
A Scalable Execution Engine for Package Queries

Matteo Brucato Azza Abouzied Alexandra Meliou

College of Information and Computer Sciences Computer Science
University of Massachusetts New York University

Amherst, MA, USA Abu Dhabi, UAE
{matteo,ameli}@cs.umass.edu azza@nyu.edu

ABSTRACT
Many modern applications and real-world problems involve the
design of item collections, or packages: from planning your daily
meals all the way to mapping the universe. Despite the pervasive
need for packages, traditional data management does not offer sup-
port for their definition and computation. This is because traditional
database queries follow a powerful, but very simple model: a query
defines constraints that each tuple in the result must satisfy. How-
ever, a system tasked with the design of packages cannot consider
items independently; rather, the system needs to determine if a set
of items collectively satisfy given criteria.

In this paper, we present package queries, a new query model
that extends traditional database queries to handle complex con-
straints and preferences over answer sets. We develop a full-fledged
package query system, implemented on top of a traditional database
engine. Our work makes several contributions. First, we design
PaQL, a SQL-based query language that supports the declarative
specification of package queries. Second, we present a fundamental
strategy for evaluating package queries that combines the capabili-
ties of databases and constraint optimization solvers. The core of
our approach is a set of translation rules that transform a package
query to an integer linear program. Third, we introduce an offline
data partitioning strategy allowing query evaluation to scale to large
data sizes. Fourth, we introduce SKETCHREFINE, an efficient and
scalable algorithm for package evaluation, which offers strong ap-
proximation guarantees. Finally, we present extensive experiments
over real-world data. Our results demonstrate that SKETCHREFINE
is effective at deriving high-quality package results, and achieves
runtime performance that is an order of magnitude faster than di-
rectly using ILP solvers over large datasets.

1. INTRODUCTION
Traditional database queries follow a simple model: they define

constraints, in the form of selection predicates, that each tuple in the
result must satisfy. This model is computationally efficient, as the
database system can evaluate each tuple individually to determine
whether it satisfies the query conditions. However, many practical,
real-world problems require a collection of result tuples to satisfy
constraints collectively, rather than individually.

EXAMPLE 1 (MEAL PLANNER). A dietitian needs to design
a daily meal plan for a patient. She wants a set of three gluten-free
meals, between 2,000 and 2,500 calories in total, and with a low
total intake of saturated fats.

© VLDB Endowment 2016. This is a minor revision of the paper entitled
“Scalable Package Queries in Relational Database Systems”, published in
the Proceedings of the VLDB Endowment, Vol. 9, No. 7, 2150-8097/16/03.
DOI: https://doi.org/10.14778/2904483.2904489

EXAMPLE 2 (NIGHT SKY). An astrophysicist is looking for
rectangular regions of the night sky that may potentially contain
previously unseen quasars. Regions are explored if their overall
redshift is within some specified parameters, and ranked according
to their likelihood of containing a quasar [13].

In these examples, some conditions can be verified on individual
items (e.g., gluten content in a meal), while others need to be evalu-
ated on a collection of items (e.g., total calories). Similar scenarios
arise in a variety of application domains, such as investment plan-
ning, product bundles, course selection [20], team formation [2, 16],
vacation and travel planning [7], and computational creativity [21].
Despite the clear application need, database systems do not currently
offer support for these problems, and existing work has focused on
application- and domain-specific approaches [2, 7, 16, 20, 23].

In this paper, we present a domain-independent, database-centric
approach to address these challenges: We introduce a full-fledged
system that supports package queries, a new query model that ex-
tends traditional database queries to handle complex constraints
and preferences over answer sets. Package queries are defined over
traditional relations, but return packages. A package is a collection
of tuples that (a) individually satisfy base predicates (traditional
selection predicates), and (b) collectively satisfy global predicates
(package-specific predicates). Package queries are combinatorial in
nature: the result of a package query is a (potentially infinite) set of
packages, and an objective criterion can define a preference ranking
among them.

Extending traditional database functionality to provide support
for packages, rather than supporting packages at the application
level, is justified by two reasons: First, the features of packages
and the algorithms for constructing them are not unique to each
application; therefore, the burden of package support should be lifted
off application developers, and database systems should support
package queries like traditional queries. Second, the data used
to construct packages typically reside in a database system, and
packages themselves are structured data objects that should naturally
be stored in and manipulated by a database system.

Our work addresses three important challenges. The first
challenge is to support declarative specification of packages. SQL
enables the declarative specification of properties that result tuples
should satisfy. In Example 1, it is easy to specify the exclusion
of meals with gluten using a regular selection predicate in SQL.
However, it is difficult to specify global constraints (e.g., total calo-
ries of a set of meals should be between 2,000 and 2,500 calories).
Expressing such a query in SQL requires either complex self-joins
that explode the size of the query, or recursion, which results in ex-
tremely complex queries that are hard to specify and optimize. Our
goal is to maintain the declarative power of SQL, while extending
its expressiveness to allow for the easy specification of packages.

24 SIGMOD Record, March 2017 (Vol. 46, No. 1)

10-3

101

105

1 2 3 4 5 6 7

T
im

e
(s

)

Package Cardinality

SQL Formulation ILP Formulation

Figure 1: Traditional database technology is ineffective at pack-
age evaluation, and the runtime of a SQL formulation of a pack-
age query grows exponentially. In contrast, tools such as ILP
solvers are more effective.

The second challenge relates to the evaluation of package queries.
Due to their combinatorial complexity, package queries are harder
to evaluate than traditional database queries [8]. Package queries
are in fact as hard as integer linear programs [4]. Existing database
technology is ineffective at evaluating package queries, even if one
were to express them in SQL. Figure 1 shows the performance of
evaluating a package query expressed as a multi-way self-join query
in traditional SQL. As the cardinality of the package increases,
so does the number of joins, and the runtime quickly becomes
prohibitive: In a small set of 100 tuples from the Sloan Digital
Sky Survey dataset [22], SQL evaluation takes almost 24 hours to
construct a package of 7 tuples. Our goal is to extend the database
evaluation engine to take advantage of external tools, such as ILP
solvers, which are more effective for combinatorial problems.

The third challenge pertains to query evaluation performance and
scaling to large datasets. Integer programming solvers have two
major limitations: they require the entire problem to fit in main
memory, and they fail when the problem is too complex (e.g., too
many variables and/or too many constraints). Our goal is to over-
come these limitations through sophisticated evaluation methods
that allow solvers to scale to large data sizes.

Our work addresses these challenges through the design of lan-
guage and algorithmic support for the specification and evaluation
of package queries. We present PaQL (Package Query Language),
a declarative language that provides simple extensions to standard
SQL to support constraints at the package level. PaQL is at least
as expressive as integer linear programming, which implies that
evaluation of package queries is NP-hard [4]. We present a funda-
mental evaluation strategy, DIRECT, that combines the capabilities
of databases and constraint optimization solvers to derive solutions
to package queries. The core of our approach is a set of translation
rules that transform a package query to an integer linear program.
This translation allows for the use of highly-optimized external
solvers for the evaluation of package queries. We introduce an of-
fline data partitioning strategy that allows package query evaluation
to scale to large data sizes. The core of our evaluation strategy,
SKETCHREFINE, lies on separating the package computation into
multiple stages, each with small subproblems, which the solver can
evaluate efficiently. In the first stage, the algorithm “sketches” an
initial sample package from a set of representative tuples, while the
subsequent stages “refine” the current package by solving an ILP
within each partition. SKETCHREFINE offers strong approximation
guarantees for the package results compared to DIRECT. We present
an extensive experimental evaluation on real-world data that shows
that our query evaluation method SKETCHREFINE: (1) is able to
produce packages an order of magnitude faster than the ILP solver
used directly on the entire problem; (2) scales up to sizes that the
solver cannot manage directly; (3) produces packages of very good
quality in terms of objective value.

2. LANGUAGE SUPPORT FOR PACKAGES
Data management systems do not natively support package

queries. While there are ways to express package queries in SQL,
these are cumbersome and inefficient.

Specifying packages with self-joins. When packages have strict
cardinality (number of tuples), and only in this case, it is possible to
express package queries using traditional self-joins. For instance,
self-joins can express the query of Example 1 as follows:

SELECT * FROM Recipes R1, Recipes R2, Recipes R3
WHERE R1.pk < R2.pk AND R2.pk < R3.pk AND
R1.gluten = ‘free’ AND R2.gluten = ‘free’ AND R3.gluten = ‘free’
AND R1.kcal + R2.kcal + R3.kcal BETWEEN 2.0 AND 2.5

ORDER BY R1.saturated_fat + R2.saturated_fat + R3.saturated_fat

This query is efficient only for constructing packages with very
small cardinality: larger cardinality requires a larger number of
self-joins, quickly rendering evaluation time prohibitive (Figure 1).
The benefit of this specification is that the optimizer can use the
traditional relational algebra operators, and augment its decisions
with package-specific strategies. However, this method does not
apply for packages of unbounded cardinality.

Using recursion in SQL. More generally, SQL can express package
queries by generating and testing each possible subset of the input
relation. This requires recursion to build a powerset table; checking
each set in the powerset table for the query conditions will yield the
result packages. This approach has three major drawbacks. First,
it is not declarative, and the specification is tedious and complex.
Second, it is not amenable to optimization in existing systems. Third,
it is extremely inefficient to evaluate, because the powerset table
generates an exponential number of candidates.

2.1 PaQL: The Package Query Language
Our goal is to support package specification in a declarative and

intuitive way. In this section, we describe PaQL, a declarative query
language that introduces simple extensions to SQL to define package
semantics and package-level constraints. We first show how PaQL
can express the query of Example 1, as our running example, to
demonstrate the new language features:

Q: SELECT PACKAGE(R) AS P
FROM Recipes R REPEAT 0
WHERE R.gluten = ‘free’
SUCH THAT COUNT(P.∗) = 3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.saturated_fat)

Basic semantics. The new keyword PACKAGE differentiates PaQL
from traditional SQL queries.

Q1: SELECT * Q2: SELECT PACKAGE(R) AS P
FROM Recipes R FROM Recipes R

The semantics of Q1 and Q2 are fundamentally different: Q1 is
a traditional SQL query, with a unique, finite result set (the entire
Recipes table), whereas there are infinitely many packages that
satisfy the package query Q2: all possible multisets of tuples from
the input relation. The result of a package query like Q2 is a set of
packages. Each package resembles a relational table containing a
collection of tuples (with possible repetitions) from relation Recipes,
and therefore a package result of Q2 follows the schema of Recipes.

The specification of Q2 allows for arbitrary repetitions of tu-
ples, thus, there are infinitely many packages that satisfy the query.
Although semantically valid, a query like Q2 would not occur in
practice, as most application scenarios expect few, or even exactly

SIGMOD Record, March 2017 (Vol. 46, No. 1) 25

one result. We proceed to describe the additional constraints in the
example query Q that restrict the number of package results.
Repetition constraint. The REPEAT 0 statement in query Q spec-
ifies that no tuple from the input relation can appear multiple times
in a package result. If this restriction is absent (as in query Q2),
tuples can be repeated an unlimited number of times. By allowing
no repetitions, Q restricts the package space from infinite to 2n,
where n is the size of the input relation. Generalizing, the specifica-
tion REPEAT K allows a package to repeat tuples up to K times,
resulting in (2+K)n candidate packages.
Base and global predicates. A package query defines two types
of predicates. A base predicate, defined in the WHERE clause,
is equivalent to a selection predicate and can be evaluated with
standard SQL: any tuple in the package needs to individually satisfy
the base predicate. For example, query Q specifies the base predicate:
R.gluten = ‘free’. Since base predicates directly filter input tuples,
they are specified over the input relation R. Global predicates are the
core of package queries, and they appear in the new SUCH THAT
clause. Global predicates are higher-order than base predicates: they
cannot be evaluated on individual tuples, but on tuple collections.
Since they describe package-level constraints, they are specified
over the package result P, e.g., COUNT(P.∗) = 3, which limits the
query results to packages of exactly 3 tuples.

The global predicates shown in query Q abbreviate aggregates
that are in reality subqueries. For example, COUNT(P.∗) = 3, is
an abbreviation for (SELECT COUNT(∗) FROM P) = 3. Using
subqueries, PaQL can express arbitrarily complex global constraints
among aggregates over a package.
Objective clause. The objective clause specifies a ranking among
candidate package results, and appears with either the MINIMIZE
or MAXIMIZE keyword. It is a condition on the package-level,
and hence it is specified over the package result P, e.g., MINIMIZE
SUM(P.saturated_fat). Similarly to global predicates, this form
is a shorthand for MINIMIZE (SELECT SUM(saturated_fat)
FROM P). A PaQL query with an objective clause returns a single
result: the package that optimizes the value of the objective. The
evaluation methods that we present in this work focus on such
queries. In prior work [5], we described preliminary techniques for
returning multiple packages in the absence of optimization objec-
tives, but a thorough study of such methods is left to future work.
Expressiveness and complexity. PaQL can express general integer
linear programs, which means that evaluation of package queries is
NP-complete [4]. As a first step in package evaluation, we proceed
to show how a PaQL query can be transformed into a linear program
and solved using general ILP solvers.

3. ILP FORMULATION
In this section, we present an ILP formulation for package

queries, which is at the core of our evaluation methods DIRECT and
SKETCHREFINE. The results in this section are inspired by the trans-
lation rules employed by Tiresias [17] to answer how-to queries.

3.1 PaQL to ILP Translation
Let R indicate the input relation, n = |R| the number of tuples

in R, R.attr an attribute of R, P a package, f a linear aggregate
function (such as COUNT and SUM), � ∈ {≤,≥} a constraint
inequality, and v ∈R a constant. For each tuple ti from R, 1≤ i≤ n,
the ILP problem includes a nonnegative integer variable xi (xi ≥ 0),
indicating the number of times ti is included in an answer package.
We also use x̄ = 〈x1,x2, . . . ,xn〉 to denote the vector of all integer
variables. A PaQL query is formulated as an ILP problem using the
following translation rules:

Repetition constraint. The REPEAT keyword, expressible in the
FROM clause, restricts the domain that the variables can take on.
Specifically, REPEAT K implies 0≤ xi ≤K+1.

Base predicate. Let β be a base predicate, e.g., R.gluten = ‘free’,
and Rβ the base relation containing tuples from R satisfying β. We
encode β by setting xi = 0 for every tuple ti 6∈ Rβ.

Global predicate. Each global predicate in the SUCH THAT
clause takes the form f (P) � v. For each such predicate, we derive
a linear function f ′(x̄) over the integer variables. A cardinality con-
straint f (P)=COUNT(P.∗) is linearly translated into f ′(x̄) = ∑i xi.
A summation constraint f (P) = SUM(P.attr) is linearly translated
into f ′(x̄) = ∑i(ti.attr)xi. Other non-trivial constraints and general
Boolean expressions over the global predicates can be encoded into
a linear program with the help of Boolean variables and linear trans-
formation tricks found in the literature [3]. We refer to the original
version of this paper for further details [4].

Objective clause. We encode MAXIMIZE f (P) as max f ′(x̄),
where f ′(x̄) is the encoding of f (P). Similarly MINIMIZE f (P) is
encoded as min f ′(x̄). If the query does not include an objective
clause, we add the vacuous objective max∑i 0 · xi.

3.2 Query Evaluation with DIRECT
Using the ILP formulation, we develop our basic evaluation

method for package queries, called DIRECT. We later extend this
technique to our main algorithm, SKETCHREFINE, which supports
efficient package evaluation in large data sets.

Package evaluation with DIRECT employs three simple steps:

1. ILP formulation. We transforms a PaQL query to an ILP prob-
lem using the rules described in Section 3.1.

2. Base relation. We compute the base relation Rβ with a tradi-
tional SQL query that selects tuples from R that satisfy the base
predicate. After this phase, all variables xi such that xi = 0 can be
eliminated from the ILP problem.

3. ILP execution. We employ an off-the-shelf ILP solver, as a black
box, to get a solution x∗i for all the integer variables xi of the
problem. Each x∗i informs the number of times tuple ti should be
included in the answer package.

The DIRECT algorithm has two crucial drawbacks. First, it is only
applicable if the input relation is small enough to fit entirely in main
memory: ILP solvers, such as IBM’s CPLEX, require the entire prob-
lem to be loaded in memory before execution. Second, even for prob-
lems that fit in main memory, this approach may fail due to the com-
plexity of the integer problem. In fact, integer linear programming is
a notoriously hard problem, and modern ILP solvers use algorithms,
such as branch-and-cut [19], that often perform well in practice, but
can “choke” even on small problem sizes due to their exponential
worst-case complexity [6]. This may result in unreasonable per-
formance due to solvers using too many resources (main memory,
virtual memory, CPU time), eventually thrashing the entire system.

4. SCALABLE PACKAGE EVALUATION
In this section, we present SKETCHREFINE, an approximate

divide-and-conquer technique for efficiently answering package
queries on large datasets. SKETCHREFINE smartly decomposes a
query into smaller queries, formulates them as ILP problems, and
employs an ILP solver as a black-box component to answer each in-
dividual query. By breaking down the problem into smaller subprob-
lems, the algorithm avoids the drawbacks of the DIRECT approach.

The algorithm is based on an important observation: similar tu-
ples are likely to be interchangeable within packages. A group of

26 SIGMOD Record, March 2017 (Vol. 46, No. 1)

1

02

2 1

G1 G2

G3

G4

2

G1 G2

G3

G4

1

0
G1 G2

G3

G4

2 1

G1 G2

G3

G4

(b) Initial query using
representative tuples

(c) Initial package (e) Skipping G2 (g) Refinement
query for group G4

(h) Final approximate
package

REFINEPARTITION SKETCH

(d) Refinement
query for group G1

(f) Refinement
query for group G3

(a) Original tuples

Multiplicity of representative
tuples in the initial package

Representative and original tuples selected during previous steps, shown by
hatching lines, are aggregated and used to modify later refinement queries

Figure 2: The original tuples (a) are partitioned into four groups and a representative is constructed for each group (b). The initial
sketch package (c) contains only representative tuples, with possible repetitions up the size of each group. The refine query for group
G1 (d) involves the original tuples from G1 and the aggregated solutions to all other groups (G2, G3, and G4). Group G2 can be
skipped (e) because no representatives could be picked from it. Any solution to previously refined groups are used while refining the
solution for the remaining groups (f and g). The final approximate package (h) contains only original tuples.

similar tuples can therefore be “compressed” to a single representa-
tive tuple for the entire group. SKETCHREFINE sketches an initial
answer package using only the set of representative tuples, which is
substantially smaller than the original dataset. This initial solution is
then refined by evaluating a subproblem for each group, iteratively
replacing the representative tuples in the current package solution
with original tuples from the dataset. Figure 2 provides a high-level
illustration of the three main steps of SKETCHREFINE:

1. Offline partitioning (Section 4.1). The algorithm assumes a
partitioning of the data into groups of similar tuples. This
partitioning is performed offline (not at query time). In our
implementation, we partition data using k-dimensional quad
trees [9], but other partitioning schemes are possible.

2. Sketch (Section 4.2.1). SKETCHREFINE sketches an initial
package by evaluating the package query only over the set of
representative tuples.

3. Refine (Section 4.2.2). Finally, SKETCHREFINE transforms
the initial package into a complete package by replacing each
representative tuple with some of the original tuples from the
same group, one group at a time.

SKETCHREFINE always constructs feasible packages, i.e., pack-
ages that satisfy all the query constraints, but with a possibly sub-
optimal objective value. However, SKETCHREFINE offers strong
approximation guarantees compared to the solution generated by
DIRECT for the same query. SKETCHREFINE may suffer from false
infeasibility, which happens when the algorithm reports a feasible
query to be infeasible. The probability of false infeasibility is, how-
ever, low and bounded. We formalize these properties in Section 4.3.

In the subsequent discussion, we use R to denote the input rela-
tion of n tuples, ti ∈ R, 1 ≤ i ≤ n. R is partitioned into m groups
G1, . . . ,Gm. Each group G j, 1≤ j ≤ m, has a representative tuple
t̃ j, which may not always appear in R. We denote the partitioned
space with P= {(G j, t̃ j) | 1≤ j ≤ m}. We refer to packages that
contain some representative tuples as sketch packages and packages
with only original tuples as complete packages (or simply packages).
We denote a complete package with p and a sketch package with
pS, where S ⊆ P is the set of groups that are yet to be refined to
transform pS into a complete answer package p.

4.1 Offline Partitioning
SKETCHREFINE relies on an offline partitioning of the input

relation R into groups of similar tuples. Partitioning is based on a
set of k numerical partitioning attributes, A, from the input relation
R, and uses two parameters: a size threshold and (optionally) a
radius limit. The size threshold τ, 1 ≤ τ ≤ n, restricts the size of

each partitioning group G j , 1≤ j ≤ m, to a maximum of τ original
tuples, i.e., |G j| ≤ τ. The radius r j ≥ 0 of a group G j is the greatest
absolute distance between the representative tuple of G j, t̃ j, and
every original tuple of the group, across all partitioning attributes.
The radius limit ω, ω≥ 0, requires that for every partitioning group
G j, 1≤ j ≤ m, r j ≤ ω.
Setting the partitioning parameters. The size threshold, τ, affects
the number of clusters, m, as smaller clusters (lower τ) imply more
of them (larger m), especially on skewed datasets. For best response
time of SKETCHREFINE, τ should be set so that both m and τ are
small. Our experiments show that a proper setting can yield an order
of magnitude improvement in query response time.

The optional radius limit, ω, helps ensure that a result produced
by SKETCHREFINE is within a guaranteed approximation bound
from the package that DIRECT would generate. Enforcing a radius
limit requires more partitioning iterations, which increases the cost
of offline partitioning. However, our experiments show that even
without enforcing an approximation guarantee, SKETCHREFINE
produces satisfactory answers.
Partitioning method. Our partitioning procedure is based on k-
dimensional quad-tree indexing [9]. The method recursively par-
titions a relation into groups until all the groups satisfy the size
threshold and meet the radius limit. The procedure initially creates a
single group G1 that includes all the original tuples from relation R.
Our method recursively computes the sizes and radii of the current
groups, as well as the centroid of each group. It then partitions the
groups that violate either the size or the radius limits, using the cen-
troids as partitioning boundaries. In the last iteration, the centroids
for each group become the representative tuples, t̃ j , 1≤ j ≤ m, and
get stored in a new representative relation R̃(gid,attr1, . . . ,attrk).
One-time cost. Partitioning is an expensive procedure. To avoid
paying its cost at query time, the dataset is partitioned in advance
and used to answer a workload of package queries. In order to ensure
the approximation guarantees, the partitioning attributes, A, must be
a superset of the query attributes. For a known workload, our exper-
iments show that partitioning the dataset on the union of all query
attributes provides the best performance in terms of query evaluation
time and approximation error for the computed answer package. We
also demonstrate that our query evaluation approach is robust to a
wide range of partition sizes, and to imperfect partitions that cover
more or fewer attributes than those used in a particular query [4].
This means that, even without a known workload, a partitioning per-
formed on all of the data attributes still provides good performance.
Note that the same partitioning can be used to support a multitude of
queries over the same dataset. In our experiments, we show that a sin-
gle partitioning performs consistently well across different queries.

SIGMOD Record, March 2017 (Vol. 46, No. 1) 27

4.2 Query Evaluation with SKETCHREFINE
During query evaluation, SKETCHREFINE first sketches a package

solution using the representative tuples (SKETCH), and then it refines
it by replacing representative tuples with original tuples (REFINE).
We describe these steps using the example query Q from Section 2.1.

4.2.1 SKETCH
Using the representative relation R̃ produced by the partitioning,

the SKETCH procedure constructs and evaluates a sketch query, Q[R̃].
The result is an initial sketch package, pS, containing representative
tuples that satisfy the same constraints as the original query Q:

Q[R̃]: SELECT PACKAGE(R̃) AS pS
FROM R̃

WHERE R̃.gluten = ‘free’
SUCH THAT
COUNT(pS.∗) = 3 AND
SUM(pS.kcal) BETWEEN 2.0 AND 2.5 AND
(SELECT COUNT(∗) FROM pS WHERE gid = 1)≤ |G1|
AND . . .
(SELECT COUNT(∗) FROM pS WHERE gid = m)≤ |Gm|

MINIMIZE SUM(pS.saturated_fat)

The new global constraints (in bold) ensure that every representa-
tive tuple does not appear in pS more times than the size of its group,
G j. This accounts for the repetition constraint REPEAT 0 in the
original query. Generalizing, with REPEAT K, each t̃ j can be re-
peated up to |G j|(1+K) times. These constraints are omitted from
Q[R̃] if the original query does not contain a repetition constraint.

Since the representative relation R̃ contains exactly m representa-
tive tuples, the ILP problem corresponding to this query has only
m variables. This is typically small enough for the black box ILP
solver to manage directly, and thus we can solve this package query
using the DIRECT method. If m is too large, we can solve this query
recursively with SKETCHREFINE: the set of m representatives is
further partitioned into smaller groups until the subproblems reach
a size that can be efficiently solved directly.

The SKETCH procedure fails if the sketch query Q[R̃] is infeasi-
ble, in which case SKETCHREFINE reports the original query Q as
infeasible. This may constitute false infeasibility, if Q is actually
feasible. However, we show that the probability of false infeasibility
is low and bounded (Section 4.3).

4.2.2 REFINE
Using the sketched solution over the representative tuples, the

REFINE procedure iteratively replaces the representative tuples with
tuples from the original relation R, until no more representatives are
present in the package. The algorithm refines the sketch package pS,
one group at a time: For a group G j with representative t̃ j ∈ pS, the
algorithm derives package p̄ j from pS by eliminating all instances
of t̃ j; it then seeks to replace the eliminated representatives with
actual tuples, by issuing a refine query, Q[G j], on group G j:

Q[G j]: SELECT PACKAGE(G j) AS p j
FROM G j REPEAT 0
WHERE G j.gluten = ‘free’
SUCH THAT
COUNT(p j.∗) + COUNT(p̄ j.∗) = 3 AND
SUM(p j.kcal) + SUM(p̄ j.kcal) BETWEEN 2.0 AND 2.5

MINIMIZE SUM(p j.saturated_fat)

The query derives a set of tuples p j, as a replacement for the oc-
currences of the representatives of G j in pS. The global constraints
in Q[G j] ensure that the combination of tuples in p j and p̄ j satisfy
the original query Q. Thus, this step produces the new refined sketch
package p′S′ = p̄ j ∪ p j , where S′ = S\{(G j, t̃ j)}.

Since G j has at most τ tuples, the ILP problem corresponding to
Q[G j] has at most τ variables. This is typically small enough for
the black box ILP solver to solve directly, and thus we can solve
this package query using the DIRECT method. Similarly to the
sketch query, if τ is too large, we can solve this query recursively
with SKETCHREFINE: the tuples in group G j are further partitioned
into smaller groups until the subproblems reach a size that can be
efficiently solved directly.

Ideally, the REFINE step will only process each group with rep-
resentatives in the initial sketch package once. However, the order
of refinement matters, as each refinement step is greedy: it selects
tuples to replace the representatives of a single group, without con-
sidering the effects of this choice on other groups. As a result, a
particular refinement step may render the query infeasible (no tu-
ples from the remaining groups can satisfy the constraints). When
this occurs, REFINE employs a greedy backtracking strategy that
reconsiders groups in a different order.
Greedy backtracking. REFINE activates backtracking when it en-
counters an infeasible refine query, Q[G j]. Backtracking greedily
prioritizes the infeasible groups. This choice is motivated by a sim-
ple heuristic: if the refinement on G j fails, it is likely due to choices
made by previous refinements; therefore, by prioritizing G j, we
reduce the impact of other groups on the feasibility of Q[G j]. This
heuristic does not affect the approximation guarantees.

The algorithm logically traverses a search tree (which is only
constructed as new branches are created and new nodes visited),
where each node corresponds to a unique sketch package pS. The
traversal starts from the root, corresponding to the initial sketch
package, where no groups have been refined (S= P), and finishes
at the first encountered leaf, corresponding to a complete package
(S= /0). The algorithm terminates as soon as it encounters a com-
plete package, which it returns. The algorithm assumes a (initially
random) refinement order for all groups in S, and places them in a
priority queue. During refinement, this group order can change by
prioritizing groups with infeasible refinements.
Run time complexity. In the best case, all refine queries are feasible
and the algorithm never backtracks. In this case, the algorithm
makes up to m calls to the ILP solver to solve problems of size up to
τ, one for each refining group. In the worst case, SKETCHREFINE
tries every group ordering leading to an exponential number of calls
to the ILP solver. Our experiments show that the best case is the
most common and backtracking occurs infrequently.

4.3 Theoretical Guarantees
We present two important results on the theoretical guarantees

of SKETCHREFINE: (1) it produces packages that closely approx-
imate the objective value of the packages produced by DIRECT,
and (2) the probability of false negatives (i.e., queries incorrectly
deemed infeasible) is low and bounded.

We prove that for a desired approximation parameter ε, we can
derive a radius limit ω for the offline partitioning that guarantees
that SKETCHREFINE will produce a package with objective value
(1± ε)6-factor close to the objective value of the solution generated
by DIRECT for the same query.

THEOREM 1 (APPROXIMATION BOUNDS). For any feasible
package query with a maximization (minimization, resp.) objec-
tive and approximation parameter ε, 0≤ ε < 1 (ε≥ 0, resp.), any
database instance, any set of partitioning attributes A, superset
of the numerical query attributes, any size threshold τ, and radius
limit:

ω = min
1≤ j≤m
attr∈A

γ |t̃ j.attr|, where γ = ε (γ = ε
1+ε , resp.) (1)

28 SIGMOD Record, March 2017 (Vol. 46, No. 1)

The package produced by SKETCHREFINE (if any) is guaranteed to
have objective value≥ (1− ε)6OPT (≤ (1+ ε)6OPT , resp.), where
OPT is the objective value of the DIRECT solution.

For a feasible query Q, false infeasibility may happen in two
cases: (1) when the sketch query Q[R̃] is infeasible; (2) when greedy
backtracking fails (possibly due to suboptimal partitioning). In both
cases, SKETCHREFINE would (incorrectly) report a feasible package
query as infeasible. False negatives are, however, extremely rare, as
the following theorem establishes.

THEOREM 2 (FALSE INFEASIBILITY). For any feasible pack-
age query, any database instance, any set of partitioning attributes
A that is a superset of the query attributes, any size threshold τ, and
any radius limit ω, SKETCHREFINE finds a feasible package with
high probability that inversely depends on query selectivity.

5. EXPERIMENTAL EVALUATION
We present an extensive experimental evaluation of our tech-

niques for package queries on real-world data. Our results show
the following properties of our methods: (1) SKETCHREFINE eval-
uates package queries an order of magnitude faster than DIRECT;
(2) SKETCHREFINE scales up to sizes that DIRECT cannot handle
directly; (3) SKETCHREFINE produces packages of high quality
(similar objective value as the packages returned by DIRECT). We
have also performed extensive experiments on benchmark data and
have investigated the effects of imperfect partitioning over different
sets of attributes, demonstrating the robustness of SKETCHREFINE
under these variations [4].

5.1 Experimental Setup
We implemented our package evaluation system as a layer on top

of PostgreSQL. The system interacts with the DBMS via SQL. A
package is materialized into the DBMS, as a relation, only when
necessary (for example, to compute its objective value). We employ
IBM’s CPLEX [12] as our black-box ILP solver. We compare
DIRECT with SKETCHREFINE. Both methods use the PaQL to ILP
translation presented in Section 3.1: DIRECT translates and solves
the original query; SKETCHREFINE translates and solves the sub-
queries. We demonstrate the performance of our query evaluation
methods using a real-world dataset consisting of approximately 5.5
million tuples extracted from the Galaxy view of the Sloan Digital
Sky Survey (SDSS) [22]. We constructed a set of seven package
queries, by adapting some of the real-world sample SQL queries
available directly from the SDSS website.

We evaluate methods on their efficiency (response time) and ef-
fectiveness (approximation ratio):

Response time: The wall-clock time to generate an answer package.
This only includes the time to translate the PaQL query into one or
several ILP problems, the time to load the problems into the solver,
and the time taken by the solver to produce a solution.

Approximation ratio: We compare the objective value of a package
returned by SKETCHREFINE with the objective value of the package
returned by DIRECT on the same query. Using Ob jS and Ob jD
to denote the objective values of SKETCHREFINE and DIRECT,
respectively, we compute the empirical approximation ratio Ob jD

Ob jS

for maximization queries, and Ob jS
Ob jD for minimization queries. An

approximation ratio of one indicates that SKETCHREFINE produces
a solution with same objective value as the solution produced by the
solver on the entire problem. The higher the approximation ratio,
the lower the quality of the result package.

5.2 Results and Discussion
We evaluate two fundamental aspects of our algorithms: (1) their

query response time and approximation ratio with increasing dataset
sizes; (2) the impact of varying partitioning size thresholds (τ) on
SKETCHREFINE’s performance. Further, our analysis has shown
that SKETCHREFINE is robust to imperfect partitioning [4].

5.2.1 Query performance as data set size increases
In our first set of experiments, we evaluate the scalability of our

methods on input relations of increasing size. First, we partition
each dataset using the union of all package query attributes in the
workload: we refer to these partitioning attributes as the workload
attributes. We do not enforce a radius condition (ω) during parti-
tioning for two reasons: (1) to show that an offline partitioning can
be used to answer efficiently and effectively both maximization and
minimization queries, even though they would normally require dif-
ferent radii; (2) to demonstrate the effectiveness of SKETCHREFINE
in practice, even without having theoretical guarantees in place.

We perform offline partitioning with partition size threshold τ set
to 10% of the dataset size and without a radius limit. We derive
the partitionings for the smaller data sizes (less than 100% of the
dataset), by randomly removing tuples from the original partitions.
This operation is guaranteed to maintain the size condition.

Figure 3 reports our scalability results on the Galaxy workload.
The figure displays the query runtimes in seconds on a logarithmic
scale, averaged across 10 runs for each datapoint. At the bottom
of each figure, we also report the mean and median approximation
ratios across all dataset sizes. The graph for Q2 does not report
approximation ratios because DIRECT evaluation fails to produce
a solution for this query across all data sizes. We observe that
DIRECT can scale up to millions of tuples in three of the seven
queries. Its run-time performance degrades, as expected, when data
size increases, but even for very large datasets DIRECT is usually
able to answer the package queries in less than a few minutes.
However, DIRECT has high failure rate for some of the queries,
indicated by the missing data points in some graphs (queries Q2, Q3,
Q6 and Q7). This happens when CPLEX uses the entire available
main memory while solving the corresponding ILP problems. For
some queries, such as Q3 and Q7, this occurs with bigger dataset
sizes. However, for queries Q2 and Q6, DIRECT even fails on small
data. This is a clear demonstration of one of the major limitations
of ILP solvers: they can fail even when the dataset can fit in main
memory, due to the complexity of the integer problem. In contrast,
our scalable SKETCHREFINE algorithm is able to perform well on
all dataset sizes and across all queries. SKETCHREFINE consistently
performs about an order of magnitude faster than DIRECT across all
queries. Its running time is consistently below one or two minutes,
even when constructing packages from millions of tuples.

Both the mean and median approximation ratios are very low,
usually all close to one or two. This shows that the substantial gain
in running time of SKETCHREFINE over DIRECT does not com-
promise the quality of the resulting packages. Our results indicate
that the overhead of partitioning with a radius condition is often
unnecessary in practice. Since the approximation ratio is not en-
forced, SKETCHREFINE can potentially produce bad solutions, but
this happens rarely.

5.2.2 Effect of varying partition size threshold
In our second set of experiments, we vary τ, which is used during

partitioning to limit the size of each partition, to study its effects on
the query response time and the approximation ratio of SKETCHRE-
FINE. In all cases, along the lines of the previous experiments, we
do not enforce a radius condition. Figure 4 show the results obtained

SIGMOD Record, March 2017 (Vol. 46, No. 1) 29

Direct SketchRefine
T

im
e

(s
)

Q1

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q2

101

10% 40% 70% 100%

�������������������:
Mean: —, Median: —

Dataset size

Q3

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.13, Median: 1.06

Dataset size

Q4

101

102

10% 40% 70% 100%

�������������������:
Mean: 2.76, Median: 2.67

Dataset size

Q5

100

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q6

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q7

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.01, Median: 1.00

Dataset size

Figure 3: Scalability on the Galaxy workload. SKETCHREFINE uses an offline partitioning computed on the full dataset, using the
workload attributes, τ = 10% of the dataset size, and no radius condition. DIRECT scales up to millions of tuples in about half of the
queries, but it fails on the other half. SKETCHREFINE scales up nicely in all cases, and runs about an order of magnitude faster than
DIRECT. Its approximation ratio is always low, even though the partitioning is constructed without radius condition.

Direct SketchRefine

T
im

e
(s

)

Q1

101

102

102104106

�������������������:
Mean: 1.00, Median: 1.00

Partition size threshold

Q2

101

102

102104106

�������������������:
Mean: —, Median: —

Partition size threshold

Q3

101

102

102104106

�������������������:
Mean: —, Median: —

Partition size threshold

Q4

101

102

102104106

�������������������:
Mean: 1.78, Median: 1.01

Partition size threshold

Q5

101

102

102104106

�������������������:
Mean: 1.00, Median: 1.00

Partition size threshold

Q6

101

102

102104106

�������������������:
Mean: —, Median: —

Partition size threshold

Q7

101

102

102104106

�������������������:
Mean: 1.01, Median: 1.00

Partition size threshold

Figure 4: Impact of partition size threshold τ on the Galaxy workload, using 30% of the original dataset. Partitioning is performed
at each value of τ using all the workload attributes, and with no radius condition. The baseline DIRECT and the approximation ratios
are only shown when DIRECT is successful. The results show that τ has a major impact on the running time of SKETCHREFINE, but
almost no impact on the approximation ratio. DIRECT can be an order of magnitude faster than DIRECT with proper tuning of τ.

on the Galaxy workload, using 30% of the original data. We vary
τ from higher values corresponding to fewer but larger partitions,
on the left-hand size of the x-axis, to lower values, corresponding
to more but smaller partitions. When DIRECT is able to produce
a solution, we also report its running time (horizontal line) as a
baseline for comparison.

Our results show that the partition size threshold has a major
impact on the execution time of SKETCHREFINE, with extreme
values of τ (either too low or too high) often resulting in slower
running times than DIRECT. With bigger partitions, on the left-hand
side of the x-axis, SKETCHREFINE takes about the same time as
DIRECT because both algorithms solve problems of comparable size.
When the size of each partition starts to decrease, moving from left to
right on the x-axis, the response time of SKETCHREFINE decreases
rapidly, reaching about an order of magnitude improvement with
respect to DIRECT. Most of the queries show that there is a “sweet
spot” at which the response time is the lowest: when all partitions
are small, and there are not too many of them. The point is consistent
across different queries, showing that it only depends on the input
data size. After that point, although the partitions become smaller,
the number of partitions starts to increase significantly. This increase
has two negative effects: it increases the number of representative
tuples, and thus the size and complexity of the initial sketch query,
and it increases the number of groups that REFINE may need to
refine to construct the final package. This causes the running time
of SKETCHREFINE, on the right-hand side of the x-axis, to increase
again and reach or surpass the running time of DIRECT. The mean
and median approximation ratios are in all cases very close to one,
indicating that SKETCHREFINE retains very good quality regardless
of the partition size threshold.

6. RELATED WORK
We discuss related work from the following areas: package rec-

ommendation systems, semantic window queries, how-to queries,
constraint query languages, and approximation techniques for ILP
formulations and subclasses of package queries.

Package or set-based recommendation systems are closely related
to package queries. A package recommendation system presents
users with interesting sets of items that satisfy some global condi-
tions. Specific application scenarios usually drive these systems.
For instance, in the CourseRank [20] system, the items to be rec-
ommended are university courses, and the types of constraints are
course-specific (e.g., prerequisites, incompatibilities, etc.). Satel-
lite packages [1] are sets of items, such as smartphone accessories,
that are compatible with a “central” item, such as a smartphone.
Other related problems in the area of package recommendations
are team formation [16, 2], and recommendation of vacation and
travel packages [7]. Queries expressible in these frameworks are
also expressible in PaQL, but the opposite does not hold. The com-
plexity of set-based package recommendation problems is studied
in [8], where the authors show that computing top-k packages with
a conjunctive query language is harder than NP-complete.

Packages are also related to the semantic windows [13] express-
ible in Searchlight [14]. A semantic window defines a contiguous
subset of a grid-partitioned space with certain global properties.
These queries can be expressed in PaQL by adding global con-
straints that ensure contiguity in the grid. Packages, however, are
more general than semantic windows because they allow regions to
be non-contiguous or contain gaps. Searchlight has several other ma-
jor differences with our work: (1) it computes optimal solutions by
enumerating the feasible ones and retaining the optimal, whereas our
methods do not require enumeration; (2) it assumes that the solver

30 SIGMOD Record, March 2017 (Vol. 46, No. 1)

implements redundant and arbitrary data access paths while solving
the problems, whereas our approach decouples data access from the
solving procedure; (3) it does not provide a declarative query lan-
guage such as PaQL; (4) unlike SKETCHREFINE, Searchlight does
not allow solvers to scale up to a very large number of variables.

Package queries are related to how-to queries [17], as they both
use an ILP formulation to translate the original queries. However,
there are several major differences between package queries and
how-to queries: package queries specify tuple collections, whereas
how-to queries specify updates to underlying datasets; package
queries allow a tuple to appear multiple times in a package result,
while how-to queries do not model repetitions; PaQL is SQL-based
whereas how-to queries use a variant of Datalog; PaQL supports
arbitrary Boolean formulas in the SUCH THAT clause, whereas
how-to queries can only express conjunctive conditions.

The principal idea of constraint query languages (CQL) [15]
is that a tuple can be generalized as a conjunction of constraints
over variables. This general principle creates connections between
declarative database languages and constraint programming. How-
ever, prior work focused on expressing constraints over tuple values,
rather than over sets of tuples. PaQL follows a similar approach to
CQL by embedding higher-order constraints in a declarative query
language. However, our package query engine design allows for the
direct use of ILP solvers as black box components, automatically
transforming problems and solutions from one domain to the other.
In contrast, CQL needs to appropriately adapt the algorithms them-
selves between the two domains, and existing literature does not
provide this adaptation for the constraint types in PaQL.

There exists a large body of research in approximation algorithms
for problems that can be modeled as integer linear programs. A
typical approach is linear programming relaxation [24] in which
the integrality constraints are dropped and variables are free to take
on real values. These methods are usually coupled with rounding
techniques that transform the real solutions to integer solutions with
provable approximation bounds. None of these methods, however,
can solve package queries on a large scale because they all assume
that the LP solver is used on the entire problem. Another common
approach to approximate a solution to an ILP problem is the primal-
dual method [10]. All primal-dual algorithms, however, need to
keep track of all primal and dual variables and the coefficient ma-
trix, which means that none of these methods can be employed on
large datasets. On the other hand, rounding techniques and primal-
dual algorithms could potentially benefit from the SKETCHREFINE
algorithm to break down their complexity on very large datasets.

Like package queries, optimization under parametric aggrega-
tion constraints (OPAC) queries [11] can construct sets of tuples
that collectively satisfy summation constraints. However, existing
solutions to OPAC queries have several shortcomings: (1) they do
not handle tuple repetitions; (2) they only address multi-attribute
knapsack queries – a subclass of package queries in which all global
constraints are of the form SUM() ≤ c, with objective MAXIMIZE
SUM(); (3) they may return infeasible packages; (4) they require
pre-computation of packages, which are then retrieved at query
time using a multi-dimensional index. Package queries also encom-
pass submodular optimization queries, whose recent approximate
solutions use greedy distributed algorithms [18].

7. CONCLUSIONS
In this paper, we introduced a complete system that supports

the declarative specification and efficient evaluation of package
queries. We presented PaQL, a declarative extension to SQL, and
we developed a flexible approximation method, with strong theoret-
ical guarantees, for the evaluation of PaQL queries on large-scale

datasets. Our experiments on real-world data demonstrate that our
scalable evaluation strategy is effective and efficient over varied data
sizes and queries.
Acknowledgements This material is based upon work supported
by the National Science Foundation under grants IIS-1420941, IIS-
1421322, and IIS-1453543.

8. REFERENCES
[1] S. Basu Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu.

Constructing and exploring composite items. In SIGMOD, pages
843–854, 2010.

[2] A. Baykasoglu, T. Dereli, and S. Das. Project team selection using
fuzzy optimization approach. Cybernetic Systems, 38(2):155–185,
2007.

[3] J. Bisschop. AIMMS Optimization Modeling. Paragon Decision
Technology, 2006.

[4] M. Brucato, J. F. Beltran, A. Abouzied, and A. Meliou. Scalable
package queries in relational database systems. PVLDB, 9(7):576–587,
2016.

[5] M. Brucato, R. Ramakrishna, A. Abouzied, and A. Meliou.
PackageBuilder: From tuples to packages. PVLDB, 7(13):1593–1596,
2014.

[6] W. Cook and M. Hartmann. On the complexity of branch and cut
methods for the traveling salesman problem. Polyhedral
Combinatorics, 1:75–82, 1990.

[7] M. De Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi,
R. Lempel, and C. Yu. Automatic construction of travel itineraries
using social breadcrumbs. In HyperText, pages 35–44, 2010.

[8] T. Deng, W. Fan, and F. Geerts. On the complexity of package
recommendation problems. In PODS, pages 261–272, 2012.

[9] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval
on composite keys. Acta informatica, 4(1):1–9, 1974.

[10] M. X. Goemans and D. P. Williamson. The primal-dual method for
approximation algorithms and its application to network design
problems. Approximation algorithms for NP-hard problems, pages
144–191, 1997.

[11] S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and M. Vlachos.
Efficient approximation of optimization queries under parametric
aggregation constraints. In VLDB, pages 778–789, 2003.

[12] IBM CPLEX Optimization Studio. http://www.ibm.com/
software/commerce/optimization/cplex-optimizer/.

[13] A. Kalinin, U. Çetintemel, and S. B. Zdonik. Interactive data
exploration using semantic windows. In SIGMOD, pages 505–516,
2014.

[14] A. Kalinin, U. Çetintemel, and S. B. Zdonik. Searchlight: Enabling
integrated search and exploration over large multidimensional data.
PVLDB, 8(10):1094–1105, 2015.

[15] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages.
Journal of Computer and System Sciences, 1(51):26–52, 1995.

[16] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In SIGKDD, pages 467–476, 2009.

[17] A. Meliou and D. Suciu. Tiresias: The database oracle for how-to
queries. In SIGMOD, pages 337–348, 2012.

[18] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed
submodular maximization: Identifying representative elements in
massive data. In NIPS, 2013.

[19] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems.
SIAM Review, 33(1):60–100, 1991.

[20] A. G. Parameswaran, P. Venetis, and H. Garcia-Molina.
Recommendation systems with complex constraints: A course
recommendation perspective. ACM TOIS, 29(4):1–33, 2011.

[21] F. Pinel and L. R. Varshney. Computational creativity for culinary
recipes. In CHI, pages 439–442, 2014.

[22] The Sloan Digital Sky Survey. http://www.sdss.org/.
[23] X. Wang, X. L. Dong, and A. Meliou. Data X-Ray: A diagnostic tool

for data errors. In SIGMOD, pages 1231–1245, 2015.
[24] D. P. Williamson and D. B. Shmoys. The design of approximation

algorithms. Cambridge University Press, 2011.

SIGMOD Record, March 2017 (Vol. 46, No. 1) 31

