ON PURELY LOXODROMIC ACTIONS

ILYA KAPOVICH

ABSTRACT. We construct an example of an isometric action of F(a,b) on a §-hyperbolic graph Y, such that
this action is acylindrical, purely loxodromic, has asymptotic translation lengths of nontrivial elements of
F(a,b) separated away from 0, has quasiconvex orbits in Y, but such that the orbit map F'(a,b) — Y is not
a quasi-isometric embedding.

1. INTRODUCTION

There are many natural situations in geometric topology and geometric group theory when one wants to
understand, given a group G acting on some Gromov-hyperbolic space X, and a finitely generated “purely
loxodromic” subgroup H < G, whether the orbit map H — X is a quasi-isometric embedding. Here ”purely
loxodromic” means that every element h € H of infinite order acts loxodromically on X. The model example
of this problem comes from studying subgroups of mapping class groups. Let S be a closed oriented hyperbolic
surface and let C(S) be the curve complex of S (known to be Gromov-hyperbolic by a result of Masur and
Minsky [29]). It is known that an element g of the mapping class group Mod(S) acts loxodromically on C(S)
if and only if g is pseudo-Anosov. A finitely generated subgroup H < Mod(S) is called convex cocompact
(see [13, 16, 22, 23]) if the orbit map H — C(S) is a quasi-isometric embedding. An important open problem
in the study of mapping class groups asks whether every ”purely pseudo-Anosov” (that is purely loxodromic
for the action on C(S)) finitely generated subgroup of Mod(S) is convex cocompact.

Note that if G is a word-hyperbolic group acting by translations on its Cayley graph X, then g € G is
loxodromic if and only if g has infinite order. In this case whenever H < G is a finitely generated subgroup
which is not quasiconvex in G, then H is purely loxodromic but the orbit map H — X is not a quasi-
isometric embedding. However, in this case the orbit of H in X is not a quasiconvex subset of X. Moreover,
for a finitely generated subgroup H < G the orbit map H — X is a quasi-isometric embedding if and only
if every (equivalenty, some) orbit of H in X is quasiconvex. There are many examples of finitely generated
(even word-hyperbolic) subgroups of word-hyperbolic groups that are not quasiconvex. For instance, if G
is the fundamental group of a closed hyperbolic 3-manifold M fibering over the circle with fiber S, then
G = 71 (M) is word-hyperbolic and 1 (S) < G is not quasiconvex.

There are some situations where purely loxodromic subgroups do have quasi-isometric embedding orbit
maps. Thus a recent paper [25] of Koberda, Mangahas, and Taylor provides a result of this kind. Given a
right-angled Artin group G = A(T") defined by a finite graph T, there is an associated Gromov-hyperbolic
graph I'® (see [24]), called the ”extension graph”, which comes equipped with a natural isometric action of G.
They prove in [25] that for a finitely generated subgroup H < G the orbit map H — I'® is a quasi-isometric
embedding if and only if the action of H on I'® is purely loxodromic. This result is proved in [25] in the
context of exploring a strong form of quasiconvexity for finitely generated subgroups of finitely generated
groups called “stability”.

The group Out(Fy) (where Fi is a free group of finite rank N > 3) has a natural isometric action on
the ”free factor graph” Fy, which is known to be Gromov-hyperbolic [2, 20, 18] and provides one of several
Out(Fy) analogs of the curve complex. It is known [2] that ¢ € Out(Fy) acts on Fy loxodromically if and
only if ¢ is fully irreducible. There are two types of fully irreducible elements of Out(Fy): atoroidal ones
(which have no nontrivial periodic conjugacy classes in Fy and have word-hyperbolic mapping torus groups)
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and non-atoroidal ones. It is known [3] that a non-atoroidal ¢ € Out(Fy) is fully irreducible if and only if ¢
is induced by a pseudo-Anosov homeomorphism of a compact surface with one boundary component. In [11]
Dowdall and Taylor proved that if a finitely generated H < Out(Fy) is ”purely atoroidal” and has the orbit
map H — F being quasi-isometric embedding (which implies that H is also purely loxodromic for the action
on Fy ) then the natural extension G of Fy by H is word-hyperbolic. Hamenstadt and Hensel [17] suggested
to call a finitely generated subgroup H < Out(Fy) ”convex cocompact” if the orbit map H — Fy is a quasi-
isometric embedding. However, with this definition, an infinite cyclic H = () < Out(Fy), generated by
a non-atoroidal fully irreducible ¢, is considered convex cocompact, although the group Gp is not word-
hyperbolic in this case. Mann and Reynolds [28] defined a further coarsely Lipschitz coarsely equivariant
quotient Py of Fx such that Py is Gromov-hyperbolic and such that ¢ € Out(Fy) acts loxodromically
on Py if and only if ¢ is an atoroidal fully irreducible. In a new paper [12] Dowdall and Taylor show
that if H < Out(Fy) is a finitely generated purely atoroidal subgroup such that the orbit map H — Fy
is a quasi-isometric embedding (so that H is purely loxodromic for the action on Py) then the orbit map
H — Py is also a quasi-isometric embedding. This result provides another interesting example where a
purely loxodromic action can be shown to have the orbit map being a quasi-isometric embedding (under the
initial assumption that the orbit map H — Fy is a quasi-isometric embedding.)

The goal of this note is to show that even if we make rather strong additional geometric assumptions
about a purely loxodromic isometric action of a word-hyperbolic group H on a Gromov-hyperbolic space X
(including discreteness and quasi convexity of H-orbits), that is not enough to ensure that the orbit map
H — X is a quasi-isometric embedding.

Before stating the main result, we recall several definitions.

Definition 1.1 (Asymptotic translation length). Let G be a group acting isometrically on a metric space
X. For an element g € G the asymptotic translation length ||g||x of g on X is

d n
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where z € X is a basepoint.

It is well-known that the above limit always exists and does not depend on the choice of x € X. Moreover,
for an element g € G, the map Z — X, n — ¢"x, is a quasi-isometric embedding if and only if ||g||x > 0.
In particular, if X is Gromov-hyperbolic, then g € G acts logodromically on X if and only if ||g||x > 0.

Definition 1.2 (Acylidrical actions). An isometric action of a group G on a Gromov-hyperbolic space X is
said to be acylindrical if for every R > 0 there exist L > 1 and M > 1 such that whenever z,y € X are such
that dx (z,y) > L then

# ({9 € Gldx (z,97) < R,dx(y,9y) < R}) <M

Acylidrical actions on hyperbolic spaces play a crucial role in studying various generalizations of relatively
hyperbolic groups, particularly the so-called acylindrically hyperbolic groups (see, for example [9, 32, 19, 15,
33]), and in the study of group actions on R-trees (see, for example, [10, 21, 34, 1]). The action of Mod(S) on
the curve complex C(S) is also known to be acylindrical, see [6] and this fact has many useful consequences
in the study of mapping class groups. Acylindricity is a rather strong assumption, which brings some degree
of finiteness to non-proper actions and also imposes substantial algebraic restrictions on the situation.

Out main result is (c.f. Theorem 4.5 below):

Theorem A. There exists a Gromov-hyperbolic graph Y with a simplicial isometric action of F(a,b) on Y
such that the following hold:
(1) The action of F(a,b) on Y is acylindrical.
(2) The action of F(a,b) on Y is purely loxodromic, that is, every 1 # g € F(a,b) acts on Y as a
loxodromic isometry.
(3) For every 1 # g € F(a,b) we have ||g||ly > 1/7.
(4) For any p € Y the orbit F(a,b)p CY is a quasiconvex subset of Y.
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(5) There exists C > 1 such that for any z,y € F(a,b) if ay, is a geodesic from x to y in the Cayley
graph of F(a,b) with respect to the basis {a,b}, and if 8 = [z,y]y is a geodesic from = to y in Y,
then « and 8 are C-Hausdorff close in Y.

(6) For any p € Y, the orbit map F(a,b) — Y, g — gp, is not a quasi-isometric embedding, and,
moreover, the action of F(a,b) on Y is not metrically proper.

Note that, by the standard Milnor-Svarc argument (c.f. [8, Proposition 8.19]), if G is a group acting by
isometries on a Gromov-hyperbolic metric space X with quasiconvex orbits and if the action is metrically
proper (that is, if for every metric ball B the set {g € G|BNgB # &} is finite), then G is finitely generated
and the orbit map G — X is a quasi-isometric embedding.

An instructive example for comparison with Theorem A comes from group actions on R-trees that live in
the boundary of the Culler-Vogtmann Outer space. Let ¢ € Out(F'(a,b,c)) be an atoroidal fully irreducible
automorphism and let T' = T, be the ”stable” R-tree for ¢, constructed from a train-track representative
of ¢ (see [4, 5] for the construction of T,). Then F3 = F(a,b,c) acts on T freely, isometrically and with
dense orbits in T' (see, for example, [14, 26]), so that this action is purely loxodromic and all Fz-orbits are
quasiconvex in 7. Condition (5) of Theorem A also holds in this case because of the so-called ”bounded
back-tracking property” for ”very small” actions of free groups on R-trees [14]. Since the action on T has
dense orbits, the set of asymptotic translation lengths of nontrivial elements of F3 is not separated away
from 0. The action is also not acylindrical. Indeed, take R = 1. Then for any M > 1 there exists an
element g € F3 with 0 < ||g|| < 1/M. Consider the axis L(g) C T, so that g acts on L(g) by a translation of
magnitude ||g||r. For any L > 1 take points x,y € L(g) with dp(z,y) > L. Then for k =0,1,2..., M the
element g* translates each of z, y by k||g||r < 1 so that we have > M + 1 distinct elements displacing each
of z,y by < 1. Thus the action of F3 on T is indeed not acylindrical. Finally, the orbit map F3 — T is not a
quasi-isometric embedding. Thus this example satisfies properties (2), (4), (5) and (6) from Theorem A but
does not satisfy properties (1) and (3).

Theorem A shows that even very strong additional assumptions on a purely loxodromic action (including
discreteness, acylindricity, having quasiconvex orbits and having asymptotic translation lengths of loxodromic
elements being separated away from 0) are, in general, not sufficient to imply that the orbit map is a quasi-
isometric embedding.

We briefly describe the construction of Y in Theorem A here. We start with an infinite sequence v, (a,b) €
F(a,b) (where n =1,2,...) of distinct positive 7-aperiodic words, that is such that no v,, contains a subword
of the form u” for any nontrivial u. We put w,, = v, (a,b)c € F(a,b,c). Let K be the set of all positive words
z € F(a,b,c) such that z is a subword of w]* for some m,n > 1. Note that {a,b,c} C K. Then Y is the
Cayley graph of F(a,b, ¢) with respect to the generating set K. One can also view Y as a ”coned-off” version
of the Cayley graph X of F(a,b, ¢) with respect to {a,b, ¢} where for every n > 1 and for every conjugate w,,
of wy, in F(a,b,c) we ”cone-off” the axis L(w],) C X of w), in X. See Definition 2.3 below for details. The
fact that we are coning off a collection of uniformly quasiconvex subsets of a hyperbolic graph X implies (by
[20, Proposition 2.6]) that Y is Gromov-hyperbolic and that part (4) of Theorem A holds. Part (4) in turn
easily implies part (3) since F(a,b) < F(a,b,c) is a quasiconvex (even convex for X) subgroup. It is also
clear from the construction that the orbit map F(a,b) — Y, g — gp, is not a quasi-isometric embedding,
and that in fact the action of F(a,b) on Y is not proper.

To see that the action of F'(a,b) on Y is purely loxodromic and that has the asymptotic translation length
of nontrivial elements of F'(a, b) bounded below by 1/7, we develop a precise formula for computing distances
in Y and exploit the 7-aperiodicity property of the words v, (a,b). Note that the action of F'(a,b,c) on X is
acylindrical, but we are coning off a collection of subsets of X that are uniformly quasiconvex but are not
”geometrically separated” in the sense of [9]. The reason is that the axes of conjugates of distinct w,, and
Wy, in X can have arbitrarily long overlaps as n,m — co. Thus we cannot use the general result, given by
Proposition 5.40 of [9], to conclude that the action of F'(a,b,c) on Y is acylindrical (which may still be true).
Instead we give a direct argument, again exploiting the properties of periodic and aperiodic words in free
groups, that the action of F(a,b) on Y is acylindrical. It would be interesting to understand whether, when
starting with an acylindrical G-action on a Gromov-hyperbolic space, coning-off a G-equivariant collection
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of uniformly quasiconvex subsets (perhaps with appropriate extra assumptions on various constants) always
produces an acylindrical action of G on the coned-off space.

I am grateful to Chris Leininger, Paul Schupp, Denis Osin, Michael Hull, Funda Gultepe, Kasra Rafi,
Samuel Taylor and Spencer Dowdall for useful discussions.

2. CONSTRUCTION AND BASIC PROPERTIES OF THE GRAPH Y

Let F3 = F(a,b,c) and let X be the Cayley graph of F5 with respect to the free basis A = {a, b, c}.

For a word v in some alphabet, we denote by |v| the length of v. For an element g € F(a,b,c) we denote
by |g|a the freely reduced length of g with respect to A and denote by ||g||4 the cyclically reduced length of
g with respect to A. Note that ||g||a = ||g||x, the asymptotic translation length for the action of g on X.

When dealing with words over the alphabet A*!, we will use = to indicate graphical equality of such
words and we will use = to indicate that the words represent the same element of F'(a,b, c).

We say that a freely reduced word v € F'(a, b, c) is T-aperiodic if there does not exist a nontrivial cyclically
reduced word u € F(a,b,c) such that u” is a subword of v. It is well-known that there exist infinite 7-
aperiodic subsets of F'(a,b). For a sample reference we can use a result of Ol’shanskii, Lemma 1.2 in [31],
where an infinite 7-aperiodic set with additional small cancellation properties is constructed:

Proposition 2.1. [31, Lemma 1.2] There exists a sequence vy,(a,b) € F(a,b), where n = 1,2,3,... of
positive words vy, in F(a,b) with the following properties:

(1) We have |v,| = 00 as n — 00 and |v,| # |vm| whenever m # n.

(2) FEach v, is T-aperiodic.

(3) If u is a subword of some v, with |u| > |v,|/1000 then u occurs as a subword in v, exactly once,
and u does not occur as a subword of any v, with m # n.

Although we don’t actually use part (3) of the above proposition in this paper, we record part (3) since
it may be useful for further sharpening of the results obtained here.

Convention 2.2. From now and for the remainder of the paper, we fix a sequence of positive words
v, € F(a,b) satisfying the conclusions of Proposition 2.1.

Forn=1,2,3,... put w, := v,c € F(a,b,c).

Note that the words v, w, are positive and thus are freely and cyclically reduced.

Definition 2.3 (The graph Y). Let v, € F(a,b),w, € F(a,b,c), where n = 1,2,3... be as in Conven-
tion 2.2. We define a graph Y as follows.

The graph X is a subgraph of Y and VY = V X. The extra edges added to X to obtain Y are defined as
follows:

For every n > 1 and every conjugate w!, of wy, in F(a,b,c) we take the line L(w],) C X to be the axis of
w), when acting on X; for every pair of vertices z,y € L(w],) such that dx (z,y) > 2 we add an edge joining
x and y. We call edges of Y — X special edges.

Since X is the Cayley graph of F(a,b,c), every oriented edge e of X already has a label u(e) € A*. If
e is an oriented edge of Y — X from a vertex € VX to a vertex y € VX, then x,y € F(a,b,c) and the
geodesic segment [x,y]x is labelled by the freely reduced form z of the element = 'y € F(a,b,c). We then
put p(e) := z and p(e™t) = 271

Thus Y is a labelled graph where every oriented edge e of Y has a label p(e) which is a nontrivial freely
reduced word in F'(a, b, c). This assignment satisfies pu(e~!) = u(e)~!. Moreover, every special oriented edge
e of Y is labelled by some nontrivial subword of some w]".

We equip Y with the simplicial metric dy. Note that the set of lines L(wl), as n = 1,2,3,... and w],
varies over all conjugates of w,, in F(a,b,c), is F(a,b, c)-invariant. Hence the translation action of F(a,b,c)
on X naturally extends to an action of F(a,b,c) on Y by graph automorphisms, and thus by dy-isometries.

If y = ej,ea,...,6e, is an edge-path in Y, we put u(y) = u(er)...u(ex) € (A*1)*. Note that the label
1(y) need not be a freely reduced word even if the path v is a geodesic in Y.
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Note that the space X is Gromov-hyperbolic, and line each L(w],) C X is a 0-quasiconvex subset of X.
Therefore the following statement is a direct corollary of Proposition 2.6 of [20] (see also Proposition 7.12 in
[7] for a related statement):

Proposition 2.4. There exist integer constants 6 > 1 and C > 1 such that:
(1) The space (Y, dy) is d-hyperbolic.
(2) For any x,y € X, if @ = [x,y]x s a dx-geodesic from x toy in X and § = [x,y]y is a dy-geodesic
from x toy in'Y then a and B are C-Hausdorff close with respect to dy .

Convention 2.5. For the remainder of the paper, we fix a number C' > 1 satisfying the conclusion of
Proposition 2.4.

We record the following useful immediate corollary of part (2) of Proposition 2.4:
Corollary 2.6. Let z,y € VX and let 2’ be a vertex of X such that ' € [x,y]x. Then
|dy (z,2") + dy (', y) — dy (z,y)| < 2C.
Proposition 2.7. For any point x € Y, the orbit F(a,b)x CY is a quasiconvex subset of Y

Proof. We may assume that = 1 € F(a,b), so that F(a,b)z = F(a,b) CVY.

Let g € F(a,b) be arbitrary and let o = [1, g]x be the (unique) dx-geodesic path from 1 to g in X. Thus
~ is labbeled by the freely reduced v(a,b) form of g. Let 8 = [1,g]y be a dy-geodesic from 1 to g in Y.

By Proposition 2.4, for every point p € § there exists a vertex ¢ on a such that dy (p,q) < C'+ 1. Thus ¢
represents an elememnt of f(a,b,c) given by some initial segment of the word v(a,b) and hence ¢ € F(a,b).
This shows that F'(a,b) is a (C' + 1)-quasiconvex subset of Y, as required.

O

3. COMPUTING DISTANCES IN Y

Definition 3.1. A nontrivial freely reduced word z € F(a,b,¢) is said to be a W-word if for some n > 1
and some integer m # 0 the word z is a subword of w]".
For a freely reduced word w € F(a,b, c), a W-decomposition of w is a decomposition

w=2z21...2L
such that each z; is a W-word.

Remark 3.2. Note that since each of the positive words vy, (a,b) is 7-aperiodic and |v,| — 0o as n — oo,
each of the letters a,b appears in v, for all sufficiently large n. Also, by definition w, = v,c. Hence every
letter from {a,b,c}*! is a W-word.

Let Z be the set of all positive W-words z € F(a,b,c). Then the graph Y can also be viewed as the
Cayley graph of F(a,b, c) with respect to the generating set Z.

Lemma 3.3. Let z(a,b) € F(a,b) be a nontrivial freely reduced word. Then z is a W-word if and only if
there is m > 1 such that z is a subword of v, or of v, .

Proof. If z(a,b) is a W-word and thus a subword of some w]" = (v,(a,b)c)™ (where m € Z \ {0}) then,
since z does not involve c*! it follows that z is a subword of v,, or of v;;'. The statement of the lemma now

follows.
O

Notation 3.4. For g € F(a,b,c) denote |g|y := dy (1, 9).

Lemma 3.5 (Distance formula). Let w € F(a,b,c) be a nontrivial freely reduced word.
Then |wly is equal to the smallest k > 1 such that there exists a W-decomposition w = 21 . .. 2.
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Proof. The definition of Y implies that if z € F(a,b,c) is a W-word, then for every g € F(a,b,c) we have
dy(g,97) = 1. Thus if w = z; ...z, is a W-decomposition, then |w|y <.

Suppose now that v = ejes...e; is a dy-geodesic edge-path from 1 to w in Y, where k = |w|y. Put
u; = p(e;) € F(a,b,c). Then w =p(qp.c) uruz . .. ug, and each u; is a W-word.

After freely reducing the product ujus ... ux we get a factorization w = 21 ...z, where r < k and each
z; is the remainder of exactly one of the u; after all the free cancelations are performed. Thus each z; is
a W-word as well, and w = z; ...z, is a W-decomposition. Hence, by the argument above, k = |w|y < 7.
Thus k = r and we have found a W-decomposition w = z; ...z, with k = |w|y.

We have already seen that if w has a W-decomposition with ¢ factors, then |w|y < t.

Therefore |w|y is equal to the smallest number of factors among all WW-decompositions of w, as required.

|

Proposition 3.6. Let 1 # g € F(a,b) be arbitrary. Then:
(1) For every n > 1 we have |g"|y > [%].
(2) We have ||g|ly > .

Proof. Let g = uvwu~! where u,w € F(a,b) are freely reduced and w is cyclically reduced. Then the freely

reduced form of g” is ww"u 1.

Let vw™u™' = 2z ...z, be a W-factorization of the word uw™u~!. Thus each z; is a W-word and
z; € F(a,b). Hence by Lemma 3.3, each z; is a subord of some vi_l. Since the words v;(a, b) are T-aperiodic,
it follows that for every subword of uw™u~! of the form w” this subword nontrivially overlaps at least two
distinct factors z;. Therefore k > |2 ].

Hence, by the distance formula provided by Lemma 3.5, for every n > 1 we have [¢"]y > [%]. The

definition of ||g||y now implies that |[|g|[y > 1.
(]

4. ACYLINDRICITY
The following useful fact is a special case of Lemma 4 of Lyndon-Schiitzenberger [27]:

Lemma 4.1. Let ui,us € F(a,b,c¢) be nontrivial cyclically reduced words such that for some k,t > 1 the
words u¥ and ub have a common initial segment of length > |uy| + |uz|. Then there exists a unique root-free
cyclically reduced word ug € F(a,b,c) such that uy = ufy and ug = uf for some r,s > 1.

Lemma 4.2. Let R > 1 and let L > 100(R + 4C)(R + 6C + 10).
Let h € F(a,b,c) be a freely reduced word and let g = a~'ua € F(a,b,c) be a freely reduced word with u
being cyclically reduced.
Suppose that |h|ly > L, |gly < R and |hgh~|y < R. Then h = hooioufa where:
(1) We have |k| > 100(R + 6C + 1).
(2) 01,09 are subwords of o utta.
(3) We have |h0|y, |(71|y, ‘0'2|y < R+4C.

Proof. Let k € Z be the largest in the absolute value integer such that the freely reduced word h € F(a, b, c)
ends in u*a, where k = 0 corresponds to the case where h does not end in u*'a. It is not hard to see, by a
variation of the argument below, that k£ = 0 is not possible under the assumptions of this lemma, so we can
write h as h = hyu*«. We will assume that k& > 0 as the case k < 0 is similar.

Then, at the level of group elements, in F'(a,b, c) we have

hgh™ = hia(a ' a) (o tua)(a tu""a)a " hit = hia(atua)a thyt.

Put he = hia € F(a,b,c), so that hy is a freely reduced word. The maximal choice of k implies that in
freely reducing the product hg - (o tua) - hy ! not all of the word o 'ua cancels. Hence the freely reduced
form of hgh™! is graphically equal to h3u1h4j1 where u; is a subword of a 'ua, where hy = hst with
771 being an initial segment of a~'ua and where hy = hyv with v~=! being a terminal segment of a~lua.

We can express h; = hsp, where p~! is a maximal initial segment of o that cancels in the product h;a,
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with a = pflal. Then hy = hsa; = hst and he = hsay; = hgr. Recall also that the freely reduced
form of hgh~! is graphically equal to hgulhll. Hence there exist subwords o1,...,04 and f31,...,34 of
a tu*la such that hy = hgo109 = hrosoy such that the freely reduced form of hgh~! is graphically equal
to h66162u163_1ﬁ4_1h7_1. Recall also that u is a subword of o~ *ua and that h = hiu*a.

By assumption, |hgh™'|y < R. Since the freely reduced form of hgh™! is hgB1B2u1 B3 *By ‘hy*, Corol-
lary 2.6 implies that |hg|y, |h7]ly < R+ 4C. Since 01,09, are subwords of the freely reduced word
g = a tua, and since by assumption |gly < R, Corollary 2.6 implies that |o1|y, |02y, |aly < R+ 4C.
We also have h = hju*a = hgoioouFa, and by assumption |h|y > L. By the triangle inequality we now get
|uk|y > L — 4(R + 4C). Since |g|y < R, Corollary 2.6 implies that |u|y < R+ 4C. Thus

L —4(R+4C) < |u¥ly < k(R +40)

and hence k > (L — 4(R +4C))/(R+4C) = 55
by the assumption on L. Thus the factorization h = hgooou

—4 > 100(R 4 6C + 1), where the last inequality holds

ko satisfies all the requirements of the lemma.

]

Proposition 4.3. Let R > 1 and L > 100(R + 4C)(R + 6C + 10). Let g,¢9’ € F(a,b,c) be nontrivial freely
reduced words conjugate in F(a,b,c) to some elements of F(a,b), and let h € F(a,b,c) be such that |h|y > L,
lglv,|d'ly < R and that dy(h,gh),dy (h,g'h) < R. Then there exists a root-free nontrivial freely reduced
go € F(a,b,c) such that g = g§, g’ = g5, where 1 < |r|,|[t|] < T(R+4C +1).

Proof. We have dy (h,gh) = |h~'ghly,dy(h,g'h) = |h~1g’h| < R. Write g as a freely reduced word g =
a tua € F(a,b), with u € F(a,b) being cyclically reduced. Similarly, write ¢’ as a freely reduced word
g = (o)) o’ € F(a,b), with v/ € F(a,b) being cyclically reduced.

Applying Lemma 4.2 we conclude that there exist factorizations h~! = hooyoou¥a and h=! = hljo)oh(u') o/
where |k|, |r] > 100(R + 6C + 1), where o1, 09 are subwords of g, where where o}, o} are subwords of ¢’, and
where |holy, |hgly, o1y, |ozly, |olly,|ob] < R+ 4C.

We now see how the subwords u* and (u’)® overlap in

™t = hooyoouba = hyo|oh(u')*d’.

Case 1. Suppose first that the length of the overlap between u* and (u')® is < |u| + |u/|. Without loss
of generality we may assume that |u/| < |u| and that k,r > 0.

Then either u*~2 is a subword of hjc}oh, or u*=2

Recall that k,r > 100(R + 6C + 1).

If u*=2 is a subword of hjo}c} then Corollary 2.6 implies that |[u*~2|y < |hiolohly +4C < 3(R +
4C) 4+ 4C = 3R + 16C. Since u € F(a,b), Proposition 3.6 implies that |u*~2|y > (k —2)/7 — 1. Hence
(k—2)/7—1<|u*2|y <3R+16C and k < 7(3R + 16C + 1) + 2, yielding a contradiction.

If u*=2 is a subword of o/, then Corollary 2.6 implies that [u*~2|y < |o/|y +4C < R+ 6C. Since
|ub=2)y > (k—2)/7—1, we get (k—2)/7—1 < [uF2|y < R+6C and k < 7(R+6C +1) + 2, again yielding
a contradiction with & > 100(R + 6C + 1).

Suppose now that (u')" is contained in w”. Since |u/| < |u| and the length of the overlap between u
and (u/)" is < |u| 4 [«/], it follows that (u’)" is contained in some subword u? or u¥. Hence either u*/* is a
subword of hjc)ah or u*/* is a subword of a’. We then again obtain a contradiction by a similar argument
to above.

Case 2. Suppose now that the length of the overlap between u* and (u/)* is > |u| + |[u/|. Without loss
of generality we may assume that |a| < |&/|.

Assume first that |a| = ||, so that o/ = a. Then Lemma 4.1 implies that there exists a cyclically reduced
word ug € F(a,b) such that u = uf and v’ = u, so that g = (™ tuga)t and ¢’ = (auga)®. By assumption
lgly, |¢'ly < R which by Corollary 2.6 implies that |uf|y, |uj|y < R+ 4C. Hence by Proposition 3.6 we have
[t]/7—1,|s]/7T—1 < R+4C and hence [t],|s] < T(R+4C +1), as required. The conclusion of the proposition
is established in this case.

Assume now that |a| < |o/|. Let u, be the cyclic permutation of u such that the overlap between u* and
(u')" in hy' ends in u,. Lemma 4.1 implies that there exists a cyclically reduced word uy € F(a,b) such

is a subword of o/, or (u')" is contained in u”.

k k
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that u, = uf and v/ = u§. We may assume (after possibly replacing ug by its inverse) that rs > 0. The fact
that |a| < |@/| now implies that the first letter of o' is the same as the first letter of ug. This contradicts
the fact that the word ¢’ = (o)~ H(u)"a = (/)" tuf’a’ is freely reduced as written. Thus Case 2 cannot
happen, which completes the proof of the proposition.

(]

Corollary 4.4. The action of F(a,b) on'Y is acylindrical.

Proof. Tt is enough to check the acylindricity condition for the vertices of Y.
Let R>1. Put L = L(R) := 100(R+ 4C)(R + 6C + 10) and M = M(R) := 14(R+4C + 1) + 1.
Let z,y € VY = F(a,b, c) be vertices such that dy (z,y) > L. Put

We claim that #(S5) < M.
We have dy (z,y) = dy (1,27 1y) > L. Let g € F(a,b) be such that dy (z,gz) < R,dy (y,g9y) < R. Then
for g1 = 27 1gx we have |g1|y = |z gz|y = dy(z,g92) < R and

1 1 1

dy (@ 'y, iz 'y) = ly e g yly = [y e e gz yly = |y gyly = dy (v, 9y) < R.

Put h =2~y € F(a,b,c), so that |h|ly = dy(x,y) > L. Also put

S1 = {g1 € F(a,b,0)|
lg1ly < R,|h"'g1h|y < R, and g; is conjugate to an element of F(a,b) in F(a,b,c)}.

Since 7 1Sx C Sy, to verify the claim above it is enough to show that #(S;) < M.

Suppose #(S1) > 2. Let 1 # g; € S;. We can uniquely express g, as g1 = g where gy € F(a,b,c) is a
nontrivial root-free element and ¢ > 1. Now if g, € S7 is an arbitrary nontrivial element, then Proposition 4.3
implies that g = g§ where |s| < 7(R + 4C + 1). Tt follows that #(S1) < M, as required.

([l

We now summarize the properties of the action of F(a,b) on Y

Theorem 4.5. The following hold:

(1) The graph'Y is Gromov-hyperbolic and F(a,b) acts on'Y by simplicial isometries.

(2) The action of F(a,b) on'Y is acylindrical.

(8) The action of F(a,b) onY is purely loxodromic, that is, every 1 # g € F(a,b) acts on Y as a
loxodromic isometry.

(4) For every 1 # g € F(a,b) we have ||g|ly > 1/7.

(5) For anyp €Y the orbit F(a,b)p CY is a quasiconver subset of Y.

(6) There exists C > 1 such that for any x,y € F(a,b) if ag,y is a geodesic from x to y in the Cayley
graph of F(a,b) with respect to the basis {a,b}, and if 8 = [z,yly is a geodesic from x toy inY,
then a and B are C-Hausdorff close in'Y .

(7) For any p € Y, the orbit map F(a,b) =Y, g — gp, is not a quasi-isometric embedding. Moreover,
the action of F(a,b) on'Y is not proper.

Proof. Parts (1) and (6) are established in Proposition 2.4. Part (2) is Corollary 4.4 above. Part (4) is
Proposition 3.6, and part (4) directly implies part (3). Part (5) is Proposition 2.7.

To see that (7) holds, note that for every n > 1 v,(a,b) is a W-word and hence, by definition of Y, we
have dy (1,v,) = |vn(a,b)]y = 1. On the other hand, v, is a freely reduced word in F(a,b) with |v,| — oo
as n — 0o0. This shows, with p = 1 € VY, that the orbit map F(a,b) — Y,g — gp is not a quasi-isometric
embedding and that the action of F'(a,b) on Y is not proper. O
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