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Abstract

Testing membership in lattices is of practical relevance, with applications to integer program-

ming, error detection in lattice-based communication and cryptography. In this work, we initiate

a systematic study of local testing for membership in lattices, complementing and building upon

the extensive body of work on locally testable codes. In particular, we formally define the notion

of local tests for lattices and present the following:

1. We show that in order to achieve low query complexity, it is sufficient to design one-sided

non-adaptive canonical tests. This result is akin to, and based on an analogous result for

error-correcting codes due to Ben-Sasson et al. (SIAM J. Computing 35(1) pp1–21).

2. We demonstrate upper and lower bounds on the query complexity of local testing for member-

ship in code formula lattices. We instantiate our results for code formula lattices constructed

from Reed-Muller codes to obtain nearly-matching upper and lower bounds on the query

complexity of testing such lattices.

3. We contrast lattice testing from code testing by showing lower bounds on the query com-

plexity of testing low-dimensional lattices. This illustrates large lower bounds on the query

complexity of testing membership in knapsack lattices. On the other hand, we show that

knapsack lattices with bounded coefficients have low-query testers if the inputs are promised

to lie in the span of the lattice.
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1 Introduction

Local testing for properties of combinatorial and algebraic objects have widespread applic-

ations and have been intensely investigated in the past few decades. The main underlying

goal in Local Property Testing is to distinguish objects that satisfy a given property from

objects that are far from satisfying the property, using a small number of observations of

the input object. Starting with the seminal works of [7, 13, 33], significant focus in the area

has been devoted to locally testable error-correcting codes, called Locally Testable Codes

(LTCs) [15]. LTCs are the key ingredients in several fundamental results in complexity

theory, most notably in the PCP theorem [2, 3].
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XX:2 Local Testing for Membership in Lattices

In this work we initiate the study of local testability for membership in point lattices,

a class of infinite algebraic objects that form discrete subgroups of R
n. Lattices are well-

studied in mathematics, physics and computer science due to their rich algebraic structure

[9]. Algorithms for various lattice problems have directly influenced the ability to solve

integer programs [10, 23, 17]. Recently, lattices have found applications in modern crypto-

graphy due to attractive properties that enable efficient computations and security guaran-

tees [28, 26, 31, 32]. Lattices are also used in practical communication settings to encode

data in a redundant manner in order to protect it from channel noise during transmission

[12].

A point lattice L ⊂ R
n of rank k and dimension n is specified by a set of linearly

independent vectors b1, . . . , bk ∈ R
n known as a basis, for some k ≤ n. If k = n the lattice is

said to have full rank. The set L is defined to be the set of all vectors in R
n that are integer

linear combinations of the basis vectors, i.e., L := {
∑k

i=1 αibi | αi ∈ Z ∀ i ∈ [k]}. Lattices

are the analogues over Z of linear error-correcting codes over a finite field F, which are

generated as F-linear combinations of a linearly independent set of basis vectors b1, . . . , bk ∈

F
n.

Given a basis for a lattice L, we are interested in testing if a given input t ∈ R
n belongs

to L, or is far from all points in L by querying a small number of coordinates of t. We

emphasize that this setting does not limit the computational space or time in pre-processing

the lattice as well as the queried coordinates. The main goal is to design a tester that queries

only a small number of coordinates of the input.

1.1 Motivation

Integer Programming. Lattices are the fundamental structures underlying integer pro-

gramming problems. An integer programming problem (IP) is specified by a constraint mat-

rix A ∈ R
n×m, a vector b ∈ R

n. The goal is to verify if there exists an integer solution to the

system Ax = b, x ≥ 0. Although IP is NP-complete [18], its instances are solved routinely

in practice using cutting planes and branch-and-cut techniques [35]. The relaxed problem of

verifying integer feasibility of the system Ax = b is equivalent to verifying whether b lies in

the lattice generated by the columns of A. Thus, the relaxation problem is the membership

testing problem in a lattice. It is solvable efficiently and is a natural pre-processing step to

solving IPs. Furthermore, if the number of constraints n in the problem is very large, then it

would be helpful to run a tester that reads only a partial set of coordinates of the input b to

verify if b could lie in the lattice generated by the columns of A or is far from it. If the test

rejects, then this saves on the computational effort to search for a non-negative solution.

Cryptography. In cryptographic applications, it is imperative to understand which lattices

are difficult to test in order to ensure security of lattice-based cryptosystems. In some

cryptanalytic attacks on lattice-based cryptosystems, one needs to distinguish target vectors

that are close to lattice vectors from those that are far from all lattice vectors, a problem

commonly known as the gap version of the Closest Vector Problem (GapCVP). An approach

to address GapCVP is to use expensive distance estimation algorithms inspired by Aharonov

and Regev [1] and Liu et al. [24]. Local testing of lattices is closely related to both distance

estimation [30] and GapCVP, and hence progress in the proposed testing model could lead

to new insights in cryptanalytic attacks.

Complexity theory. Lattices can be seen as coding theoretic objects naturally bringing

features of error-correcting codes from the finite field domain to the real domain. As such,
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a study of local testing (and correction) procedures for lattices naturally extends the clas-

sical notions of Locally Testable Codes (LTCs) and Locally Decodable Codes (LDCs), which

are in turn of significance to computational complexity theory (for example in construct-

ing probabilistically checkable proofs and hardness amplification, among numerous other

applications). Characterizing local testability, explicitly initiated by Kaufman and Sudan

[19], has been an intensely investigated direction in the study of LTCs. We believe that

an analogous investigation of lattices is likely to bring new insights and new connections in

property testing.

Lattice-based communication. Lattices are a major technical tool in communication

systems as the analogue of error-correcting codes over reals, for applications such as wireless

communication and transmission over analog lines. In lattice-coding, the message m is

mapped to a point c in a chosen lattice L. The codeword c is transmitted over an analog

channel. If the encoded message gets corrupted by the channel, then the channel output may

not be a lattice point, thus enabling transmission error detection. In order to correct errors,

computationally expensive decoding algorithms are employed. Instead, the receiver may

perform a local test for membership in the lattice beforehand, allowing the costly decoding

computation to run only when there is a reasonably high chance of correct decoding.

We now give an informal description of our testing model motivated by its application

in lattice-coding. The transmission of each coordinate of a lattice-codeword over the analog

channel consumes power that is proportional to the square of the transmitted value. Thus

the power consumption for transmitting the lattice-codeword c ∈ L ⊂ R
n is proportional to

its squared `2 norm. The power consumption for transmitting a codeword over the channel

is usually constrained by a power budget. The noise vector is also subject to a bound on

its power. The power budget for transmission is typically formulated by considering the

lattice-code C(L) defined by the set of lattice points c ∈ L that satisfy
∑n

i=1 c2
i ≤ σn

for some constant power budget σ > 0. In order to ensure that the receiver can tolerate

adversarial noise budget δ per channel use, the shortest nonzero vector v ∈ L should be

such that
∑n

i=1 v2
i ≥ δn. Thus, the relative distance of the lattice-code C(L) is defined to

be
∑n

i=1 v2
i /n, where v ∈ L is a shortest nonzero lattice vector. The rate of a lattice-code

C(L) is defined to be (1/n) log |C(L)| (note that this quantity could be larger than 1). An

asymptotically good family of lattices, in this work, is one that achieves rate and relative

distance that are both lower bounded by a positive constant. Such families are ideal for use

in noisy communication channels.

We define a notion of a tester that will be useful as a pre-processor for decoding, and

is similar to the established notion of code testing: An `2-tester of a lattice L for a given

distance parameter ε > 0 is a probabilistic procedure that given an input t ∈ R
n, queries

at most q coordinates of t, accepts with probability at least 2/3 if t ∈ L, and rejects with

probability at least 2/3 if
∑n

i=1(ti − wi)
2 ≥ εn for every w ∈ L.

For the purposes of lattice-coding, the central lattice testing problem is whether there

exists an asymptotically good family of lattices that can be tested for membership with

query complexity q = O(1).

1.2 Testing model

In the above application, we focused on `2 distances. We now formalize the notion of testing

lattices for `p distances. We consider `p distances since these are natural notions for real-

valued inputs [5]. The `p distance between x, y ∈ R
n is defined as dp(x, y) := ‖x − y‖p =

FSTTCS 2016
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(
∑

i∈[n] |xi − yi|
p)1/p. The distance from v ∈ R

n to L is dp(v, L) := minu∈L dp(v, u). Denote

the `p norm of the real vector 1n by ‖1n‖p. For a lattice L, we denote the subspace of the

lattice by span(L). We focus on integral lattices, which are sub-lattices of Zn, as these are

the most commonly encountered lattices in applications1.

I Definition 1 (Local test for lattices). An `p-tester T (ε, c, s, q) for a lattice L ⊆ Z
n is a

probabilistic algorithm that queries q coordinates of the input t ∈ R
n, and

(completeness) accepts with probability at least 1 − c if t ∈ L,

(soundness) rejects with probability at least 1 − s if dp(t, L) ≥ ε · ‖1n‖p (we call such a

vector t to be ε-far from L).

If T always accepts inputs t that are in the lattice L then it is called 1-sided, otherwise it is

2-sided. If the queries performed by T depend on the answers to the previous queries, then

T is called adaptive, otherwise it is called non-adaptive.

A test T (ε, 0, 0, q) is a test with perfect completeness and perfect soundness. 1-sided

testers (i.e., testers with perfect completeness) are useful as a pre-processing step, as men-

tioned earlier. An asymptotically good family of lattices L(n) for `p distances is one that has

`p-relative distance lower bounded by a constant (i.e., minv∈L(n) ‖v‖p
p/n = Ω(1)) and has

2Ω(n) lattice points in the origin-centered `p-ball of radius n1/p. Similar to the application

in lattice-coding and locally testable codes, a main question in `p-testing of lattices is the

following:

I Question 1. Is there an asymptotically good family of lattices that can be tested for mem-

bership with constant number of queries?

Motivated by the applications in IP and cryptography, we identify another fundamental

question in `p-testing of lattices:

I Question 2. What properties of a given lattice enable the design of `p-testers with constant

query complexity?

Tolerant Testing. Many applications can tolerate a small amount of noise in the input.

Parnas et al. [30] introduced the notion of tolerant testing to account for a small amount of

noise in the input. Tolerant testing has been studied in the context of codes (e.g. [16, 20]),

and in the context of properties of real-valued data in the `p norm (e.g. [5]). We extend the

tolerant testing model to lattices as follows.

I Definition 2 (Tolerant local test for lattices). An `p-tolerant-tester T (ε1, ε2, c, s, q) for a

lattice L ⊆ Z
n is a probabilistic algorithm that queries q coordinates of the input t ∈ R

n,

and

(completeness) accepts with probability at least 1 − c if dp(t, L) ≤ ε1 · ‖1n‖p,

(soundness) rejects with probability at least 1 − s if dp(t, L) ≥ ε2 · ‖1n‖p.

Tolerant testing with parameter ε1 = 0 corresponds to the notion of testing given in Defini-

tion 1. Tolerant testing and distance approximation are closely related notions. In fact, in

the Hamming space, the ability to perform tolerant testing for every choice of ε1 < ε2 can

be exploited to approximate distances (using a binary search) [30].

1 Arbitrary lattices can be approximated by rational lattices and rational lattices can be scaled to integral
lattices.
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Analogy with code testers. A common notion of testing for membership in error-

correcting codes requires that inputs at Hamming distance at least εn from the code be

rejected. (This notion is only relevant when the covering radius of the code is larger than

εn.) We include the common definition here, and note that stronger versions of testing have

also been considered in the literature [15, 16].

I Definition 3 (Local test for codes). A tester T (ε, c, s, q) for an error-correcting code C ⊆ F
n

is a probabilistic algorithm that makes q queries to the input t ∈ F
n, and

(completeness) accepts with probability at least 1 − c if t ∈ C, and

(soundness) rejects with probability at least 1 − s if dH(t, C) ≥ ε · n, where dH(u, v) :=

|{i ∈ [n] : u(i) 6= v(i)}| denotes the Hamming distance between u and v, and dH(t, C) :=

minc∈C dH(t, c) (we call such a vector t to be ε-far from C).

1.3 Our contributions

We initiate the study of membership testing in point lattices from the perspective of sublinear

algorithms aiming to lay the ground work for further advances towards resolving Question 1

and Question 2. Our contributions draw on connections between lattices and codes, and on

well-known techniques in property testing.

1.3.1 Upper and lower bounds for testing specific lattice families

Motivated by applications in lattice-based communication, we focus on an asymptotically

good family of sets constructed from linear codes, via the so-called “code formula” [12]. We

show upper and lower bounds on the query complexity of `1-testers for code formulas, as a

function of the query complexity of the constituent code testers.

Code formula lattices. For simplicity, in what follows we will slightly abuse notation and

use binary code C ⊆ {0, 1}n to denote both the code viewed over the field F2 = {0, 1} and

the code embedded into R
n via the trivial embedding 0 7→ 0 and 1 7→ 1. All the arithmetic

operations in the code formula refer to operations in R
n. For two sets A and B of vectors

we define A + B := {a + b | a ∈ A, b ∈ B}.

I Definition 4 (Code Formula). Let C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ Cm = F
n
2 be a family of

nested binary linear codes. Then the code formula constructed from the family is defined as

C0 + 2C1 + · · · + 2m−1Cm−1 + 2m
Z

n.

Here, m is the height of the code-formula.

If the family satisfies the Schur product condition, namely, c1∗c2 ∈ Ci+1 for all codewords

c1, c2 ∈ Ci, where the ‘*’ operator is the coordinate-wise (Schur) product c1 ∗ c2 = 〈(c1)i ·

(c2)i〉i∈[n], then the code-formula forms a lattice (see [21]) and we denote it by L(〈Ci〉
m−1
i=0 ).

Significance of code formula lattices. Code formula lattices with height one already

have constant rate if the constituent code C0 has minimum Hamming distance Ω(n). Unfor-

tunately, these lattices have tiny relative minimum distance (since 2Zn has constant length

vectors). However, code formulas of larger height achieve much better relative distance. In

particular, it is easy to see that code formula lattices of height m ≥ log n in which each of

the constituent codes Ci has minimum Hamming distance Ω(n) give asymptotically good

families of lattices [14, 9]. The code formula lattice constructed from a family of codes that

satisfies the Schur-product condition is equivalent to the lattice constructed from the same

FSTTCS 2016
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family of codes by Construction D [22, 9, 21]. Construction-D lattices are primarily used in

communication settings, e.g. see Forney [12].

In this work we design a tester for code formula lattices using testers for the constituent

codes.

I Theorem 1. Let 0 < ε, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary

linear codes satisfying the Schur product condition. Suppose every Ci has a 1-sided tester

Ti(ε/m2i+1, 0, s, qi). Then, there exists an `1-tester T (ε, 0, s, q) for the lattice L(〈Ci〉
m−1
i=0 )

with query complexity

q = O

(

1

ε
log

1

s

)

+

m−1
∑

i=1

qi.

Next, we show a lower bound on the query complexity for testing membership in code

formula lattices, using lower bounds for testing membership in the constituent codes.

I Theorem 2. Let 0 < ε, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of

binary linear codes satisfying the Schur product condition. Let qi = qi(ε, c, s) be such that

any (possibly adaptive, 2-sided) `1-tester Ti(ε, c, s, q′) for Ci satisfies q′ = Ω(qi), for every

i = 0, 1, . . . , m − 1. Then every (possibly adaptive, 2-sided) `1-tester T (ε, c, s, q) for the

lattice L(〈Ci〉
m−1
i=0 ) has query complexity

q = Ω

(

max

{

1

ε
log

1

s
, max

i=0,1,...,m−1
qi

})

.

Code formula lattices from Reed-Muller codes. We instantiate the upper and lower bounds on

the query complexity for a common family of code formula lattices constructed using Reed-

Muller codes [12] to obtain nearly matching upper and lower bounds. We recall Reed-Muller

codes below.

I Definition 5 (Reed Muller Codes). Each codeword of a binary Reed-Muller code RM(k, r) ⊆

F
2r

2 corresponds to a polynomial p(x) ∈ F2[x] in r variables of degree at most k evaluated

at all 2r possible inputs x ∈ F
r
2.

For the family of Reed-Muller codes in F
2r

2 , it is well-known that RM(0, r) ⊆ RM(1, r) ⊆

RM(2, r) ⊆ RM(3, r) ⊆ · · · ⊆ RM(r − 1, r) ⊆ RM(r, r) = F
2r

2 . A particular family of

RM codes that leads to code formula lattices is 〈RM(ki, r)〉log r
i=0 , with ki = 2i. Indeed,

it can be easily verified that this family satisfies the Schur product condition since Reed-

Muller codewords are evaluation tables of multivariate polynomials over the binary field and

product of two degree k polynomials is a degree 2k polynomial. Hence for height m ≤ log r

the construction 〈RM(2i, r)〉m−1
i=0 gives rise to a lattice. We note these lattices have small

relative minimum distance and are not asymptotically good families of lattices.

I Corollary 3. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of

Reed-Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product

condition. Let 0 < ε, s < 1 and L be the lattice obtained from this family of codes using the

code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · · + 2m−1RM(km−1, r) + 2m
Z

2r

.

Then, there exists an `1-tester T (ε, 0, s, q) for L with query complexity

q(ε, s) = O

(

2km−1 ·
1

ε
log

1

s

)

.
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In particular, when the height m and the degrees are constant, the query complexity of

the tester is a constant.

For the lower bound, we obtain the following corollary using known lower bounds for

testing Reed-Muller codes.

I Corollary 4. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of

Reed-Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product

condition. Let 0 < ε, c, s < 1 be constants and L be the lattice obtained from this family of

codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · · + 2m−1RM(km−1, r) + 2m
Z

2r

.

Then, every (possibly 2-sided, adaptive) `1-tester T (ε, c, s, q) for L has query complexity

q = Ω(2km−1).

We note that for code formula lattices obtained from Reed-Muller codes, Corollaries 3

and 4 show matching bounds (up to a constant factor depending on ε, s).

Random lattices. There exists a distribution of random lattices which are impossible to

test with small number of queries. This follows from Theorem 2 and considering random

codes, which typically need at least a linear number of queries to test. We illustrate a

concrete example by considering the following distribution of random lattices [11, 4]: For

constants b < a, let m = nb/a and let H ∈ F
m×n
2 be a random matrix such that each

row and column has exactly a and b non-zeroes respectively. Consider the linear code

Ca,b := {x ∈ F
n
2 : Hx = 0(mod 2)} and the code formula lattice L(Ca,b) associated with the

linear code Ca,b.

I Theorem 5. There exist constants a, b, ε, c, s such that every (possibly 2-sided, adaptive)

`1-tester T (ε, c, s, q) for L(Ca,b) has query complexity q = Ω(n).

The above theorem follows as an immediate corollary of Theorem 2 and Theorem 3.7 of

[4].

1.3.2 Tolerant testing code formulas

We also obtain upper bounds for tolerantly testing code formula lattices.

I Theorem 6. Let 0 < ε1, ε2, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of

binary linear codes satisfying the Schur product condition. Suppose every Ci has a tolerant

tester Ti(2ε1, ε2

m2i+1 , c
m+1 , s, qi). Let γ = min{c/(m + 1), s}, ε2 > m2m+1ε1. Then there

exists an `1-tolerant-tester T (ε1, ε2, c, s, q) for the lattice L(〈Ci〉
m−1
i=0 ) with query complexity

q = O

(

1

(ε2 − 2ε1)2
log

(

1

γ

))

+

m−1
∑

i=0

qi.

I Corollary 7. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of

Reed-Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product

condition. Let L be the lattice obtained from this family of codes using the code formula

construction:

L = RM(k0, r) + 2RM(k1, r) + · · · + 2m−1RM(km−1, r) + 2m
Z

2r

.

Then there exists a `1-tolerant-tester T (ε1, ε2, 1/3, 1/3, q) for L for all ε1 ≤
c′

1

2km−1
, ε2 ≥

c′

2m

2k0−1

(for some constants c′
1 and c′

2) with query complexity q = O(2km−1 · log m).

FSTTCS 2016
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1.3.3 A canonical/linear test for lattices

We show a reduction from any given arbitrary test to a canonical linear test, thus suggesting

that it is sufficient to design canonical linear tests for achieving low query complexity. In

order to describe the intuition behind a canonical linear test, we first illustrate how to solve

the membership testing problem when all coordinates of the input are known. For a given

lattice L, its dual lattice is defined as

L⊥ := {u ∈ span(L) | 〈u, v〉 ∈ Z, for all v ∈ L}.

It is easy to verify that (L⊥)⊥ = L. Furthermore, a vector v ∈ L if and only if for all u ∈ L⊥,

we have 〈u, v〉 ∈ Z. Thus, to test membership of t in L in the classical decision sense, it is

sufficient to verify whether t has integer inner products with a set of basis vectors of the

dual lattice L⊥. Inspired by this observation, we define a canonical linear test for lattices

as follows. For a lattice L ⊆ R
n and J ⊆ [n], let L⊥

J := {x ∈ L⊥ | supp(x) ⊆ J}, where

supp(x) is the set of non-zero indices of the vector x.

I Definition 6 (Linear Tester). A linear tester for a lattice L ⊆ Z
n is a probabilistic algorithm

which queries a subset J = {j1, . . . , jq} ⊆ [n] of coordinates of the input t ∈ R
n and accepts

t if and only if 〈t, x〉 ∈ Z for all x ∈ L⊥
J . 2

Remark. By definition, the probabilistic choices of a linear tester are only over the set of

coordinates to be queried: upon fixing the coordinate queries, the choice of the algorithm to

accept or reject is fully determined. Furthermore, a linear tester is 1-sided since if the input

t is a lattice vector, then for every dual vector u ∈ L⊥, the inner product 〈u, t〉 is integral,

and so it will be accepted with probability 1.

We show that non-adaptive linear tests are nearly as powerful as 2-sided adaptive tests

for a full-rank lattice. We reduce any (possibly 2-sided, and adaptive) test for a full-rank

lattice to a non-adaptive linear test for the same distance parameter ε, with a small increase

in the query complexity and the soundness error.

I Theorem 8. Let L ⊆ Z
n be a lattice with rank(L) = n. If there exists an adaptive 2-sided

`p-tester T (ε, c, s, q) with query complexity q = qT (ε, c, s), then there exists a non-adaptive

linear `p-tester T ′(ε, 0, c+s, q′) with query complexity q′ = qT (ε/2, c, s)+O((1/εp) log (1/s)).

Furthermore, if we are guaranteed that the inputs are in Z
n, then the query complexity

of the test T ′ above can be improved to be identical to that of T (up to a constant factor in

the ε parameter). The increase in the query complexity comes from an extra step used to

verify the integrality of the input.

Theorem 8 suggests that, for the purposes of designing a tester with small query com-

plexity, it is sufficient to design a non-adaptive linear tester, i.e., it suffices to only identify

the probability distribution for the coordinates that are queried. Moreover, this theorem

makes progress towards Question 2, since it shows that a lower bound on the query complex-

ity of non-adaptive linear tests for a particular lattice implies a lower bound on the query

complexity of all tests for that lattice. Thus in order to understand the existence of low

query complexity tester for a particular lattice, it is sufficient to examine the existence of

low query complexity non-adaptive linear tester for that lattice.

2 Verifying whether 〈t, x〉 ∈ Z for all x ∈ L⊥

J can be performed efficiently by checking inner products

with a set of basis vectors of the lattice L⊥

J .
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We note that Theorem 8 is the analogue of the result of [4] for linear error-correcting

codes. In section 2, we comment on the comparison between our proof and that in [4].

1.3.4 Testing membership of inputs outside the span of the lattice

We also observe a stark difference between the membership testing problem for a linear code,

and the membership testing problem for a lattice. In the membership testing problem for a

linear code C ⊆ F
n defined over a finite field that is specified by a basis, the input is assumed

to be a vector in F
n and the goal is to verify whether the input lies in the span of the basis

(see definition 3). As opposed to codes, for a lattice L ⊆ R
n, the input is an arbitrary

real vector, and the goal is to verify whether the input is a member of L, and not to verify

whether the input is a member of the span of the lattice. Thus, the inputs to the lattice

membership testing problem could lie either in span(L), or outside span(L). Interestingly,

for some lattices it is easy to show strong lower bounds on the query complexity if the inputs

are allowed to lie outside span(L), thus suggesting that such inputs are hard to test.

I Theorem 9. Let L ⊆ Z
n be a lattice of rank k. Let P ⊆ [n] be the support of the vectors

in span(L)⊥. Let 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q) for L for inputs

in R
n has query complexity

q = Ω(|P |).

On the other hand, testers for inputs in the span(L) can be lifted to obtain testers for

all inputs (including inputs that could possibly lie outside span(L)).

I Theorem 10. Let L ⊆ Z
n be a lattice of rank k. Let P ⊆ [n] be the support of the vectors

in span(L)⊥. Let 0 < ε, c, s < 1, and suppose L has an `p-tester T (ε, c, s, q) for inputs

t ∈ span(L). Then L has a tester T ′(2ε, c, s, q′) for inputs in R
n with query complexity

q′ ≤ q + |P |.

Theorem 10 implies that for lattices L of rank at most n − 1, if the membership testing

problem for inputs that lie in span(L) is solvable using a small number of queries and if

span(L)⊥ is supported on few coordinates, then the membership testing problem for all

inputs (including those that do not lie in span(L)) is solvable using a small number of

queries.

Knapsack Lattices. Theorem 9 implies a linear lower bound for non-adaptively testing a

well-known family of lattices, known as knapsack lattices, which have been investigated in

the quest towards lattice-based cryptosystems [25, 34, 29]. We recall that a knapsack lattice

is generated by a set of basis vectors B = {b1, . . . , bn−1}, bi ∈ R
n that are of the form

b1 = (1, 0, . . . , 0, a1)

b2 = (0, 1, . . . , 0, a2)

...

bn−1 = (0, 0, . . . , 1, an−1)

where a1, . . . , an are integers. We denote such a knapsack lattice by La1,...,an−1
.

I Corollary 11. Let a1, . . . , an be integers and 0 < ε, c, s < 1. Every non-adaptive `p-tester

T (ε, c, s, q) for La1,...,an
has query complexity

q = Ω(n).
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However, knapsack lattices with bounded coefficients are testable with a constant number

of queries if the inputs are promised to lie in span(L).

I Theorem 12. Let a1, . . . , an be integers with M = maxi∈[n] |ai|
p and 0 < ε, s < 1.

There exists a non-adaptive `p-tester T (ε, 0, s, q) for La1,...,an
with query complexity q =

O
(

M
εp · log 1

s

)

, if the inputs are guaranteed to lie in span(L).

Theorem 12 indicates that the large lower bound suggested by Theorem 9 could be

circumvented for certain lattices if we are promised that the inputs lie in span(L). The

assumption that the input lies in span(L) is natural in decoding problems for lattices.

2 Overview of the proofs

2.1 Upper and lower bounds for testing general code formula lattices

The constructions of a tester for Theorem 1 and a tolerant tester for Theorem 6 follow

the natural intuition that in order to test the lattice one can test the underlying codes

individually. The proof relies on a triangle inequality that can be derived for such lattices.

The application to code-formula lattices constructed from Reed-Muller codes follows from

the tight analysis of Reed-Muller code testing from [6], which guarantees constant rejection

probability of inputs that are at distance proportional to the minimum distance of the code.

We note that the time complexity of the code-formula tester is given by the sum of the

run-times of the component code testers. Since the component code testers can be assumed

to be linear, and hence efficient, the code-formula lattice tester is also efficient.

While the tester that we construct from code testers for the purposes of proving Theorem

1 is an adaptive linear test, there is a simple variant that is a non-adaptive linear test with

at least as good correctness and soundness. (see Remark 5.16 in full version [8] for a formal

description).

The lower bound (Theorem 2) relies on the fact that if an input t is far from the code

Ck in the code formula construction, then the vector 2kt is far from the lattice . Moreover,

if t ∈ Ck then 2kt belongs to the lattice. Therefore a test for the lattice can be turned into

a test for the constituent codes.

2.2 From general tests to canonical tests

We briefly outline our reduction for Theorem 8. Suppose T (ε, c, s, q) is a 2-sided, adaptive

tester with query complexity q = qT (ε, c, s) for a full rank integral lattice L. Such a tester

handles all real-valued inputs. We first restrict T to a test that processes only integral inputs

in the bounded set Zd = {0, 1, . . . , d − 1} (for some carefully chosen d), and so the restricted

test inherits all the parameters of T . We remark that Zd ⊂ Z is a subset of integers, and it

should not be confused with Zd, the ring of integers modulo d.

A key ingredient in our reduction is choosing the appropriate value of d in order to enable

the same guarantees as that of codes. We choose d such that dZn ⊆ L. Such a d always

exists [27]. This choice of d allows us to add any vector in V = L mod d (embedded in

R
n) to any vector x ∈ R

n without changing the distance of x to L in any `p-norm (see

Proposition 14).

Since our inputs are now integral and bounded, any adaptive test can be viewed as a

distribution over deterministic tests, which themselves can be viewed as decision trees. This
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allows us to proceed along the same lines as in the reduction for codes over finite fields of

[4].

We exploit the property that adding any vector in V to any vector x ∈ R
n does not

change the distance to L. In the first step of our reduction we add a random vector in V

to the input and perform a probabilistic linear test. The idea is that one can relabel the

decision tree of any test according to the decision tree of a linear test, such that the error

shifts from the positive (yes) instances to the negative (no) instances (see Lemma 15). A

simple property of lattices used in this reduction is that if the set of queries I and answers aI

do not have a local witness for non-membership in the lattice (in the form of a dual lattice

vector v supported on I such that 〈wI , vI〉 6∈ Z), then there exists w ∈ L that extends aI to

the remaining set of coordinates (i.e., aI = wI).

In the next step we remove the adaptive aspect of the test to obtain a non-adaptive linear

test for inputs in Zn
d (see Lemma 16). We obtain this tester by performing the adaptive

queries on a randomly chosen vector in V (and not on the input itself) and rejecting/accept-

ing according to whether there exists a local witness for the non-membership of the input

queried on the same coordinates.

We then lift this test to a non-adaptive linear test for inputs in Z
n, by simulating the

test over Zn
d on the same queried coordinates but using the answers obtained after taking

modulo d. Owing to the choice of d, this does not change the distance of the input to the

lattice (see Lemma 17).

Finally, we extend this test to a non-adaptive linear test for inputs in R
n by performing

some additional queries to rule out inputs that are not in Z
n. For this, we design a tester for

the integer lattice Z
n with query complexity O((1/εp) log (1/s)). This final step of testing

integrality increases the overall query complexity to qT (ε/2, c, s) + O((1/εp) log (1/s)) (see

Lemma 18).

Organization. We present the formal lemmas needed to prove Theorem 8 in Section 3.

We refer the reader to the full version [8] for all the missing proofs.

3 Reducing an arbitrary test to a non-adaptive linear test

In this section we sketch the proof of Theorem 8. Throughout this section, we focus on

full-rank integral lattices. Given a 2-sided adaptive `p-tester T (ε, c, s, q), with q = qT (ε, c, s)

for an integral lattice L, we construct a non-adaptive linear `p-tester T ′(ε, 0, c + s, q) with

query complexity q′ = qT (ε/2, c, s)+O((1/εp) log (1/s)). We reduce the inputs to a bounded

set using the following property of integral lattices.

I Fact 13. [27] Given any full rank integral lattice L, there exists d ∈ Z such that d·Zn ⊆ L.

In particular |det(L)| · Zn ⊆ L for any lattice (where det(L) denotes the determinant of a

lattice, a parameter that can be computed given a basis of the lattice). For instance, we can

take d = 2m for the lattices of height m obtained using the code formula construction.

Let V = L mod d embedded in Z
n (i.e., we treat V as a set of vectors in Z

n each of which

is obtained by taking coordinate-wise modulo d of some lattice vector). Thus, V ⊆ Zn
d . We

will need the following properties of V .

I Proposition 14. Let L ⊆ Z
n be a full-rank lattice, d ∈ Z+ such that dZn ⊆ L, and let

V = L mod d ⊆ Z
n. Then V satisfies the following properties:

1. v ∈ L if and only if v mod d ∈ V .

2. V = L ∩ Zn
d .

FSTTCS 2016



XX:12 Local Testing for Membership in Lattices

3. (v + V ) mod d ⊆ V if and only if v ∈ L.

4. For any v ∈ Z
n, dp(v, L) = dp(v mod d, L).

Theorem 8 will immediately follow by combining Lemmas 15, 16, 17, and 18.

I Lemma 15. Suppose a full-rank lattice L ⊆ Z
n with dZn ⊆ L for d ∈ Z+ has an adaptive

2-sided `p-tester T (ε, c, s, q) for inputs from the domain Zn
d . Then L has an adaptive linear

`p-tester T ′(ε, 0, c + s, q) for inputs from the domain Zn
d .

I Lemma 16. Suppose a full-rank lattice L ⊆ Z
n with dZn ⊆ L for d ∈ Z+ has an adaptive

linear `p-tester T (ε, 0, s, q) for inputs from the domain Zn
d . Then L has a non-adaptive

linear `p-tester T ′(ε, 0, s, q) for inputs from the domain Zn
d .

I Lemma 17. Let L ⊆ Z
n be a full-rank lattice with dZn ⊆ L for d ∈ Z+. Then, L has a

non-adaptive linear `p-tester T (ε, 0, s, q) for inputs from the domain Zn
d if and only if L has

a non-adaptive linear `p-tester T ′(ε, 0, s, q) for inputs from the domain Z
n.

I Lemma 18. Suppose a full-rank lattice L ⊆ Z
n has a non-adaptive `p-tester T (ε, c, s, q)

for inputs from the domain Z
n. Then there exists a non-adaptive `p-tester T ′(ε, c, s, q′) for

inputs in R
n with query complexity q′ = q(ε/2, c, s) + O((1/εp) log (1/s)). Moreover, if T is

a linear tester, then so is T ′.

The proof of Lemma 18 uses the following tester for integer lattices which is based on

querying a random collection of coordinates and verifying whether all of them are integral.

I Lemma 19. For every 0 < ε ≤ 1 and every 0 < s ≤ 1, there exists a non-adaptive linear

`p-tester Tp(ε, 0, s, qZ) for Z
n with query complexity

qZ = O

(

1

εp
log

1

s

)

.

4 Discussion

In this paper we defined a notion of local testing for a new family of objects: point lattices.

Our results demonstrate connections between lattice testing and the ripe theory of locally

testable codes, and brings up numerous avenues for further research (particularly, Questions

1 and 2).

We remark that the notion of being ‘ε-far’ from the lattice may be defined differently

than in Definition 1, depending on the application of interest. In particular, in applications

like IP and cryptography, it is natural to ask for a notion of tester that ensures that scaling

the lattice does not change the query complexity. An alternate definition of ε-far based on

the covering radius of the lattice could be helpful to achieve this property. The covering

radius of a lattice L ⊆ R
n (similar to codes) is the largest distance of any vector in R

n to

the lattice. It is trivial to design a tester to verify if a point is in the lattice or at distance

more than the covering radius from the lattice (simply accept all inputs). In order to have

a tester notion where scaling preserves query complexity, we may define a vector as being

ε-far from the lattice, if the distance of the vector to every lattice point is at least ε times

the covering radius of the lattice. We note that the covering radius of any integral lattice

is Ω(‖1n‖p). Indeed, the densest possible integral lattice, namely the integer lattice Z
n,

has covering radius (1/2)‖1n‖p, as exhibited by the point v = (1/2, . . . , 1/2) ∈ R
n. Thus,

by asking the tester to reject points at distance more than ε‖1n‖p in Definition 1, we have
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settled upon a strong notion of being ε-far from the lattice (i.e., the definition would in

particular imply that vectors that are farther than ε times the covering radius would be

rejected by the tester). This definition is essentially equivalent to the current Definition 1

if the covering radius of the lattice is Θ(n). With the modified definition of local testers

using covering radius as described above, the equivalent Question 1 is to identify a family

of lattices that can be tested using a constant number of queries, achieves constant rate and

whose ratio of minimum distance to covering radius is also at least a constant.
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