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ABSTRACT

We evaluate the dynamical stability of a selection of outer solar system objects in the presence
of the proposed new Solar System member Planet Nine. We use a Monte Carlo suite of numerical
N-body integrations to construct a variety of orbital elements of the new planet and evaluate the
dynamical stability of eight Trans-Neptunian objects (TNOs) in the presence of Planet Nine. These
simulations show that some combinations of orbital elements (a, e) result in Planet Nine acting as a
stabilizing influence on the TNOs, which can otherwise be destabilized by interactions with Neptune.
These simulations also suggest that some TNOs transition between several different mean-motion
resonances during their lifetimes while still retaining approximate apsidal anti-alignment with Planet
Nine. This behavior suggests that remaining in one particular orbit is not a requirement for orbital
stability. As one product of our simulations, we present an a posteriori probability distribution for
the semi-major axis and eccentricity of the proposed Planet Nine based on TNO stability. This result
thus provides additional evidence that supports the existence of this proposed planet. We also predict
that TNOs can be grouped into multiple populations of objects that interact with Planet Nine in
different ways: one population may contain objects like Sedna and 2012 VP113, which do not migrate
significantly in semi-major axis in the presence of Planet Nine and tend to stay in the same resonance;
another population may contain objects like 2007 TG422 and 2013 RF98, which may both migrate and
transition between different resonances.

1. INTRODUCTION

In our solar system, a large population of small, rocky
objects resides beyond the orbit of Neptune, and the
collective structure of this population is anomalous, ex-
hibiting trends unexplained by random chance. Many
of these objects appear to occupy a region close to the
plane containing the eight known planets, leading to this
region being called the Kuiper Belt. The existence of
these objects has implications for the formation mecha-
nism of our solar system; however, we have yet discovered
only a small fraction of the objects orbiting beyond Nep-
tune. Since the turn of the century, many new objects
have been discovered in the Kuiper Belt. The subset
of objects orbiting outside of Neptune’s orbit are called
Trans-Neptunian objects (TNOs), and they often have
dynamically interesting orbits. In particular, some of
these objects have large semi-major axes and large per-
ihelion distances, including, for example, Sedna (Brown
et al. 2004), 2004 VN112 (Becker et al. 2008), 2010 GB174

(Chen et al. 2013), and 2012 VP113 (Trujillo & Sheppard
2014).

When Trujillo & Sheppard (2014) reported the discov-
ery of 2012 VP113, they also noted a curious clustering
in argument of perihelion for the population of TNOs
with high-a, high-q orbits. The authors proposed that
the high-q orbits could be generated in three ways: first,
by the ejection of a solar system body that left behind
the observed clustering as a signature of its ejection; sec-
ond, through a stellar fly-by encounter that perturbed
the orbits of some TNOs into their current configura-
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tions (Morbidelli & Levison 2004), where such interac-
tions are relatively common in the birth cluster (Li &
Adams 2015); third, through the presence of an addi-
tional planet in the solar system. Notably, this third
mechanism could also explain the clustering of this pop-
ulation of TNOs, as the proposed ninth planet’s repeated
secular interactions with the shorter-period TNOs could
force the TNOs to keep their ω confined to be near either
0 degrees or 180 degrees (for example, this could occur
via the Kozai mechanism).

Batygin & Brown (2016a) also suggested the existence
of an additional planet (Planet Nine), which is differen-
tiated from the potential planet discussed in Trujillo &
Sheppard (2014) in the way it interacts with the TNOs.
The Batygin & Brown (2016a) version of Planet Nine
functions by explaining both the apsidal and ascending
node alignment of a selection of objects in the Kuiper
Belt. The objects under consideration in Batygin &
Brown (2016a) were two overlapping sets of objects: first,
those that have perihelion distance q > 30 AU and semi-
major axis a > 150 AU, while being dynamically stable
in the presence of Neptune; second, any objects which
have q > 30 AU and semi-major axis a > 250 AU, all
of which exhibit clustering in $ (when $ is defined as
the longitude of perihelion, $ = ω + Ω). The orbit for
Planet Nine presented in Batygin & Brown (2016a) was
a rough estimate, with semi-major axis a = 700 AU,
eccentricity e = 0.6, inclination i = 30 degrees, longi-
tude of ascending node Ω = 113 degrees, and argument
of perihelion ω = 150 degrees. The authors estimated
the planet to have a mass of roughly 10 Earth masses,
but all of these orbit predictions were noted as approxi-
mate. This mass estimate was supported in a follow-up
effort by the predicting authors (Brown & Batygin 2016),
which placed constraints on the orbital elements of the
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potential Planet Nine by using N-body simulations to de-
termine which Planet Nine realizations lead to clustered
TNOs in simulations. In this work, the authors deter-
mined that a 10 Earth mass Planet Nine was more likely
to recreate the observed clustering than a 20 Earth mass
Planet Nine.

The possibility of a new planet has led to a great deal
of recent work, e.g., to evaluate the likelihood of Planet
Nine’s existence given the known properties of the Solar
System. For example, Fienga et al. (2016) and Holman
& Payne (2016) examined the measured Earth-Saturn
distance, and determined that Planet Nine is likely to
have a true anomaly near 117 degrees (based on the
upper limit to the amplitude of the residuals for that
distance measurement). In complementary work, Mal-
hotra et al. (2016) evaluated the potential resonant be-
havior that Planet Nine could invoke in the population
of long-period TNOs, and predicted that Planet Nine
should have a semi-major axis of a = 665 AU in order
to support stability-boosting resonances. Other authors
(Lawler et al. 2016; de la Fuente Marcos et al. 2016) have
examined the dynamical effects that Planet Nine would
have on the populations of objects that exist in the So-
lar System. Finally, additional work was carried out to
explain how Planet Nine would fit into our existing pic-
ture of the Solar System. For example, multiple groups
found that the existence of such a ninth planet can be in-
voked to explain the six-degree obliquity of the sun (Bai-
ley et al. 2016; Lai 2016; Gomes et al. 2017). Several pre-
vious works have also suggested that the mechanism by
which Planet Nine shapes the orbits of the TNOs may be
orbital resonances (Batygin & Brown 2016a; Beust 2016;
Malhotra et al. 2016; Millholland & Laughlin 2017).

The conclusion in Batygin & Brown (2016a) was based
only on six of the (at the time) thirteen discovered ex-
treme TNOs. These six TNOs (2004 VN112, 2007 TG422,
2010 GB174, 2012 VP113, 2013 RF98, and Sedna) were
chosen because they exhibit clustering in $ and have
a > 250 AU, meaning they are expected to be influ-
enced by Planet Nine. Sheppard & Trujillo (2016) also
announced the discovery of two new objects (2014 SR349

and 2013 FT28) that also fit into the class of objects used
by Batygin & Brown (2016a) to predict the existence of
Planet Nine. In order for Planet Nine to be capable of
forcing the orbits of the TNOs into aligned configura-
tions, the TNOs must remain dynamically stable on sec-
ular timescales, to allow apsidal alignment to occur. Ob-
jects whose orbital elements are affected by short-period
scattering events can be used to understand the scatter-
ing event itself, but not the long-period, secular effects in
the system. Numerical simulations in Batygin & Brown
(2016a) and Sheppard & Trujillo (2016) determined that
some of the high semi-major axis (a > 250) objects’ or-
bits change significantly over 1 Gyr timescales. They
used numerical simulations to evaluate the stability of
these bodies in the presence of the four giant planets, and
found that some objects were not dynamically stable. If
two of the six objects used to infer the existence of Planet
Nine are dynamically unstable (for example, being sus-
ceptible to scattering events) in the presence of Neptune,
it is less likely that those objects could reside in their cur-
rent orbits long enough to be influenced by Planet Nine
and become apsidally aligned via that mechanism. de
la Fuente Marcos et al. (2016) also found that the six

aforementioned extreme TNOs can become dynamically
unstable on relatively short timescales in the presence of
both Neptune and the nominal Planet Nine, which could
potentially prevent the observed apsidal alignment from
occurring on secular timescales.

Of course, dynamical stability is a function of
timescale. The objects with perihelion distances in the
range 30-40 AU can be termed a part of the scattered disk
(Lykawka & Mukai 2007). The objects in this population
are characterized by repeated (potentially scattering) in-
teractions with Neptune (Nesvorný & Roig 2001). An in-
tegration of the solar system run for an indefinite amount
of time (without the presence of Planet Nine) will even-
tually lead to all objects in the scattered disk leaving the
solar system. However, our solar system is only 4.5 Gyr
old, and it does not take this long for Planet Nine to
align the TNOs into the pattern reported in Batygin &
Brown (2016a). For this reason, ‘dynamical stability’ in
this work refers to objects which remain in orbits com-
parable to their current orbits for 4.5 Gyr.

Sheppard & Trujillo (2016) reported two new TNOs in
the regime of interest for consideration of Planet Nine,
and the population of discovered TNOs and Kuiper Belt
Objects is rapidly growing. The Canada-France Ecliptic
Plane Survey (Petit et al. 2011), which ran from 2003–
2007, detected 169 TNOs with a preference for larger
TNOs (size R > 100 km). A 32-square-degree survey
running from 2011–2012 by Alexandersen et al. (2014)
detected 77 TNOs. The Outer Solar System Origins Sur-
vey (Bannister et al. 2016), which is currently in progress,
has thus far detected 85 TNOs. The Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS) is
intended to discover comets and asteroids (particularly
near-Earth objects), but has also found Kuiper Belt Ob-
jects (Chen et al. 2016) and giant planet Trojans (Horner
et al. 2012; Guan et al. 2012; Lin et al. 2016). In addi-
tion to these dedicated Solar System searches, cosmolog-
ical searches also allow for the serendipitous discovery of
foreground TNOs. For example, the Dark Energy Survey
has experienced great success in discovering TNOs and
other solar system objects (Gerdes et al. 2016; Dark En-
ergy Survey Collaboration et al. 2016), including a new
dwarf planet (Gerdes et al. 2017).

This ever-growing population of TNOs will allow for
increasingly stronger constraints on the possible orbital
elements of Planet Nine and its current location in the
Solar System. These objects will also provide a clearer
picture of the dynamical regimes of bodies in the outer
Solar System, where these orbits are sculpted by Neptune
on the inside and could be influenced by Planet Nine from
the outside.

In this paper, we use as our sample the TNOs with
a > 250 AU from Batygin & Brown 2016a and two newly
discovered objects (announced in Sheppard & Trujillo
2016) expected to be dynamically stable in the presence
of the solar system objects. We use N-body techniques
to simulate the behavior of these objects in the presence
of Planet Nine to place limits on the possible orbital ele-
ments (a, e) of Planet Nine. In Section 2, we describe the
sets of simulations carried out in this work and present
some results. Our treatment uses a Monte Carlo sample
of 1500 Planet Nine realizations, and thus extends most
previous work, which generally considered only a single
nominal orbit or small number (generally N ≤ 3) of po-
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tential orbits. The simulations enable us to estimate the
mean lifetime of each TNO in the presence of each of the
Planet Nine realizations under consideration. In Section
3, we develop and provide a posterior probability dis-
tribution for the most likely values (a, e) for the Planet
Nine orbit, given that we observe the eight TNOs in their
current orbits. In Section 4, we discuss the different dy-
namical instability mechanisms contributing to the po-
tentially shortened lifetimes for the TNOs, and identify
some interesting differences between objects in our sam-
ple. In Section 5, we explore the relationship between the
period of our injected Planet Nine and the period of each
TNO, and show that TNOs living in dynamically stable
configurations tend to attain integer period ratios with
Planet Nine. Remarkably, some TNOs do not remain
in the same commensurability for their entire lifetimes;
instead, they transition between multiple near-resonant
locations. The paper concludes, in Section 6, with a sum-
mary of our main results and a discussion of avenues for
future study.

2. NUMERICAL SIMULATIONS OF TNO ORBITAL
EVOLUTION IN THE PRESENCE OF PLANET NINE

Brown & Batygin (2016) provided a relative poste-
rior probability distribution for the (a, e) of Planet Nine.
This posterior was constructed using clustering argu-
ments of the same type that were used in Batygin &
Brown (2016a) to predict the existence of Planet Nine.
The logic used in both these works can be summarized as
follows: the observed TNOs’ orbits are aligned in physi-
cal space (the longitudes of perihelion $ and longitudes
of ascending node Ω are confined to a narrow range in
angles instead of uniformly populating all allowed an-
gles), and the probability of this occurring by chance is
low, even accounting for potential bias in the observa-
tions. Numerical N-body simulations of a selection of
test-particles at varying orbital radii do not recreate the
observed clustering unless Planet Nine is included in the
simulations; even then, some orbits of Planet Nine are
more likely to recreate the observed clustering than oth-
ers. From a suite of numerical integrations, Brown &
Batygin (2016) predicted the combinations of (a, e) that
were most likely to allow a population of test particles
that exhibited the observed clustering in longitude of per-
ihelion.

The physical orientation of orbits is not the only ob-
served physical property that can be measured from the
known TNOs. The most basic property that the ob-
served TNOs share is orbital stability: although merely
seeing the TNO orbits today does not ensure that they
are dynamically stable in those current orbits, the ob-
served (Trujillo & Sheppard 2014; Batygin & Brown
2016a) physical clustering of the orbit directions suggests
that the orbits have been dynamically stable for a long
enough time for this alignment to develop. Whether or
not the aligning agent is the theorized Planet Nine, this
alignment would have to have taken place over secular
timescales, suggesting that these TNOs must have been
dynamically stable over such timescales.

The dynamical stability of these objects is thus a fun-
damental and necessary property. As such, any allowable
Planet Nine would have to allow the continued dynami-
cal stability of the TNOs over secular and solar system
lifetimes. To evaluate the likelihood of any particular re-

alization of Planet Nine, we must evaluate the lifetimes
of the TNOs in the presence of said Planet Nine.

2.1. Numerical Methods

To determine how the lifetimes of the TNOs vary in
the presence of different combinations of the semi-major
axis and eccentricity of Planet Nine, we run a large num-
ber of numerical N-body integrations, each including one
potential realization of Planet Nine and the population
of TNOs we are testing. This population includes the
six TNOs considered in Batygin & Brown (2016a) (2004
VN112, 2007 TG422, 2010 GB174, 2012 VP113, 2013 RF98,
and Sedna) and two additional objects discovered by
Sheppard & Trujillo (2016) (2014 SR349 and 2013 FT28)
that appear to fit in the same dynamical class as the pre-
vious six. The orbital elements of all eight objects in our
sample are reported in Table 1. The objects we consider
in this work are those with semi-major axis a > 250 AU
and perihelion distance q > 30 AU. This is a different
sample, with a stricter semi-major axis cut, than was
originally used in Trujillo & Sheppard (2014) to iden-
tify the clustering effect (Trujillo & Sheppard 2014, used
a > 150 AU). We limited the objects considered in this
paper to those with a > 250 AU for three reasons: first,
these are the objects which are found in Batygin & Brown
(2016a) to exhibit both confinement in the longitude of
perihelion and in the longitude of ascending node; sec-
ond, these large-a objects exhibit a variability in semi-
major axis (Batygin & Brown 2016a) that can poten-
tially lead to dynamical instability; third, we expect the
dynamics of these long period orbits to be dominated by
Planet Nine rather than by Neptune (Sheppard & Tru-
jillo 2016).

We choose to explore the effect of Planet Nine’s a and
e because the orbital angles of Planet Nine are directly
oppositional to those of (all but one of) the discovered
ETNOs, and the current location of Planet Nine can
be estimated using other methods (for example, Fienga
et al. 2016; Holman & Payne 2016). For this work, the
inclination and orbital angles of Planet Nine were taken
to be the nominal values presented in Batygin & Brown
(2016a). The robust consideration of a wider range of
angles is beyond the scope of this work, but we report a
basic reproduction of the experiments of this work while
allowing the orbital angles to vary in Appendix B. We
choose to fix these angles for the remainder of the main
manuscript for two reasons: first, to examine the effect
of (a, e), we take a cross section in the other angles in
order to remove the degeneracies that would be imposed
by allowing these angles to vary; second, considering all
orbital angles would be too computationally intensive, so
we choose the best values we can and proceed under the
assumption that altering these angles will not change the
broad trends of the results.

To evaluate the dynamical stability (and thus, ex-
pected mean orbital lifetimes) of these eight TNOs in the
presence of Planet Nine, we ran 1500 numerical N-body
integrations using the hybrid symplectic and Bulirsch-
Stoer (B-S) integrator built into Mercury6 (Chambers
1999), and conserved energy to 1 part in 1010. We re-
placed the three inner giant planets (Jupiter, Saturn and
Uranus) with a solar J2 (as done in Batygin & Brown
2016a). We included Neptune as an active particle be-
cause the orbital motion of Neptune may induce scatter-
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ing or resonant effects on the TNOs, potentially leading
to dynamical instabilities (rapid, drastic orbital evolu-
tion for the TNOs). For each realization, we included
each TNO with orbital elements drawn from observa-
tional constraints, sampling each orbital element from
reported 1σ errors. Then, we integrated each of the 1500
realizations forward for 4.5 Gyr using computational re-
sources provided by Towns et al. (2014). For data man-
agement, we used the pandas python package (McKinney
2010).

Some of the TNOs (2013 RF98, for example) have very
rough observational priors. Since we are sampling from
observational priors in the orbital elements we assign to
these small bodies, the lifetimes of these objects (com-
pared to Sedna, whose orbital properties are much better
constrained) include the degeneracy of both Planet Nine
and also of the TNO itself. This leads to smoothed dis-
tributions, which are effectively convolutions of the true
lifetimes with an uncertainty kernel including the errors
of the measured orbital properties of the object.

The final result of these simulations is 1500 measures
of dynamical lifetime for each object, which can be plot-
ted on a (a, e) grid as shown in the top panel of Figure
1 (which shows the points for 2012 VP113). We do not
expect the lifetimes to form a smooth function for several
reasons: first, for each object, we draw orbital parame-
ters from observational priors, resulting in some expected
scatter in results for even a single Planet Nine realization;
second, chaotic effects will cause scatter in outcomes be-
tween realizations. For that reason, we must run enough
simulations that we can treat the averaged value from all
results near a Planet Nine (a, e) point as a good average
of the behavior that a given Planet Nine would engender.

We construct the contour plots in Figure 2 and Fig-
ure 4 by using a polyharmonic spline (from Jones et al.
2001) to smooth and interpolate between the points gen-
erated by our Monte Carlo simulations. We investigated
the effects of different interpolation methods, and found
that for our sample size (N ∼ 1500 realizations), the in-
terpolation scheme does not drastically affect the final
result. However, it is important to note that when we
attempted to use N ∼ 100 realizations, the results var-
ied drastically between different interpolation schemes.
Since our sample size does not show such variations be-
tween methods, we consider the (a, e) parameter space
well-sampled. Figure 1 demonstrates the smoothed two-
dimensional lifetime function and provides a comparison
to the raw points for one object (2012 VP113) in our sam-
ple. Analogous plots (not presented) can be constructed
for each of the eight objects in our sample.

2.2. Numerical Results

The results of the simulations are plotted in Figure
2, which presents contour plots for the expected orbital
lifetimes of the eight TNOs in the presence of various
realizations of Planet Nine. The main results that we get
from this experiment fit into three categories: we affirm
the potential stability of all eight TNOs in the presence
of Neptune and Planet Nine, we find that different TNOs
prefer different parameter spaces of Planet Nine, and we
examine the fate of the TNOs that do go dynamically
unstable.

Stability of TNOs. For all objects in our sample,
there are realizations of Planet Nine that allow them to

polyharmonic spline 

Fig. 1.— (Top panel) The points for one object in our sample,
2012 VP113, which are color coded by the amount of time the
system remained dynamically stable. (Bottom panel) The same
points, turned into a contour plot by use of a polyharmonic spline.
The contour plot allows for easier comparison of the posterior for
each object, and visualizes the interpolation up for the Monte Carlo
sampling.

remain dynamically stable for the lifetime of the solar
system. Here, dynamical stability requires that a TNO
remain within 100 AU of its starting orbit, and not ex-
perience collisions with the planets or central body. This
value of 100 AU was chosen from examination of the
time-evolution of the bulk set of TNOs. We find that
when orbits vary by less than 100 AU, the objects are
generally confined to a network of mean motion reso-
nances (MMRs), an outcome that we describe in Section
5.

When orbits change by more than 100 AU, they po-
tentially change dynamical class. The criteria in Batygin
& Brown (2016a) included the cut that aTNO > 250 AU,
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Fig. 2.— Individual contour plots of the lifetimes of each of the eight TNOs considered. The lifetime plots do not exhibit the same general
trends, indicating that the different objects may be members of different dynamical classes of objects. Table 1 presents the complete list
of their orbital properties; the title of each subplot here is the short name of the object it portrays.

and 100 AU of migration inwards would change this dy-
namical classification of 5 of the 8 TNOs considered in
this work. Since this choice of cutoff is somewhat arbi-
trary, we present in Table 2 the frequency of final dynam-
ical outcome for each TNO in our sample. Migration is
in outcome in between 7%-30%, depending on the TNO
under consideration, so future work that uses a different
criterion for migratory instability can expect variation
from our results of this magnitude.
Table 1 provides a ‘Percent Stable’ column, which gives

for each object the percentage of our 1500 realizations
(which all have different a, e for Planet Nine) which al-
lowed that object to remain dynamically stable for the
entire 4.5 Gyr simulation. Since our simulations also
include Neptune as an active particle, all of these ob-
jects can be dynamically stable in the presence of both
Neptune and Planet Nine. Notably, 18 of our 1500 real-
izations of Planet Nine allowed all eight TNOs to remain
dynamically stable for 4.5 Gyr. The 18 trials that allowed
all tested TNOs to survive had semi-major axes varying
between 600 AU and 800 AU and eccentricities between
0.35 and 0.55. The small sample (N ∼ 18) that allowed
all TNOs to survive limits any further conclusions based
on their orbital parameters. Sheppard & Trujillo (2016)
found that 2007 TG422 and 2013 RF98 were both dynam-
ically unstable in the presence of Neptune, but they did
not include a potential Planet Nine in their integrations.
We find that 2007 TG422 and 2013 RF98 have stability
percentages of less than 20%, making them less stable on
average than, for example, 2012 VP113. However, with a
dynamically favorable realization of Planet Nine, both of
these objects can remain dynamically stable for a solar
system lifetime. This result, combined with the result
from Sheppard & Trujillo (2016) that these two objects
are not dynamically stable in the presence of Neptune
alone, suggests that Planet Nine can boost the orbital
stability of these objects.
Variations between behavior of different TNOs.

For each object in our sample, different realizations of

Planet Nine lead to differing object lifetimes. This is
shown in Figure 2, which plots the lifetime of each TNO
as a function of the semi-major axis and eccentricity of
Planet Nine. These stability maps look very different
for different objects. For example, large-a, low-e orbits
lead to a longer lifetime for 2012 VP113. For this object,
shorter object lifetimes occur if Planet Nine has a shorter
perihelion distance (lower a or higher e). This is intu-
itive. In contrast, 2007 TG422 is dynamically unstable in
the presence of these same long perihelion-distance ob-
jects that 2012 VP113 preferred. Since different objects
prefer different regions of Planet Nine’s possible parame-
ter space, a better understanding of the constraints they
provide can be obtained by considering all objects simul-
taneously. We will discuss how this can be done, as well
as find constraints using our results thus far, in Section
3.
Fate of the TNOs. To construct the lifetime con-

tours in Figure 2, we defined the lifetime of an object
as the length of time it lived in our simulation without
significant alterations in its orbit. We defined significant
alterations in orbit to be any of the following: (1) mi-
gration in semi-major axis by more than 100 AU from
the starting orbit of the object, (2) collisions or a close
encounter (defined as passing within 3 Hill radii of the
larger body) with Planet Nine or Neptune, (3) collision
with the central body, and (4) ejection from the solar sys-
tem. It is clear that each of these criteria have different
thresholds for importance, as well as different outcomes
for the object. In particular, while ending methods (2-4)
result in a violent end for the TNO, method (1) does not
necessarily remove the TNO from the solar system: in-
stead, the TNO’s orbit is significantly altered, but the
TNO may continue to be a part of the solar system,
merely in a different location. Numerical simulations al-
low these effects to be disentangled. In particular, we
find that the two objects (2007 TG422 and 2013 RF98)
that do not prefer the high-a, low-e realizations of Planet
Nine tend to exhibit the migratory end in those realiza-
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TABLE 1
Stability of ETNOs in presence of Neptune and Planet Nine

Object Name a (AU) e i (degrees) ω (degrees) Ω (degrees) Percent Stable δ̄t
1

2003 VB12 (Sedna) 499 0.85 11.92 311.5 144.5 45.3% 300 Myr
2004 VN112 318 0.85 25.56 327.1 66.0 28.4% 625 Myr
2007 TG422 482 0.93 18.59 285.8 113 14.6% 1.24 Gyr
2010 GB174 371 0.87 21.54 347.8 130.6 17.9% 1.03 Gyr
2012 VP113 261 0.69 24.06 292.8 90.8 56.5% 9 Myr
2013 RF98 325 0.88 29.61 316.5 67.6 18.7% 1.01 Gyr
2013 FT28 310 0.86 17.3 40.2 217.8 19.9% 709 Myr
2014 SR349 288 0.84 18.0 341.3 34.8 18.1% 917 Myr

Note. — A list of the TNOs used for the dynamical survey. The dynamical stability of each object was
evaluated using a suite of numerical N-body simulations. The orbital elements of each object provided in this
table are the best fit observational values. In the simulations, the orbital elements were drawn from the 1σ
distribution for each realization of each object. Also provided in this table is the percentage of realizations of
each object that are dynamically stable. It is important to note that this percentage reported (which is the
percentage of realizations of each object that are dynamically stable) is marginalized over all realizations of
Planet Nine included in the simulations, and thus the exact percentage is not meaningful. What is meaningful
is that the percentages are all non-zero, indicating that for a selection of orbital parameters and Planet Nine
realizations, each object in our sample can be dynamically stable. 1: δ̄t is the difference in median lifetime (over
all Planet Nine realizations) between two cases: case one being when the definition of dynamical instability
does not include migration, and case two being when migration of more than 100 AU constitutes dynamical
instability. Larger values indicate that TNOs are susceptible to significant (δa > 100) migrations in semi-major
axis.

tions, rather than experiencing a violent instability. We
will further discuss this effect in Section 4.

3. DERIVING CONSTRAINTS ON THE ORBITAL
ELEMENTS OF PLANET NINE

Given the predicted lifetime distributions constructed
in the previous section, we can constrain the orbital prop-
erties of Planet Nine by determining which (a, e) combi-
nations allow the continued dynamical stability of the
observed clustered TNOs. We make an assumption here
that in order for the TNOs to attain their observed $
clustering, they must have remained in their currently
observed orbits for at least secular timescales. This
would require those orbits being dynamically stable in
the presence of Planet Nine. The process of constructing
these constraints will be detailed in this section.

3.1. Bayesian inference towards a posterior probability
distribution for the orbital elements of Planet Nine

The ultimate goal of our dynamical stability analysis
is to determine the posterior probability distribution for
the orbital elements (a, e) of Planet Nine. This will serve
as a check and supplement to previous orbital posteriors
in the literature, which were estimated using different
techniques. We define A to be the orbital elements of
Planet Nine, Ti to be the expected dynamical lifetime of
the ith TNO, and I to be all prior information that we
can incorporate into our models (for example: the fact
that Planet Nine exists is a prior we impose, as are the
observational errors of the discovered TNOs, which lead
to uncertainties on their orbits). With these definitions,
the property we wish to measure is P (A|Ti, I), the prob-
ability of A (Planet Nine’s orbital elements), given the
lifetimes of the observed TNOs and our other knowledge.
This posterior probability function can be represented
using Bayes’ Theorem as follows:

P (A|Ti, I) =
P (Ti, I|A)P (A)

P (Ti, I)
(1)

However, upon inspection of this expression, there is one
clear problem: P (Ti, I|A) requires knowledge of Ti, the
actual lifetimes of the observed TNOs in our solar sys-
tem. This is not a property that can be measured. As
an added difficulty, the prior information encapsulated
in I includes large uncertainties on the orbital elements
of the observed TNOs.

To overcome this difficulty, we define a new parame-
ter, Di. Di is defined to be the computed lifetimes of
the observed TNOs, where these lifetimes are marginal-
ized over the observational priors of the TNOs’ orbital
elements and our other uncertainties that were before
folded into I. Although we cannot measure the true life-
times Ti, we have constructed TNO lifetime estimates Di

as they depend on our priors by using numerical N-body
simulations. These simulations are described in the pre-
vious section, and a visualization of the derived lifetimes
is presented in Figure 2.

Now, we can rewrite the Bayesian statement of our
posterior in terms of this new variable:

P (A|Di) =
P (Di|A)P (A)

P (Di)
(2)

when P (Di|A) is the probability of getting the numer-
ically measured lifetimes conditional on the orbital ele-
ments of Planet Nine, P (A) is our priors on Planet Nine’s
orbital elements, and P (Di) is the occurrence probability
of our computed lifetimes. Of course, we have N TNOs
to consider in this analysis, so what we really need to
compute is the posterior probability distribution as it
depends on the numerically estimated lifetimes of all N
objects:

P (A|D1, D2...DN ) =
P (D1, D2...DN |A)P (A)

P (D1, D2...DN )
,

which, using the definition of Bayes’ theorem, reduces
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TABLE 2
Outcomes of ETNOs in presence of Neptune and Planet Nine

Object Migration (a > 100 AU) Close Encounter Collision with Central Body Ejection Survive to 4.5 Gyr

2003 VB12 (Sedna) 16.0% 19.3% 0.1% 19.3% 45.3%
2004 VN112 14.9% 30.6% 0.7% 25.4% 28.4%
2007 TG422 29.3% 32.9% 0.0% 23.1% 14.6%
2010 GB174 17.8% 31.2% 0.4% 32.7% 17.9%
2012 VP113 7.1% 21.1% 0.5% 14.8% 56.5%
2013 RF98 14.0% 40.6% 0.0% 26.7% 18.7%
2013 FT28 17.2% 30.7% 0.0% 32.2% 19.9%
2014 SR349 22.0% 39.5% 0.7% 19.8% 18.1%

Note. — For each TNO used in the dynamical simulations, the percentage of integrations that ended in each major instability
outcome.

into the form:

P (A|D1, D2...DN ) =
P (D1)× P (D2)× ...P (DN )

P (D1, D2...DN )
×

P (D1|A)× P (D2|A)× ...P (DN |A)

P (A)N−1

(3)

We can say that D1, D2...DN are conditionally inde-
pendent, since we treated all TNOs as test particles
in the simulations used to generate {Di}. Since each
TNO has zero mass in the simulations, removing one
will not alter the lifetime maps for the other objects.
As a result, the first term of the right-hand side of
Equation 3 can be treated as a normalization coefficient,
which is needed only when comparing different versions
of P (A|D1, D2...DN ) constructed with different numbers
N of TNOs. We need only a relative posterior probability
distribution, which will identify the most likely realiza-
tion of Planet Nine and identify the parameter space in
which it is likely to reside.

The final result we need to compute, then, is:

P (A|D1, D2...DN ) = a

∏n=N
n=1 P (Di|A)

P (A)N−1
(4)

when D denotes the lifetime of a TNO in the presence of
Planet Nine as measured from simulations, i denotes the
TNO considered, A denotes the orbital elements (a, e) of
Planet Nine. P (A) is a known quantity, and P (Di|A) can
be measured from the stability maps constructed using
the N-body integrations.

3.2. Converting TNO lifetime maps to probability
distributions

Equation 4, which can be used to construct our goal
posterior probability distribution, requires P (Di|A) for
each TNO in the sample. P (Di|A) is the probability of
the TNOs’ lifetimes as they depend on the orbital ele-
ments of Planet Nine. To compute this term, we must
convert the lifetime maps presented in Figure 2 into prob-
ability distributions.

Each realization of Planet Nine will lead to a differ-
ent time of dynamical instability (defined as the time at
which an object experiences one of the four instability
mechanisms described in Section 2.2), with some objects
never experiencing dynamical instability. In Figure 3, we
plot a histogram of the object lifetimes for 2013 RF98,
as derived from the 1500 numerical integrations run with
varying realizations of Planet Nine.

Fig. 3.— A histogram of lifetimes (measured from time t = 0
at the start of the N-body simulation) for 2013 RF98. Barring a
pile-up at lifetimes of t = 4.5 Gyr (corresponding to realizations
that were stable for the duration of the simulation; these were not
included in the fit), the decay appears to have an approximately
exponential trend.

Although the longer object lifetimes can intuitively be
interpreted as corresponding to more likely realizations
of Planet Nine, we would like to convert these lifetimes
into a relative probability function. Since an exponential
decay trend appears to be a good, empirical fit for the
lifetimes of an object marginalized over all integrations
(regardless of the fact that the realization of Planet Nine
varies between the different trials), we can fit a decay
constant λ from the lifetime histogram for all decaying
realizations of a single TNO:

fdecay(t) = C0e
−λt (5)

when fdecay(t) is the fraction of realizations decaying at
each time t, C0 a normalization constant, and λ the de-
cay constant to be fit. For each object in our sample, the
histogram of instability times was fit with exponential
curve using a simple Levenburg-Marquardt optimization
scheme, with all objects that do not experience dynam-
ical instability (which have lifetimes t = 4.5 Gyr) ex-
cluded from the fit. The results of this fit for 2013 RF98

are plotted in Figure 3. For this particular object, if
we extend the exponential curve to infinite time, we ex-
pect only 0.4% of these dynamically stable objects to
become dynamically unstable, indicating that the ma-
jority of objects that have not decayed after 4.5 Gyr are
truly dynamically stable.
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To construct a final probability distribution, we need
to account for the fact that for each object, some fraction
of trials were dynamically stable for the entire 4.5 Gyr
integration length. For this reason, we construct a piece-
wise probability function for P (Di|A), the probability we
get these lifetimes from our simulation given a particular
set of A, Planet Nine’s orbital elements:

P (Di|A) =

{
Ns/N if Di=4.5 Gyr

C1 × e−λDi else
(6)

when P (Di|A) is the probability of computing the ob-
ject lifetime Di for the ith TNO in the presence of a
Planet Nine with orbital elements A, Ns the number of
integrations for which the object did not experience dy-
namical instability, N the total number of integrations,
λ the decay constant determined from the previous fit,
and C1 is a normalization constant of the form:

C1 =
N −Ns
N

×

[∫ 4.5 Gyr

0

e−λtdt

]−1

(7)

The substitution of Equation 6 into Equation 4 results
in a final expression of the posterior probability distribu-
tion P (A|D1, D2...DN ). For the eight objects considered
in this work, this final distribution is plotted in Figure
4. It is important to note that this process required mul-
tiple steps of normalization, which depend on P (A), the
priors, and the populations of TNOs used to derive con-
straints. Since we (by necessity) treated the objects used
in this analysis as conditionally independent, the poste-
rior presented in Figure 4 provides relative, rather than
absolute, measures of the likelihood of each (a, e) real-
ization of Planet Nine. The derived decay constant must
be re-derived if different populations of TNOs or differ-
ent orbits of Planet Nine are tested in the future; the
values used in this work are particular to our sample of
eight TNOs in the presence of our particular population
of Planet Nines. For this reason, we do not provide the
decay constants in this work, as they cannot be used
for these objects in general but only for our particular
choices of Planet Nine’s priors.

3.3. The posterior probability distribution for Planet
Nine’s orbital elements

Figure 4 presents the final posterior probability dis-
tribution for Planet Nine’s orbital elements (a, e), based
on the observed dynamical stability of the eight TNOs
considered in this work. This distribution provides a
relative measure of the likelihood of differing combina-
tions of Planet Nine’s semi-major axis and eccentricity.
The nominal orbit of Planet Nine (700 AU, 0.6 eccen-
tricity) appears to lie in a less preferred region, with
slightly smaller eccentricities (0.3-0.4) being preferred.
Remarkably, the large-a, low-e orbits appear to be ex-
cluded based on our dynamical stability arguments. This
is roughly consistent with the posterior generated us-
ing clustering arguments, provided in Brown & Batygin
(2016), which also preferred a middling eccentricity and
excluded large-a, low-e iterations of Planet Nine.

3.4. Comparing our prediction of Planet Nine’s Orbit
with constraints derived via different methods

Fig. 4.— The overall stability posterior for the semi-major axis
and eccentricity of Planet Nine. This posterior was constructed by
taking a summation of the posteriors for each individual object,
including the six objects used in Batygin & Brown (2016a) and the
two new high-a, low-e objects from Sheppard & Trujillo (2016).

The posterior probability distribution we present in
Figure 4 was generated using dynamical stability argu-
ments. Specifically, Planet Nine realizations that allow
the observed TNOs to remain dynamically stable are con-
sidered to be more likely than those that cause dynami-
cal instabilities. Brown & Batygin (2016) also provided
a probability map showing the most likely regions for
Planet Nine based on the observed orbital alignment of
the TNOs. In Figure 5, we compare the two probability
distributions presented in Brown & Batygin (2016) to the
distribution derived in this work (along with additional
contours described below). For these distributions, we
plot a single contour in Figure 5 using the value 1σ be-
low the maximum probability of the distribution. The
level of this contour is chosen so that the single contours
visually reflect the highest probability regions for each
posterior type. The choice of the (maximum - 1σ) level
is representative, but by no means the only way to visu-
alize the comparisons between the posterior types.

The regions showing the most overlap between the 10
M⊕ alignment result from Brown & Batygin (2016) and
our dynamical stability result are those with a semi-
major axis between 525–675 AU and an eccentricity of
0.40–0.55, and the region with a semi-major axis be-
tween 700–800 AU and an eccentricity of 0.25–0.35. A
recent paper by Millholland & Laughlin (2017) also used
dynamical stability arguments and resonance considera-
tions to choose a best-fit (a, e) of (654 AU, 0.45). This
point is also plotted in Figure 5 and appears to be con-
sistent with the region showing overlap between both
the dynamical stability results of this work and those
of (Brown & Batygin 2016).

The posteriors plotted in Figure 5 include four curves
based on N-body simulations and one analytical curve.
The analytical curve encompasses the regime where the
equation of motion dω/dt ≈ 0. It is important to note
that this analytic approximation is not a true analysis of
the dynamics of the system, as the derivation (the com-
plete form of which is presented in Appendix A) assumes
all bodies are coplanar, and solves for alignment rather
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than anti-alignment. Thus, this analytic model is more
an order-of-magnitude estimate of the effect we expect
to see, rather than a true prediction.

The functional form for dω/dt is derived from the sec-
ular Hamiltonian, and assumes the form:

dω

dt
∝ 3

4Mc

4∑
i=1

mia
2
i (e

2 − 1)−2a−2
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4
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(
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)3 √
1− e2

(1− e29)3/2
,

(8)
where the subscript 9 denotes the orbital elements of
Planet Nine, the subscript i within the summation in the
first term denotes the four giant planets, c denotes the
central body, and a lack of subscript denotes the TNO for
which the equation of motion is written. This equation
of motion can be split into two parts: dωSS/dt, which
denotes precession due to the effect of the gas giants, and
dω9/dt, which denotes the precession due to the effect
of Planet Nine. The magnitudes of these terms can be
written in the form

dωSS
dt
∝ 3

4Mc

4∑
i=1

mia
2
i (e

2 − 1)−2a−2

dω9

dt
∝15e9

16e

m9

Mc

(
a

a9

)4 √
1− e2

(1− e29)5/2
(1− 9e2

4
) cos(ω − ω9)

+
3

4

m9

Mc

(
a

a9

)3 √
1− e2

(1− e29)3/2

(9)
where dωTNO/dt = dωSS/dt − dω9/dt. At the point
where dωSS/dt ≈ dω9/dt, the precession rates due to
Planet Nine and the inner solar system cancel each other
out, and the TNO orbit is not expected to precess. For
each TNO, we can construct a curve in the (a, e) plane
for which these precession rates cancel. The region pre-
sented in Figure 5 is the superposition of these curves for
all eight TNOs, and it encompasses the range of Planet
Nine realizations which will allow alignment by prevent-
ing precession.

Figure 5 also presents (in green) a posterior based on
alignment of the TNOs, as derived from our set of nu-
merical simulations. Our simulations were intended to
test dynamical stability, but one output of the N-body
simulation is the orbital elements ω and Ω of the TNOs
over time. Using a similar technique to that used to
construct the dynamical stability posterior in Figure 4,
we tested how well aligned the TNOs were for each re-
alization of Planet Nine. Alignment was measured by
looking at the fraction of time for which all eight TNOs
were aligned with each other (and thus anti-aligned with
Planet Nine: we counted dispersions of less than 94 de-
grees in $ = ω + Ω between all eight TNOs as aligned).
We constructed a contour plot of the percentage of the
integrations during which alignment was visible for all
eight TNOs, which exhibited between near 0% alignment
to a maximum of ∼10% alignment in the green regions.
The alignment rate expected for pure chance would be

about 2 × 10−5 (for alignment among all eight TNOs).
As a result, the numerical simulations show an overabun-
dance of alignment in certain, preferred regions (denoted
by the green contour of Figure 5).

The constraints provided by the three methods in this
work and the two literature results show rough agree-
ment: the region of Planet Nine parameter space look-
ing most attractive extends over the range 500–700 AU
in semi-major axis, and 0.3-0.6 in eccentricity. Notably,
low eccentricities are disfavored. Notice also that the
contours preferred for TNO stability are somewhat par-
allel to those for orbital alignment. In order for Planet
Nine to be close enough to the TNOs to enforce align-
ment, it must be close enough that the TNO orbit is close
to instability. As a result, the preferred region is given
by the boundary between the stablity contours and the
alignment contours in Figure 5.

4. END STATES FOR TRANS-NEPTUNIAN OBJECTS
UNDER THE INFLUENCE OF PLANET NINE

The numerical simulations that we use to create distri-
butions of TNO lifetime in the presence of Planet Nine
evaluate the long-term evolution of these TNOs. As dis-
cussed in Section 2, there are five main outcomes for
these TNOs: (1) migration in semi-major axis, which is
defined in the simulations as the orbit’s semi-major axis
attaining a value more than 100 AU from the starting
orbit; (2) a close encounter (defined as passing within 3
Hill radii of the larger body) with Planet Nine or Nep-
tune, which would result in the TNO being captured by
or colliding with the large planet; (3) collision with the
central body; (4) ejection from the solar system, where
the ejection radius is taken to be 10,000 AU3; and fi-
nally, (5) dynamical stability, where none of the afore-
mentioned effects occur over the 4.5 Gyr timescale of the
simulation. This final result (5) corresponds to scenarios
that are consistent with observations, where the TNO
can remain in its orbit over solar system lifetimes. This
scenario allows the secular alignment of the TNOs’ lon-
gitude of perihelion by Planet Nine. However, if this last
result does not occur, then the TNO will experience one
of the first four (1-4) outcomes.

Within these four dynamical instability outcomes,
there is further stratification in the effects of each mecha-
nism. The violent ends (collision with a planet, the star,
or ejection from the system) generally remove the TNO
from the solar system entirely, while the migratory out-
come is more nuanced. TNOs that are in the process
of migrating cannot necessarily be used as evidence of
the Planet Nine hypothesis, since their orbital elements
are in flux and may not have had sufficient time in their
current orbits to attain the alignment that serves as a
hallmark of Planet Nine’s influence.

2007 TG422 was one of the more interesting objects in
the sample of TNOs considered in this work. Although
found in Sheppard & Trujillo (2016) to be dynamically
unstable in the presence of Neptune, we reevaluated the
stability of 2007 TG422 in the presence of Planet Nine
in Section 2, and found that adding Planet Nine to the

3 This choice in ejection radius will remove objects which become
unbound; it is important to note that there may be second order ef-
fects due to stellar encounters (see, for example, Li & Adams 2016).
The effect on TNO motion due to these external perturbations is
expected to be small, and is neglected in this work.



10 Becker et al.

Fig. 5.— A comparison between the preferred regions for Planet Nine’s orbit, as computed using a variety of different methods. Bold
labels indicate that the posterior was derived in this work. In red, we plot the region that maximizes the survival probability for the
TNOs in our N-body simulations (based on their dynamical stability; see Figure 4). In green, we plot the realizations of Planet Nine
orbital parameters in our N-body simulations that allowed the TNOs to be aligned as observed in nature. In black, we plot the analytic
approximation for the region where we expect the observed alignment to occur (see Equation 8 and its derivation in the Appendix B). In
blue, we plot the region reported in Brown & Batygin (2016) that allows the alignment of TNOs in a suite of numerical N-body simulations
(unlike the green curve, these simulations used randomized test particles). The purple point denotes the best-fit orbit as reported by
Millholland & Laughlin (2017), which was found by optimizing the resonant behavior of the TNOs in the presence of Planet Nine. Each
method prefers somewhat different regimes of parameter space, with the dynamical stability argument allowing the largest region. There
is significant overlap between the results derived from the different methods. The optimal orbital elements for Planet Nine exist in the
overlap region, which corresponds to eccentricity in the range e9 = 0.4 – 0.6 and semimajor axis in the range a9 = 500 –700 AU.

solar system can actually stabilize the orbit of this ob-
ject. 2007 TG422 has a particularly high semi-major axis
and eccentricity, suggesting that its dynamical instabil-
ity might be due to orbit crossing with other planets.
However, this is not the case. The most common dy-
namical instability mechanism for 2007 TG422 is actually
migration, leading this object to remain present in the
solar system but wander from its starting orbit. This
migratory outcome is likely what Sheppard & Trujillo
(2016) found in their work, and we reproduce this insta-
bility in the case of large-a, low-e realizations of Planet
Nine (which is dynamically very similar to the case of
no Planet Nine, as considered in Sheppard & Trujillo
(2016)).
The top panels of Figure 6 show the instability life-

time map for 2007 TG422 when only violent instability
methods are considered (top panel) and when migratory
instabilities are also considered (middle panel). The sig-
nificantly shortened lifetimes present in this middle panel
show that migration is the main explanation for 2007
TG422’s dynamical instability in the presence of Planet
Nine. The bottom panel of Figure 6 shows the difference
in expected dynamical stability lifetime for this object

between the cases depicted in the top two panels: when
this difference is low, migration does not have a large
effect in ending the integrations, and when it is high,
migration is a very common outcome for 2007 TG422 in
the presence of that particular Planet Nine realization.
This difference plot highlights the regions where migra-
tion acts as the main cause of dynamical instability. The
large-a, low-e realizations of Planet Nine tend to cause
migration of 2007 TG422, but not violent dynamical in-
stabilities.
The susceptibility of an object to migration in the pres-

ence of Planet Nine can also be summarized as δ̄t, the
difference in median lifetime (over all Planet Nine re-
alizations) for an object between the case when migra-
tion is considered to be a dynamically unstable outcome
and when it is ignored. Larger values of δ̄t indicate that
the TNO is more susceptible to significant migration in
semi-major axis (δa > 100 AU), and that such migra-
tions significantly change the dynamical stability map of
that object. The choice of δa > 100 AU as the threshold
criterion for migration is somewhat arbitrary. It is cho-
sen to represent the condition for which an object has
drifted significantly from its observed orbit. Migration
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in semi-major axis with deviations greater than 100 AU
generally results in an orbit with significantly different
orbital elements, rather than oscillation of the orbital el-
ements around well-defined central values. As a result,
objects that migrate by more than 100 AU are unlikely
to remain part of the same dynamical class of object.

For 2007 TG422 , δ̄t = 1.07 Gyr, meaning that Planet
Nine incites migration in this object often enough to de-
crease its dynamically stable lifetime by more than one
billion years. In contrast, 2012 VP112 has a δ̄t = 32
Myr, indicating that migration does not play a large role
in its outcomes. The values of δ̄t for each object in our
sample are reported in Table 1, which presents in its last
two columns both δ̄t and the percentage of trials out of
all our simulations that are dynamically stable. As the
percentage increases (or, as an object is more stable in
the presence of any considered Planet Nine realization),
the value of δ̄t tends to decrease (or, the TNO experi-
ences migration as an instability outcome with a lower
frequency). This suggests that susceptibility to migra-
tion is a major factor leading to differences in orbit life-
times between different TNOs in the presence of Planet
Nine.

In this work, we have made the assumption that since
the eight TNOs in our sample exhibit alignment in lon-
gitude of perihelion attributable to Planet Nine, these
objects by necessity have lived in their current orbits
for a significant length of time. In constructing the sta-
bility posterior presented in Figure 4, we assumed that
since significant, unbounded migration alters orbits and
potentially disrupts this alignment, a migratory insta-
bility provides equal information against Planet Nine’s
orbital elements as does a violent dynamical instability.
In this way, we used migratory instabilities (such as those
caused by large-a, low-e realizations of Planet Nine for
2007 TG422) as evidence against the iterations of Planet
Nine that excited the migration.

The TNOs affected by Planet Nine appear to fall into
two categories: some of them (Sedna, 2012 VP113) are
generally stable against this migratory process, while
others (2007 TG422, 2013 RF98) can be easily caused
to migrate in semi-major axis with an improperly cho-
sen realization of Planet Nine. The best orbit of Planet
Nine can be determined not only from the orbit-crossing
constraint that rules out small-a, large-e orbits for all
TNOs, but also by the constraint from this second pop-
ulation of objects, which are unstable in the presence of
large-a, low-e Planet Nine orbits (and are additionally
unstable in the presence of no Planet Nine at all). These
two populations explain the unintuitive structure of the
posterior probability distribution given in Figure 4.

Even though we require a Planet Nine iteration that
does not cause the aligned TNOs to migrate significantly
(more than 100 AU) over secular timescales, we expect
there is a further population of objects that do migrate
in the presence of Planet Nine. Indeed, some popula-
tions of objects in our solar system can be explained by
this process. Batygin & Brown (2016b) uses the nomi-
nal Planet Nine orbit from Batygin & Brown (2016a) to
explain the existence of a population of highly inclined
KBOs with a ≤100: these objects can be explained as a
migratory end-state of objects that started as members
of the extreme TNO populations. The fact that some

TNOs appear to experience migratory instabilities un-
der the influence of Planet Nine is not inconsistent with
our assumptions, but it does engender further questions.
Clearly, some degree of migration is acceptable and will
not alter the orbital alignment of the TNOs - the 100 AU
threshold we use allows significant movement in semi-
major axis without declaring objects dynamically unsta-
ble. However, the fact that objects can migrate in semi-
major axis but remain confined to a comparably narrow
range (disallowing above 100 AU of migration does not
allow objects to move into entirely different object pop-
ulations as seen in Batygin & Brown 2016b) begs the
question: how are objects moving when they migrate in
what we have defined as a dynamically stable way? The
answer to this question will be addressed in the following
section.

5. PROXIMITY OF THE TNO ORBITS TO RESONANCES
WITH PLANET NINE

In the previous section, we identified that for some
TNOs, migration in semi-major axis is an outcome for
a significant fraction of integrations. In this section,
we delve deeper into the nature of that migration and
consider the question of resonance between the TNOs
and Planet Nine. Specifically, if the TNOs migrate in
semi-major axis, they are likely to pass through the lo-
cations of mean-motion commensurabilities with Planet
Nine, and one might expect the TNOs to fall into the
stable configurations afforded by resonances, and stop
migrating.

The fact that proximity to resonance boosts dynami-
cal stability can be directly applied to the Planet Nine -
TNO system. In particular, Malhotra et al. (2016) con-
sidered the possibility that Planet Nine should be at an
orbital radius that would allow it to be closest to low-
order resonances for several TNOs, based on the cur-
rently measured orbits of those TNOs. The benefit to
this configuration is that Planet Nine could stabilize the
orbits of TNOs such as 2007 TG422, which might other-
wise migrate in semi-major axis. Similarly, Millholland
& Laughlin (2017) used numerical N-body simulations
to determine the best orbit of Planet Nine by testing
which locations close to resonances allow the observed
alignment of the TNOs. Millholland & Laughlin (2017)
found the best semi-major axis of Planet Nine to be a9 ∼
654 AU (with a e9 ∼ 0.45), and Malhotra et al. (2016)
found the best-fit orbit to have a semi-major axis of a9 ∼
665 AU.

Clearly, resonance is an important aspect of the Planet
Nine problem, as suggested by Batygin & Brown (2016a),
Beust (2016), Malhotra et al. (2016), and Millholland &
Laughlin (2017). In Figure 7, we plot two histograms
of the orbital period ratio (P9/PTNO) for each of the
eight TNOs in our sample. In the top panel, we plot
random draws from our initial conditions that were used
to initialize the N-body simulations described in Section
2. The total number of draws in the top histogram was
chosen to match the number of dynamically stable time-
steps for each individual TNO, but the draws are from a
raw distribution of the ratio P9/PTNO for all numerical
trials, including those that are not dynamically stable.
This top panel does not include the effect of certain ra-
tios becoming more common due to gravitational inter-
actions. In the bottom panel, we plot the dynamically
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2007 TG422 

Fig. 6.— The lifetime of 2007 TG422 in the presence of realiza-
tions of Planet Nine with semi major axis between 450 and 1200
AU, and eccentricities between 0 and 1. (top panel) Stability life-
times when dynamical instability is only caused by violent ends for
2007 TG422, including collision with a solar system planet, collision
with the sun, or ejection from the solar system (the outer bound-
ary of which is defined to be 10000 AU). (middle panel) Stability
lifetimes, when dynamical instability is caused by the violent end
depicted in the top panel and also migration in semi-major axis by
more than 100 AU. (bottom panel) The difference δt in stability
lifetimes between the two cases, demonstrating which realizations
of Planet Nine are most likely to cause 2007 TG422 to change its
orbit significantly. Planet Nine realizations with low eccentricity
and large semi-major axis cause 2007 TG422’s orbit to migrate, but
not meet with a violent end.

stable trials for each TNO, with the period ratio sam-
pled every million years. The sharp peaks in this second
histogram demonstrate clear overabundances of partic-
ular period ratios P9/PTNO. These values occur near
resonances — in the trials where dynamical stability is
found — and is markedly different from the continuum
of period ratios shown in the upper panel. Keep in mind
that the initial conditions of our simulations were chosen
independently of resonance locations, unlike the set of
simulations in Millholland & Laughlin (2017). As a re-
sult, the behavior shown in the figure indicates that sys-
tems found to be dynamically stable in the simulations
also show a clear preference for near-resonant locations.

The results of this work show an important departure
from the assumptions used previously (Malhotra et al.
2016; Millholland & Laughlin 2017). This earlier work
assumes that the TNOs remain in a single resonant con-
figuration over the lifetime of the Solar System. For ex-
ample, Sedna might live in either the 9:8 or 6:5 mean
motion commensurability, depending on the semi-major
axis of Planet Nine, but it is considered to remain in
a single resonance. In this approximation, the orbits of
the extreme TNOs that we observe today are consistent
with their past orbits. This assumption allows for the
estimate found in Malhotra et al. (2016) to be carried
out: if the TNOs reside in the same orbits over their en-
tire lifetimes, and if they must be near resonance, then
their current orbital properties can be used to compute
the expected orbital elements of Planet Nine. However,
our simulations show that TNOs do not always remain in
the same orbits: Although they often remain near some
resonance with Planet Nine, the TNOs change orbits and
hence change resonances.

In Figure 8, we plot time series for 2004 VN112 (top),
2007 TG422 (middle), and Sedna (bottom) to demon-
strate the potential resonant outcomes. The behavior
of 2004 VN112 is consistent with the assumption made
by Malhotra et al. (2016) and Millholland & Laughlin
(2017): that TNOs would live in a single resonance for
the age of the solar system. The other two TNOs plot-
ted in Figure 8 show behavior we call ‘resonance hop-
ping,’ where a TNO attains multiple mean-motion com-
mensurabilities over the course of the simulation. When
liberated from one mean-motion commensurability, both
TNOs are captured into another resonance instead of be-
ing ejected from the system entirely. Planet Nine’s semi-
major axis did not change over the course of a single
simulation, so all the change in P9/PTNO within a single
integration is due to migration by the TNO.

As illustrated in Figure 2, each TNO has a different
dynamically stability map, preferring different regions of
Planet Nine’s potential parameter space. Similarly, when
we take the subset of dynamically stable integrations for
each TNO, each TNO has a different behavior relating
to resonance. In this work, we take the definition of be-
ing ‘in’ resonance to be living close to a resonant period
ratio; as with the exoplanetary systems near resonance,
the boost in dynamically stability provided by proximity
to resonance applies even when systems are not in a per-
fect resonance. Malhotra et al. (2016) and Millholland
& Laughlin (2017) use a criterion for the proximity to
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Fig. 7.— (top panel) A sample of period ratios P9/PTNO, drawn from the initial conditions of the N-body simulations. This histogram
shows the period ratio distribution that we would expect to see from the simulations if no period ratio were more dynamically stable than
any other period ratio. This set serves as the control, and does not have the condition of dynamical stability imposed. (bottom panel)
Period ratios P9/PTNO for the dynamically stable integrations at time-steps of one million years, demonstrating a peaked distribution, as
some period ratios are preferred to others. In both panels, colors correspond to the values for each TNO, and the area of histograms was
normalized.

resonance that is close enough to afford such benefits:

Δares ≈ 0.007aTNO | m9aTNOA
3M�a9

|1/2 (10)

when Δares is the width, in AU, of the band of space close
enough to a resonance to count as being ‘near’ said res-
onance, subscript TNO denotes the TNO’s semi-major
axis a and the subscript 9 denotes Planet Nine’s semi-
major axis a9 and mass m9. A is a unitless coefficient.
We choose to use A = 3 as done in Malhotra et al. (2016)
and Millholland & Laughlin (2017). The numerical value
of Δares tends to be close to 5-10 AU for the TNOs in
our sample, meaning that the simulation results allow us
to determine the nearest resonance and identify TNOs
that ‘hop’ between resonances. Figure 8 shows three ex-
amples from our set of simulations: 2004 VN112 does not
change resonances during the integration, 2007 TG422

changes resonances three times, and Sedna changes res-
onance once. For two objects in our sample (2004 VN112

and 2012 VP113), we see no hopping behavior.
However, it is important to note that the simulations

used to construct Figure 7 and the curves in Figure 8

are the set run for this paper, which uses the quadrupole
moment of the central part of the system (J2) to replace
the active motions of Jupiter, Saturn and Uranus (JSU).
This approximation allows the simulations in this work
to be completed in a total of roughly 100,000 total CPU
hours, rather than the nearly 2 million CPU hours that
would be required to run the full integrations with all ac-
tive giant planets. This approximation is appropriate for
the tests of dynamical stability and alignment considered
thus far in this work, but when considering the question
of resonance, some discrepancies arise. In Figure 9, we
present a comparison between a few test simulations run
with the J2 approximation and the JSU case of active
particles for Jupiter, Saturn, and Uranus. The test sim-
ulations were run for 1 Gyr each, with a single realization
of Planet Nine (a = 700 AU, e = 0.5) and otherwise iden-
tical to the cases run in the previous set of simulations.
For the JSU set of simulations, we lowered the time-step
to 20 days.
When active JSU particles are included in the integra-

tions, two major differences occur as compared to the J2
approximation: (1) the period ratios are not as tightly
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Fig. 8.— For three integrations (top curve: 2004 VN112; middle
curve: 2007 TG422; bottom curve: Sedna), we plot the period ratio
P9/PTNO as function of simulation time. The numbers denote
resonances within Δares of the semi-major axis of each TNO, at
each time-step. The top time series, showing the evolution of 2004
VN112 during a typical integration, demonstrates how an object
might remain in a single mean-motion commensurability for the
entire lifetime of the solar system. The middle series, for 2007
TG422, shows the behavior we call ‘resonance hopping,’ where a
TNO attains multiple mean-motion commensurabilities over the
course of the simulation. The bottom series shows a less extreme
version of this ‘resonance hopping,’ where Sedna switches between
two commensurabilities during the solar system lifetime. In all
cases, the period of Planet Nine does not change over the course of
the simulation: it is the motion of the TNO that leads to changing
values of P9/PTNO.

confined, experiencing a larger degree of scatter even
while living in a single apparent resonance; (2) the num-
ber of times objects hop between resonances can be both
increased (due to repeated accelerations from Uranus)
and decreased (as shown in the top panel of Figure 9,
hops we resolve in the J2 case are un-physical in the JSU
case).
Regarding point (1), the second panel of Figure 9 il-

lustrates a case where in both the J2 and JSU cases, a
TNO lives close to the 8/5 mean motion resonance. In
the J2 case, the TNO stays within 0.3% of its average
period ratio. In the JSU case, the TNO stays within 5%
of its averege period ratio (this value is larger than in
the J2 case due to the inclusion of accelerations from the
inner three giant planets). Due to this complication, we
have chosen the bin size in Figure 7 to be commensurate
with the period ratio confinement experienced by TNOs
in the JSU case, which is typically around 8%.
Regarding point (2), it is unclear without running a

large suite of JSU integrations how the hopping fre-
quency changes with the inclusion of the giant planets.
For this reason, we do not present in this work detailed
results of the resonance hopping in our simulations. In
order to accurately assess this behavior, a complete set
of simulations with active giants planets (JSU) should be
carried out.
Our simulations show that dynamically stable integra-

tions of the TNOs tend to attain mean-motion commen-
surabilities. Depending on the TNO, it may attain a
single resonant location and stay there, or it may hop
between resonant locations. This ‘resonance hopping’ is
an important effect, and for TNOs that exhibit this be-
havior, their past semi-major axis may be different than
the current values. The numerical computation of the

Fig. 9.— A check of our integrations (which used solar J2 in place
of the inner three giant planets) and integrations run with active
Jupiter, Saturn, and Uranus (JSU) show that although both sets
exhibit the same hopping behavior, the J2 approximation under-
estimates the noise in period ratio and overestimates the degree to
which the resonances can be differentiated.

specifics of this behavior should be a fruitful avenue for
future work.

6. CONCLUSIONS

In this work, we have evaluated the dynamical sta-
bility and orbital alignment of eight TNOs (Sedna, 2004
VN112, 2007 TG422, 2010 GB174, 2012 VP113, 2013 RF98,
2013 FT28, and 2014 SR349) in the presence of a Monte
Carlo assortment of Planet Nine realizations with vary-
ing semi-major axis and eccentricity. We used the results
to predict the most probable (a, e) of Planet Nine by de-
riving the posterior probability distributions for Planet
Nine’s orbital elements (a, e). The distribution based on
dynamical stability considerations for the TNOs is pre-
sented in Figure 4. We have also constructed an anal-
ogous probability distribution based on the requirement
that the orbits of the TNOs remain aligned. Both of
these posterior distributions demonstrate that the pre-
ferred orbits for Planet Nine have intermediate values
of eccentricity (0.3 < e < 0.5) and semi-major axis
(650 < a < 900 AU), as shown in Figure 5. Moreover,
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these values are roughly consistent with the regime sug-
gested in Brown & Batygin (2016), which constructed
its probability map using clustering arguments only. Our
stability posterior and that from Brown & Batygin (2016)
were constructed based on different fundamental orbital
properties (dynamical stability and secular evolution pat-
terns, respectively). Despite this significant difference in
construction, the two results are consistent, in that they
both prefer non-zero eccentricities and a similar range
in semi-major axis for Planet Nine. The comparison be-
tween our results and those of Brown & Batygin (2016)
is shown in Figure 5. Notably, similar dynamical stabil-
ity arguments in Millholland & Laughlin (2017) produce
a best-fit Planet Nine of 654 AU and 0.45 eccentricity,
which is consistent with the overlap region between the
results of this work and of Brown & Batygin (2016).

Using numerical N-body simulations, we also demon-
strated that 2007 TG422 and 2013 RF98, while found in
the past to be dynamically unstable in the presence of
Neptune alone, can attain dynamically stable states in
the presence of Planet Nine. Our simulation results sup-
port the prediction of Sheppard & Trujillo (2016) that
since 2007 TG422 and 2013 RF98 exhibit the same orbital
clustering as the dynamically stable TNOs, Planet Nine
likely dominates over Neptune interactions. In addition,
we find that different TNOs exhibit very different sta-
bility maps, with some objects (such as Sedna and 2012
VP113) contributing relatively little unique information
to the stability posterior and others (such as 2007 TG422

and 2013 RF98) exhibiting unintuitive preference against
large-a, low-e orbits of Planet Nine. These two categories
suggest that there may be two dynamical classes of ob-
jects in this TNO sample, which interact differently with
Planet Nine. However, we have considered in this work
only a small (N = 8) number of objects that fit into
the desired high-a, trans-Neptunian-q, apsidally aligned
category identified in Batygin & Brown (2016a). The dis-
covery of additional objects in this population (expected
in the near future) will allow for a more robust test of
this two-population hypothesis.

We have also evaluated the different dynamical out-
comes for these extreme TNOs in the presence of Planet
Nine. The objects that are dynamically unstable in the
presence of large-a, low-e orbits of Planet Nine (2007
TG422 and 2013 RF98) tend to experience migration
rather than violent collisions or ejections as their main
outcome in dynamically unstable cases. These objects
are also dynamically unstable in the presence of only
Neptune and the other giant planets, i.e., in the absence
of Planet Nine. In Table 1, we present the difference δ̄t
in average dynamical lifetime between the case where mi-
gration is considered to be a dynamical instability mech-
anism and when it is not. Table 2 presents the relative
occurrence rates for each type of outcome. For cases
where the TNOs are not stable over the lifetime of the
Solar System, the fraction of trials that lose objects to
migration (with a > 100 AU), close encounters with giant
planets, and ejection from the system are roughly com-
parable. A small minority of the simulations end with
accretion onto the Sun (less than 1%).

Next, we suggest a generalized description for the inter-
actions between the TNOs and Planet Nine. We propose
that the paradigm is neither that (1) mean motion reso-

nance is unimportant, nor (2) TNOs reside in a single res-
onance with Planet Nine for the age of the solar system.
Instead, while some TNOs (such as 2004 VN112 and 2012
VP113) can sometimes live in a single resonance for solar
system lifetimes, others exhibit a behavior that we call
‘resonance hopping.’ This term means that the TNO is
near-continually in close proximity to a mean motion res-
onance (Figure 7), but it is not necessarily near the same
resonance for the age of the Solar System (Figure 8). In-
stead, the TNOs can transition between closely-spaced
resonances, often those described by relatively large in-
teger ratios. The long-term effect of this process is that
the orbital anti-alignment caused by Planet Nine is able
to persist, but the TNO is protected against small kicks
in energy provided by interactions with Neptune. In this
paradigm, an interaction with Neptune might lead to the
movement of a TNO into a new resonance, but not to its
ejection from the solar system (see also Malhotra et al.
2016; Millholland & Laughlin 2017). A useful avenue for
future work would be the full numerical computation of
this effect, as the J2 approximation used in this work
precludes an accurate calculation of the true frequency
of resonance hopping.

Another important avenue for future work exists in our
prediction that the eight TNOs considered in this work
populate two distinct dynamical classes: first, a class of
objects such as 2012 VP113 or Sedna, which are more
dynamically stable in the presence of large a, low e real-
izations of Planet Nine (which reduce closely to the case
of having no ninth planet); second, a class of objects that
are dynamically unstable in the presence of only Neptune
and no Planet Nine (and also in the case of a high-a, low-
e Planet Nine). This second class of objects may have
higher e and a than the first, and require a stabilizing
influence in the form of an eccentric Planet Nine to pre-
vent destabilizing interactions with Neptune. To truly
understand if this is a valid division, it is hoped that
a large number of high-a, trans-Neptunian-q, apsidally
aligned TNOs will be discovered in the next few years.
The classification of these objects, and exploration of the
mechanism by which Planet Nine may stabilize their or-
bits, should be explored in the future.
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A. APPENDIX: PRECESSION EQUATIONS OF MOTION FOR TNOS

To consider the secular motion of the TNOs in the presence of Planet Nine, we can treat the problem with a coplanar
approximation, as done in Batygin & Brown (2016a). It is important to note that this is a very rough approximation,
as the TNOs and Planet Nine are expected to be inclined relative to the inner solar system and each other.

The Hamiltonian for this system, as used in Batygin & Brown (2016a), is:

H = −1
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(11)

when M is the mass of the central body, the subscript 9 denotes the properties of Planet Nine, the subscript i within
the summation in the first term denotes the four giant planets, and a lack of subscript denotes the TNO for which the
Hamiltonian is being written.

Using canonical variable ε =
√

1− e2, we can find the equation of motion for the argument of perihelion ω by taking
the derivative of Equation 11, such that dω/dt ∝ dH/dε. The result of this yields
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when leading constants have been dropped, since in this work we care only about the relative contributions of the
terms of the equation of motion. The first term of Equation 12 represents the apsidal precession of a TNO with orbital
elements (a, e, ω) that is caused by the inner solar system (where the outer four giant planets are treated as a solar
oblateness and the terrestrial planets ignored). The latter two terms of Equation 12 include dependences on the mass
of Planet Nine (m9), eccentricity of Planet Nine (e9), semi-major axis of Planet Nine (a9), and argument of perihelion
of Planet Nine (e9). These two terms represent the apsidal precession of the TNO due to Planet Nine’s influence.

Alone, the influence of Planet Nine or of the inner solar system would lead to precession of each TNO’s ω. Taken
together, the two precession terms can either boost precession rates or slow them. With the proper choice of orbital
elements for Planet Nine, dω/dt can be set to be zero, leading to no net precession relative to the Katti-Range vector
of Planet Nine’s orbit. Such a situation could result in a selection of TNOs exhibiting orbits that remain in roughly
the same regime of parameter space over time, potentially leading to alignment like that observed in the TNOs in our
solar system.

For completeness, we note that Equation 12 can also be derived from the disturbing function using Lagrange’s
planetary equations. We use the disturbing function as formulated in Mardling (2013), which is written to work in the
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dimensions of energy. The disturbing function can be written as

R = −1
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(13)
This equation has been simplified under the assumption m << mp << M . We can use Lagrange’s planetary equations
to find the equation of motion analogous to that in Equation 12. Specifically:

dω

dt
=

ε

mνa2e

dR
de

(14)

when ν is the orbital frequency of the TNO. Substituting Equation 13 into the relevant Lagrange equation (Equation
14) yields the full equation of motion:
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(15)
which is equivalent to the result presented in Equation 12.

It is very important to note that the preceding derivation makes several major approximations:

• We assume a coplanar system and neglect orbital inclination of all bodies,

• In the construction of the Hamiltonian and the disturbing function, we ignore all short-order, resonant terms4

For all of these reasons, this analytic result should be treated as approximate. To do the problem properly, it is
important to use numerical N-body simulations.

B. APPENDIX: EFFECTS OF ALLOWING ORBITAL ELEMENTS TO VARY IN N-BODY SIMULATIONS

In the set of N-body simulations that we describe in Section 2 and use to construct the posterior probability
distribution given in Section 3, we use a population of Planet Nine realizations with fixed inclination i = 30 degrees,
argument of perihelion ω = 150 degrees, and longitude of the ascending node Ω = 113 degrees. This was done
because the amount of uncertainty in each of these measurements would require a computationally unfeasible number
of integrations to well-sample the parameter space. Instead, we chose the approximate best values for each angle, as
reported and used in prior literature.

However, we can recreate the probability posterior presented in Figure 4 for an additional set of 1500 N-body
integrations, while allowing these orbital angles to vary, and examine the amount of difference between this new
posterior and the old one as a first test. To do this, we ran 1500 more numerical N-body integrations with the same
numerical properties as our other set (hybrid symplectic and Bulirsch-Stoer (B-S) integrator in Mercury6 (Chambers
1999), conserving energy to 1 part in 1010, replacing the three inner giant planets with a solar J2, including each TNO
with orbital elements drawn from observational constraints). In this set of integrations, we sampled a9 from a uniform
range between (400, 1200) AU, and e9 between (0,1). However, instead of fixing the orbital angles, we sampled from
normal distributions centered on the Batygin & Brown (2016a) estimates (i9 = 30 degrees, ω9 = 150 degrees, Ω9 =
113 degrees) with widths of 30 degrees in each case. Then, we integrated each of the 1500 realizations forward for 4.5
Gyr.

The results of this new, second suite of integrations is presented in Figure 10, which can be directly compared to
Figure 4 (which was constructed with our original set of simulations). Comparing the two figures presents three major
conclusions: [1] The main parameter space preferred in each set is similar, with high eccentricities being less preferred
and the range from 0.3-0.5 eccentricity, 600-1000 AU being good in both sets. [2] The overall survival probabilities are
lower for the case where Planet Nine’s orbital angles are allowed to vary, which indicates that altering these values
too much decreases dynamical stability of the TNOs overall. [3] The posterior presented in Figure 10, with varying
orbital angles, has less variation between peaks and valleys, which is the danger of adding additional layers of variation
(which we did by allowing three orbital angles to vary).

The reason that we do not use this set of simulations that allow initial orbital angles of Planet Nine to vary as
the main set in this paper is that the parameter space is not well-sampled. Additionally, the three additional free
parameters bring with them three additional sources of variations. The robust exploration of this parameter space is
outside the scope of this work.

4 and as shown in Section 5, this is probably dangerous to do
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Fig. 10.— The overall stability posterior for the semi-major axis and eccentricity of Planet Nine, when Planet Nine’s orbital angles were
allowed to vary over a normal distribution centered on the best-guess values. This posterior was constructed by taking a summation of the
posteriors for each individual object, including the six objects used in Batygin & Brown (2016a) and the two new high-a, low-e objects from
Sheppard & Trujillo (2016). As compared to Figure 4, which did not allow the orbital angles to vary, the survival probability is lower when
orbital angles are allowed to vary, suggesting that the best-guess values leading to more probable alignment also lead to more dynamically
stable configurations.
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