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ABSTRACT: Indium(III) selenide, In2Se3, thin films were electro-
deposited at room temperature from an aqueous solution containing
ionic precursors for both In and Se, using potential pulse atomic layer
deposition (PP-ALD). Cyclic voltammetry was used to determine
approximate cycle potentials, and anodic and cathodic potentials were
systematically examined to optimize the potential pulse program for In2Se3.
Electron probe microanalysis was used to follow the In:Se atomic ratio as a
function of the cycle conditions, and annealing studies were performed on
stoichiometric deposits. Film thickness was a function of both the anodic
and cathodic potentials. The optimum growth rate was consistent with
previous PP-ALD studies in which similar concentrations and pulse times
were employed, 0.02 nm/cycle. The use of the potential pulse cycle for film
growth resulted in surface-limited control over the deposit stoichiometry
each cycle and thus a layer-by-layer growth process.

■ INTRODUCTION
Potential pulse atomic layer deposition (PP-ALD) is an
electrodeposition methodology that combines concepts from
sequential monolayer deposition (SMD),1−4 pulse-reversal
deposition (PR),5−8 pulsed potentiostatic electrodeposition
(PPE),9 coelectrodeposition10 (codep), and electrochemical
atomic layer deposition (E-ALD)11−20 to create E-ALD quality
films at increased deposition rates. The advantages of electro-
deposition in general are scalability, low cost, low temperature,
high energy efficiency, and ease of recycling. A previous PP-ALD
study of the growth of Cu2Se showed a viable thin-film growth
method for the binary compound semiconductor.21

In PP-ALD, potentials are alternated between optimized
cathodic and anodic potentials in a cycle, foregoing the use of
cyclic voltammetry (CV) or solution alternation required in
SMD and E-ALD, respectively. In this version of PP-ALD, the
cathodic potential is positioned where both elements deposit
near where codep might be performed, but only for a time
sufficient to form a fraction of a monolayer (ML). This method
qualifies as a form of ALD because it is based on repeated
application of a surface-limited reaction to grow deposits an
atomic layer at a time. Electrochemical surface-limited reactions
are frequently referred to as underpotential deposition (UPD).
UPD occurs at a potential that takes advantage of compound
formation energetics to selectively form a deposit of one element
on another. In this form of PP-ALD, the anodic potential is
essentially used to achieve UPD. That is, the anodic potential is
used to oxidatively strip any elemental excess and create a
stoichiometric deposit surface. During codepeposition, where a
single potential or current density is used to control deposit
growth, local excesses of an element can result in variations in
stoichiometry. By limiting the amount deposited using the time
for the cathodic pulse, PP-ALD avoids burying any elemental

excess as it remains accessible to stripping during the anodic
pulse. CuInSe2 (CIS) is a highly stable, chalcopyrite semi-
conductor with potential applications in p-type photovoltaics,
light-emitting diodes, optoelectronics, and nonlinear optical
devices.19,22−24 CIS has a direct bandgap around 1.08 eV22,24 and
a high absorption coefficient (a ∼ 105 cm−1) leading to
laboratory efficiencies as high as 15%.19,23−25 CIS has been
formed using techniques such as coevaporation;26 flash
evaporation;27 chemical vapor deposition;28 chemical spray
pyrolysis;29,30 chemical synthesis;31 selenization of sputtered,32

evaporated,26 or electrodeposited33 Cu and In stacked layers;34

electrochemical codeposition;35−37 and pulse electrodeposi-
tion.19,22,23,38

The ternary compound CIS could be manufactured by
sequential PP-ALD of binary selenides, such as In2Se3 and
Cu2Se. Deposition of Cu2Se, using PP-ALD, has recently been
reported.21 In2Se3 is the subject of the present report.
Subsequently, CIS could be formed by alternation of In2Se3
and Cu2Se, followed by annealing.
In2Se3 is an n-type semiconductor, with a direct bandgap

around 1.62 eV39 that has potential applications as a two-
dimensional material and an absorber layer in photovoltaic
devices.40,41 In2Se3 has been formed using numerous techniques
including chemical bath deposition,42,43 sputtering,44−46 metal
organic chemical vapor phase deposition,47 spray pyrolysis,48,49

magnetron sputtering,44−46 and electrochemical deposition.41

Photovoltaic (PV) materials have been successfully grown using
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electrodeposition since Kröger et al.’s single-solution, coelec-
trodeposition (codep), CdTe work in the 1970s.50,51 The present
report describes an initial investigation into the growth of In2Se3
using PP-ALD.

■ EXPERIMENTAL SECTION
The solution was pH 1, 1.5 mM In(ClO4)3 (Sigma-Aldrich), 0.1
mM SeO2 (Alfa Aesar 99.999% pure), and 0.5 M NaClO4 in 18
MΩ Millipore Advantage 10 water fed by a house deionized
water source. The precursor concentrations were kept in the
millimolar range to limit deposited amounts to a fraction of a
monolayer (ML) each cycle. A ML is defined for this article as
one atom for each Au substrate surface atom, or about 1.2 × 1015

atoms per cm2. Substrates were 100 nm thick Au films on 5 nm of
Ti on glass, purchased from Evaporated Metal Films (Ithaca,
NY), and were cleaned by three 5 min sonications in fresh
aliquots of acetone, followed by three more of 18 MΩ water.
They were then dipped in concentrated nitric acid for 30 s, rinsed
with 18 MΩ water, and dried with nitrogen before being placed
in the electrochemical flow cell (Figure 1). The cell (Electro-

chemical ALD L.C.) was immediately flushed with 0.1 M H2SO4
(Fisher Scientific, certified ACS plus), and the potential was
alternated four times for 5 s at a time between +1400 and −200
mV, completing cleaning of the Au surface. All potentials are
reported versus Ag/AgCl.
Figure 1 diagrams the electrochemical flow system, where the

auxiliary electrode was an Au wire inlayed into a Plexiglas cell
face. A 3 M Ag/AgCl reference electrode (BASi, West Lafayette,
IN) was used, and the solution was pulled from degassed solution
reservoirs though the cell using a Masterflex (Cole Parmer)
peristaltic pump. The system was automated using a program
developed in-house named Sequencer.
Electron probe microanalysis (EPMA) was performed on a

JEOL 8600 Superprobe instrument with a 10 keV accelerating
voltage, 15 nA beam current, and 10 μm beam diameter. X-ray
diffraction was performed on a PANalytical X’PERT Pro
instrument with an open Eulerian cradle, utilizing a 1.54 Å Cu
Kα1 source and a parallel plate collimator. Spectroscopic
ellipsometry was performed on a J.A. Woolam M-200 V
instrument.

■ RESULTS AND DISCUSSION
Figure 2 depicts cyclic voltammetry for Au substrates in separate
In (Figure 2a) and Se (Figure 2b) precursor solutions, in the In
precursor solution where the substrate was precoated with 0.6
ML of Se (Figure 2c), and in a solution containing precursors for
both In and Se (Figure 2d). Figure 2a shows a cyclic
voltammogram in In(ClO4)3 at pH 1, which displays an initial

scan negative to −1000 mV but is off scale below −600 mV
because of the hydrogen evolution reaction (HER). In UPD
begins near 100 mV and displays features at−100 and−400 mV,
just prior to extensive hydrogen evolution. In the subsequent
positive-going scan there is no peak for bulk In stripping, which
should occur near −600 mV, the E0′ for In3+. There is an
oxidation peak at −325 mV, which is felt by the authors to be
oxidative dissolution of In from a surface alloy with the Au
substrate. The peak near −100 mV is In UPD stripping. The
deposition of bulk In from the pH 1 solution appeared to be
hindered by strong HER, in that a large fraction of the cell was
filled with hydrogen bubbles, rather than solution, and it may be
that they coated the surface, limiting In3+ access. Similar In3+

scans in a pH 3 solution shifted the HER negative, allowing the
facile deposition of bulk In and the In/Au alloy. The reduction
feature at 900 mV is Au oxide reduction.
Figure 2b is a cyclic voltammogram in 0.1 mMHSeO3

−, pH 1.
The formal potential is believed to be near 650 mV, suggesting
that all Se deposition occurred at an overpotential, consistent
with its slow deposition kinetics.52−54 Surface-limited peaks,
related to UPD, are evident at 350 and 200 mV during the
negative scan, along with a small amount of bulk Se formation.
Stripping of the selenium in the subsequent positive-going scan
begins at 650 mV with a small bulk peak and finishes with
oxidation of Se in contact with the Au surface at 850 mV.
Figure 2c is also a cyclic voltammogram in In(ClO4)3, pH 1, to

−1000 mV; however, the Au substrate was first coated with 0.6
ML of Se. The reduction feature starting negative of −200 mV
appears to be In UPD (Figure 2a). Subsequent reduction below
−400 mV includes In reacting with Se on the surface, In/Au alloy
formation, bulk In formation, and extensive HER. Comparison of
panels a and c in Figure 2, however, indicated that the adsorbed
Se increased the hydrogen overpotential, pushing it 150 mV
more negative. The reduction peaks below 350 mV for Se
deposition (Figure 2b) are not evident in Figure 2c, as the Se was
preadsorbed. The first oxidation peak in the positive-going scan,
−600 mV, is bulk In stripping, agreeing with the E0′. The
extensive oxidation feature beginning at −400 mV is consistent
with In stripping from the near-surface In/Au alloy. From a
comparison of panels a and c in Figure 2, it can be seen that there

Figure 1. Schematic of the electrochemical flow system. From left to
right, solution is drawn from nitrogen-purged solution bottles by a pump
through the solution distribution valve, housed in a nitrogen purged
Plexiglas box, and “Z” configuration flow cell.

Figure 2. Cyclic voltammogram of (a) Au in 1.5 mM In(ClO4)3, (b) Au
in 0.1 mM SeO2, (c) ∼0.6 ML Se in 1.5 mM In(ClO4)3, and (d) Au in
1.5 mM In(ClO4)3 and 0.1 mM SeO2. All solutions were pH 1. Potential
was measured versus the Ag/AgCl reference electrode with a scan rate of
10 mV/s. The flow rate was 4 mL/min. The electrode area was 0.79 cm2.
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is an order of magnitude more In on, or in, the surface when Se
was preadsorbed. This is consistent with the hypothesis that
HER was interfering with In deposition in Figure 2a, and the
adsorbed Se worked to increase the hydrogen overpotential
allowing In deposition. The shoulder at −100 mV on the
dealloying peak in Figure 2c matches the UPD stripping of In
(Figure 2a) while the oxidation peak above 800 mV matches the
Se oxidation feature (Figure 2b).
Figure 2d is a cyclic voltammogram in a pH 1 solution

containing 1.5 mM In3+ and 0.1 mMHSeO3
−, also to−1000mV.

The scan began negative from 400 mV, the open circuit potential
(OCP). The first reduction feature, at 325 mV, is similar to the
peak in Figure 2b for Se deposition. HSeO3

− reduction may also
account for the current between 200 and −100 mV. The
reduction peak at −250 mV is consistent with In UPD, though
larger, suggesting a reaction between In and Se. The hydrogen
overpotential shifted negative, the HER occurring rapidly
negative of −700 mV, suggesting its suppression resulted from
the surface being coated with a mix of In and Se. During the
subsequent positive-going scan the first oxidative feature (−550
mV in Figure 2d) is consistent with oxidation of bulk In. Some
bulk In was expected, given the 15-fold excess of In to Se in
solution. The oxidation peak for In from an In/Au alloy (−250
mV in Figure 2c) is not present. Instead, there is a broad range of
oxidation current between −500 and 400 mV (Figure 2d) which
appears to be In oxidation from a mixed In/Se layer. The
majority of that In was more stable than it was in the In/Au alloy
(Figure 2c), suggesting the formation of a compound with Se.
The lack of current for In stripping from an In/Au alloy suggests
that the formation of a layer of some In/Se compound which
blocked diffusion of In into the Au. The large peak above 700 mV
in Figure 2d is consistent with bulk Se oxidation, left after
oxidative stripping of In. The shoulder at 900 mV corresponds to
oxidation of the last layer of Se from the Au substrate.
Figure 3 is a potential time diagram for 5 PP-ALD cycles used

in the present study. The cycle begins with 0.13 s at −1000 mV,

the cathodic potential, where fractions of monolayers of Se and
In are deposited. The potential is then stepped to−70mV for 0.5
s, the anodic potential, where any excess In is removed to create
the stoichiometric deposit. Figure 4 is a schematic diagram of one
PP-ALD cycle.
Two studies were performed to investigate the dependence of

the deposit on the anodic and cathodic cycle potentials. Figure 5
displays the deposit thickness of a set of 3300 cycle deposits,

measured using spectroscopic ellipsometry, where the cathodic
potential was held constant (blue) at −1000 mV and the anodic
potential was varied. Figure 6 displays the average stoichiometry

Figure 3. Potential profile for 5 PP-ALD cycles.

Figure 4. PP-ALD schematic diagram. (1) In3+ (green) and Se4+ (blue)
ions are introduced into the cell at the open circuit potential. (2) The
potential is pulsed to−1000 mV for 0.13 s, resulting in the deposition of
less than a monolayer of Se and excess In. (3) The potential is then
stepped to −70 mV for 0.5 s, removing any excess In from the deposit.

Figure 5. Thickness versus potential under constant cathodic (blue,
−1000 mV) and constant anodic (orange, −70 mV) conditions. Each
deposit was formed with 3300 pulses.

Figure 6. Deposit stoichiometry, determined by EPMA, of Figure 5
deposits made under constant cathodic (blue, −1000 mV) and constant
anodic (orange, −70 mV) potentials. The error bars are indicative of
homogeneity across the surface. In the blue curve, the anodic potential
was varied. In the orange curve, the cathodic potential was varied. Each
deposit was formed using 3300 cycles.
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(Se/In ratio) and standard deviation (error bars) of 6 points
taken across the surface from the set used in Figure 5. The trend
was for the thickness to slowly decrease as the anodic potential
was increased from −400 to 50 mV. At−400 mV, bulk In should
have been removed (Figure 2d); however, from Figure 6 is can be
seen that the Se/In ratio was about 1.35 rather than the 1.5
expected for In2Se3, indicating that In was in excess. Not
removing all excess In at −400 mV is also consistent with a
thicker deposit (Figure 5). As the anodic potential was increased,
more In was removed and the stoichiometry moved closer to the
expected 1.5 (Figure 6). By 50 mV, all In was removed and only
Se remained.
From above, an anodic potential of −70 mV was selected as

near optimal, and a study varying the cathodic potential was
performed (Figure 5, orange). The orange points show that the
deposit thickness decreased as the cathodic potential was raised,
though the stoichiometry remained 1.5 up to −800 mV (Figure
6, orange). Visible inspection (Figure 5, orange) of deposits
formed using a cathodic potential above −1000 mV displayed a
gradient in color, white to blue to orange, from ingress to egress
(bottom to top), with color being closely related to thickness.
White corresponded to thicker areas, while orange deposits were
very thin. The near laminar flow in the cell can result in a pattern,
thickness gradient, across the deposit when it is at least partially
controlled by convective mass transfer. On the other hand, there
was little visual variation in thickness (Figure 5) or stoichiometry
(error bars Figure 6) when −1000 mV was used as the cathodic
potential and −200 or −70 mV was used as the anodic potential.
In those cases, deposition was controlled by surface-limited
reactions, and the anodic potential functioned as a UPD potential
to achieve conformal growth and maintain the deposit
stoichiometry using the energetics of compound formation.
The growth rate of of the −70 mV anodic deposit was calculated
to be 0.02 nm/cycle based on 63 nm divided by 3300 cycles.
The stoichiometry did not change dramatically as the

deposition potentials were varied (Figure 6). Deposits formed
using a constant anodic potential of −70 mV (orange) and a
cathodic potential of −700 mV or above were rich in Se because
little In was deposited so close to its formal potential. For
deposits formed using −1000 mV for the cathodic potential
(Figure 6, blue), using more positive anodic potentials also
resulted in Se-rich deposits because more In was oxidatively
stripped. All In was stripped above −70 mV.
Figure 7 displays XRD patterns recorded for the Au substrate

(gray), an as-deposited In2Se3 film, and an In2Se3 film after
annealing. The two peaks originating from the Au substrate are
marked with vertical lines. Under the conditions used in this
report, XRD peaks for In2Se3 were not observed in the as-
deposited samples regardless of amount deposited. However,
after annealing for 30 min at 300 °C, a number of diffraction
peaks were observed and correlated with hexagonal In2Se3 (card:
In2Se3 hex 00-023-0294). Figure 8 shows corresponding SEM
images from the film used in Figure 7, before and after annealing.
Feature sizes increased significantly after annealing while the Se/
In stoichiometry was not affected, remaining at ∼1.5. This
suggests that the initially amorphous In2Se3 atoms had sufficient
mobility to crystallize with the 300 °C annealing.

■ CONCLUSION
In2Se3 films 60 nm thick were formed using PP-ALD. PP-ALD is
an electrochemical form of ALD, where the surface-limited
reactions are achieved using short cycle times, so that each cycle
results in less than a compound ML, and two potentials: a

cathodic potential for depositing and an anodic, UPD, potential
to achieve conformal growth and a stoichiometric deposit. In this
report, the anodic potential was used to remove excess In by
oxidative stripping at a potential where the energetics of
compound formation controlled the stoichiometry. The
advantage of this pulsed form of ALD, relative to previous E-

Figure 7. XRD patterns of Au, In2Se3 as-deposited, and In2Se3 after
annealing for 30 min at 300 °C. Cycle potentials were−1000 mV for the
cathodic potential and −70 mV for the anodic potential.

Figure 8. SEM of 3300 cycle In2Se3 deposit before and after annealing.
Cycle potentials were−1000mV for the cathodic potential and−70 mV
for the anodic potential. The acceleration voltage used was 20.00 kV, and
the magnification was a 120 000× objective.
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ALD, is that solutions do not have to be exchanged each cycle;
therefore, PP-ALD is faster. In theory, increasing the
concentrations by 2 orders of magnitude should increase the
rate of deposition by the same. The deposit stoichiometry
remained constant over a range of conditions, with a Se:In ratio
of 1.5. No XRD pattern was obtained from the as-deposited films,
though annealing to 300 °C for 30 min produced a pattern
consistent with hexagonal polycrystalline In2Se3. The deposition
rate was 0.02 nm/cycle under the conditions used here.
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