

conciseness, we refer to this problem as “Flynn collapse.”

Reducing the internal pressure corresponds to starting the prob-

lem with an initial radius larger than the equilibrium radius. To

facilitate comparisons, we consider the bubble to be in a stress-

free state at equilibrium (Rsf ¼ Re); in practice (e.g., laser cavi-

tation), the equilibrium radius is larger than the nucleus size,

such that the bubble is not in a stress-free state at equilibrium.

The initial bubble pressure is po ¼ pv þ pa, where pv
¼ pv;satðT1Þ ¼ 3:09 kPa and pa ¼ 8 kPa; this corresponds to

a pressure ratio driving the collapse of 8.5. As the shear

modulus is increased, an additional elastic stress acts on the

bubble. The initial radius Ro ¼ 3 lm is 2.09 times greater

than the equilibrium radius for the polytropic model; when

accounting for full thermal effects, Ro=Re ¼ 2:97 for this

pressure ratio. The initial velocity is Dpo=ðqcÞ.14 In Fig. 6,

FIG. 4. (Color online) Eigenvalue map for classical Rayleigh collapse

(Dp ¼ 35p1; Ro ¼ 3 lm), with Ca¼ 0.03 (black circle), 0.60 (blue square),

and 1000 (green triangle). Results presented in dimensionless form.

FIG. 5. (Color online) Temperature distribution in the surroundings for clas-

sical Rayleigh collapse (Dp ¼ 35p1; Ro ¼ 3 lm, Ca¼ 1000). Results pre-

sented in dimensionless form except for temperature (degrees Celsius).
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we examine the time evolution of the bubble radius for dif-

ferent shear moduli using the polytropic model. At the high-

est Cauchy number, the damping is near critical. As the

Cauchy number is decreased (shear modulus increased), the

oscillation amplitude increases. Although seemingly

counter-intuitive, this behavior is explained by considering

the state of stress at t¼ 0, which increases as the shear mod-

ulus is increased, thus, leading to more violent collapse.

The dependence of heat and mass transfer effects on

elasticity is assessed in Fig. 7. As the Cauchy number is

increased (shear modulus is reduced), the oscillations

become overdamped. By contrast to the results in Sec. IV,

the polytropic solution never agrees with the solution with

heat transfer: the equilibrium radius in Eq. (32) does not

change as the shear modulus is varied, as expected since the

equilibrium conditions are the same in all cases. Again, the

equilibrium radius is larger for the polytropic case, since

heat is not dissipated. For these parameters, mass transfer

inside the bubble again does not visibly affect the results.

As in Sec. IV, linear analysis is invoked to explain the

results. We consider the dependence of the time constant and

damped natural frequency on the Cauchy number in Fig. 8. In

the polytropic case, the time constant increases rapidly with

Cauchy number before reaching a plateau of �2.4 at

Ca � Oð1Þ. When heat transfer is included, the growth at low

Ca is slower than for the polytropic case and appears to reach

a plateau; then, at Ca � 1 the regime changes. The damped

natural frequency monotonically decreases with increasing Ca

in the polytropic case. When heat transfer is included, xd starts

from a higher value than the polytropic solution at low Cauchy

numbers, decreases before crossing the polytropic solution at

Ca � 1, and becomes zero at Ca� 1, at which point the sys-

tem is overdamped. It is thus clear that the change in regime in

the time constant is due to the solution being overdamped

beyond Ca � Oð1Þ. These results explain the increased damp-

ing observed in Fig. 6 as the Cauchy number is increased.

The eigenvalue map (Fig. 9) confirms the results shown

in Sec. VB. For the lowest Cauchy numbers, the system is

dominated by a pair of complex poles, with two small,

purely real poles. As Ca is increased, these poles move

toward the real axis and reach it by Ca¼ 10. Beyond this

Cauchy number, the oscillations are overdamped. The other

two fast real poles do not change with elasticity.

As for the classical Rayleigh collapse problem, the cold

liquid assumption is relaxed to determine the temperature

field in the surroundings (Fig. 10). Again, due to the small

radius at collapse, a particle in the surrounding medium very

near the bubble wall experiences a temperature rise of

�20 	C. The thermal boundary layer in the surroundings dif-

fuses over time. The bubble dynamics are nearly identical to

those obtained with the cold liquid assumption.

VI. CONCLUSIONS

In this study, free oscillations of a vapor bubble in

tissue-like, viscoelastic media under conditions relevant to

FIG. 6. (Color online) Time evolution of the bubble radius for different

shear moduli for Flynn collapse using the polytropic model (Ro=Re ¼ 2:09).
Ca¼ 0.1 (solid blue), 1.0 (dashede-dotted red), and 10 (dotted yellow).

Results presented in dimensionless form.

(a)

(b)

(c)

FIG. 7. (Color online) Time evolution of the bubble radius for different val-

ues of shear modulus for Flynn collapse using the polytropic (dashed-dotted

blue), heat transfer only (solid red), and heat/mass transfer (dotted black)

models (Ro=Re ¼ 2:09 for the polytropic model, Ro=Re ¼ 2:97 with full

thermal effects). Ca¼ 0.1 (top), 1.0 (middle), and 10 (bottom). Results pre-

sented in dimensionless form.
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diagnostic and therapeutic ultrasound were investigated.

Energy transport inside and outside the bubble is included in

the numerical model, as well as the diffusion of vapor and

non-condensible gas inside the bubble, assuming equilibrium

phase change at the bubble wall. The soft material is

described by a Kelvin-Voigt constitutive model with neo-

Hookean (nonlinear) elasticity, appropriate for the finite

deformations produced by large-amplitude bubble oscilla-

tions. A finite difference scheme was implemented to solve

the PDEs for heat and mass transfer. Two collapse problems

were considered: the classical Rayleigh and out-of-

equilibrium Flynn collapse problems. Small-amplitude (lin-

ear) perturbation analysis was used to explain the oscillatory

behavior as the tissue stiffness is varied. We quantified the

extent to which heat and mass transfer influence bubble

dynamics depending on the stiffness. For Rayleigh collapse,

we discovered that heat transfer significantly changes the

behavior of the time constant (i.e., damping) at large Cauchy

numbers (low shear moduli) where small radii at collapse are

achieved, thus, facilitating heat transfer. This finding is sub-

stantiated by considering the eigenvalues corresponding to

these thermal effects, which becomes dominant at small shear

moduli. For the Flynn collapse, thermal effects matter at all

Cauchy numbers. The oscillations become overdamped

beyond a critical Cauchy number; due to the problem setup,

elasticity enhances the violence of the collapse as an initial

stress acts on the bubble. We further identify regimes under

which a polytropic relation describes the heat transfer to suffi-

cient accuracy, thus, avoiding the complexity and computa-

tional expense associated with solving full PDEs. This model

provides a starting point for investigating the relative impor-

tance of thermal vs mechanical effects in ultrasound proce-

dures. However, more accurate constitutive models and tissue

characterization are required to make progress in this field.
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APPENDIX A

1. Convergence of the numerical scheme

The convergence of the numerical scheme is evaluated

by considering the peak wall temperature and minimum bub-

ble radius produced during Rayleigh collapse. The L1 errors

FIG. 8. (Color online) Dependence of the time constant (top) and damped

natural frequency (bottom) on the Cauchy number for Flynn collapse based

on linear analysis using the polytropic (dashed-dotted blue), heat transfer

only (solid red), and heat/mass transfer (dotted black) models

(Ro=Re ¼ 2:09 for the polytropic model, Ro=Re ¼ 2:97 with full thermal

effects). Results presented in dimensionless form.

FIG. 9. (Color online) Eigenvalue map for Flynn collapse (Ro=Re ¼ 2:97
with full thermal effects), with Ca¼ 0.1 (black circle), 1.0 (blue square),

and 10 (green triangle). Results presented in dimensionless form.

FIG. 10. (Color online) Temperature distribution in the surroundings for

Flynn collapse (Ro=Re ¼ 2:97; Ca ¼ 0:1). Results presented in dimension-

less form, except for temperature (degrees Celsius).

916 J. Acoust. Soc. Am. 141 (2), February 2017 Carlos Barajas and Eric Johnsen



in these quantities in both the interior and exterior calcula-

tions are shown as a function of number of points in Fig. 11.

The “exact” solution is taken as the solution obtained with

Nx ¼ Ny ¼ 1000; the convergence of the interior scheme is

evaluated holding Nx¼ 1000 while varying Ny, and vice

versa for the exterior scheme. The L1 error is the difference

between the “exact” and numerical solutions at the relevant

time. As expected, the overall convergence rate is close to

second order. The non-monotonic behavior observed in the

interior solution is due to the change in direction of the root-

finding algorithm for Tw. Additionally, we tracked the mass

of non-condensible gas during our simulations,

Mair ¼ 3R3

ð1

0

qmð1� CÞy2 dy: (A1)

Although this value should remain constant throughout the

simulation, the discretization errors compound to produce

small deviations. However, no noticeable differences are

observed in the bubble dynamics when the deviation is

<5%.

2. Validity of the linear analysis

We compare in Fig. 12 results with linear analysis to

those with our numerical solution of the full PDE model

with heat and mass transfer, for Rayleigh collapse with

Ca¼ 0.03. The excellent agreement supports the use of

linear analysis to explain our findings. For larger oscillation

amplitudes, additional higher-order terms are required to

accurately represent the solution;38 however, linear analysis

provides a qualitative description of the dominating physics.
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