CONICAL LIMIT POINTS AND THE CANNON-THURSTON MAP
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ABSTRACT. Let G be a non-elementary word-hyperbolic group acting as a convergence group on a compact
metrizable space Z so that there exists a continuous G-equivariant map i : 8G — Z, which we call a
Cannon-Thurston map. We obtain two characterzations (a dynamical one and a geometric one) of conical
limit points in Z in terms of their pre-images under the Cannon-Thurston map i. As an application we
prove, under the extra assumption that the action of G on Z has no accidental parabolics, that if the map
i is not injective then there exists a non-conical limit point z € Z with |i 1(z)| = 1. This result applies
to most natural contexts where the Cannon-Thurston map is known to exist, including subgroups of word-
hyperbolic groups and Kleinian representations of surface groups. As another application, we prove that
if G is a non-elementary torsion-free word-hyperbolic group then there exists # € 8G such that z is not a
“controlled concentration point” for the action of G on 8G.

1. INTRODUCTION

Let G be a Kleinian group, that is, a discrete subgroup of the isometry group of hyperbolic space G <
Isom™ (H"). In [6], Beardon and Maskit defined the notion of a conical limit point (also called a point of
approzimation or radial limit point), and used this to provide an alternative characterization of geometric
finiteness. Gehring and Martin [42] abstracted the notion of Kleinian group to that of a convergence group
acting on S" 1, which was then further generalized, for example by Tukia in [86], to actions on more general
compact metric spaces (see Definition 2.1). This generalization includes, for example, the action of a discrete
group of isometries of a proper, Gromov—hyperbolic, metric space on its boundary at infinity; see [36, 86].
Conical limit points can be defined in this level of generality (see Definition 2.4), and play a key role in
the convergence group characterization of word-hyperbolic groups by Bowditch [16], of relatively hyperbolic
groups by Yaman [88], and of quasi-convex subgroups of word-hyperbolic groups by Swenson [83], and arise
in numerous other results in topology, geometry, and dynamics; see, for example, [26, 37, 2, 38, 34, 58, 59]
for other results involving convergence groups and conical limit points.

In their 1984 preprint, published in 2007 [25], Cannon and Thurston proved the following remarkable
result. If M is a closed hyperbolic 3-manifold fibering over a circle with fiber a closed surface X, then the
inclusion H2 = ¥ ¢ M = H? extends to a continuous surjective map S! = H? — OH® = S?, equivariant
with respect to m1(2) which is acting as a convergence group on both. Based on this we make the following
general, abstract definition.

Definition 1.1. When G is a word-hyperbolic group acting as a convergence group on a compact metrizable
space Z, a map 1 : G — Z is called a Cannon-Thurston map if i is continuous and G-equivariant.

Under some mild assumptions, it is known that if a Cannon-Thurston map i : G — Z exists, then
it is unique; see Proposition 2.11 below. Of particular interest is the case that a non-elementary word-
hyperbolic group G acts on a proper, Gromov hyperbolic, geodesic metric space Y, properly discontinuously
by isometries, and without accidental parabolics (see Definition 2.8). In this case, if there exists a Cannon—
Thurston map 7: 3G — 9Y, then it is known to be unique and to extend to a G—equivariant continuous
map G U 8G — Y UJY (see Proposition 2.12). A special subcase of interest is when G1,Gs are non-
elementary word-hyperbolic groups, with G; < G acting on (the Cayley graph of) Gy by restriction of the
left action of G5 on itself. Here a Cannon—Thurston map is classically defined as a continuous extension
G1 U 3G, = G4 U 0G; of the inclusion of G; — G5. By Proposition 2.12, the existence of such a map

2010 Mathematics Subject Classification. Primary 20F65, Secondary 30F40, 5TM60, 37E, 37F.
Key words and phrases. Convergence groups, Cannon-Thurston map, conical limit points, Kleinian groups.

1



2 W. JEON, I. KAPOVICH, C. LEININGER AND K. OHSHIKA

is equivalent to the existence of a Cannon-Thurston map in the sense of Definition 1.1 for the induced
action of G on 0G5. Quasi-isometrically embedded subgroups G; < G2 of word-hyperbolic groups provide
examples where Cannon—Thurston maps exist. However, Cannon—Thurston’s original result [25] described
above implies that for the word-hyperbolic groups G = 71 () < w1 (M) = G, there is a Cannon—Thurston
map dG; — 0Gao, but here G is exponentially distorted in Ga. Subsequent work of Mitra [68, 69] showed
that there are many other interesting situations where Gy is not quasiconvex in G but where the Cannon-
Thurston map nevertheless does exist (see also [5]). On the other hand, a recent remarkable result of Baker
and Riley [4] proves that there exists a word-hyperbolic group G5 and a word-hyperbolic (in fact, nonabelian
free) subgroup G; < G5 such that the Cannon-Thurston map i : 0G; — 0G2 does not exist.

Generalizing the Cannon—-Thurston example from [25] in another direction, one can consider other actions
of G = m(X), the fundamental group of a closed, orientable surface of genus at least 2, acting properly
discontinuously by isometries on H3, i.e. as a classical Kleinian surface group. The first partial results
beyond those in [25] about the existence of Cannon—Thurston maps for such actions of G on H? are due to
Minsky [65]. Extending beyond the case G = m1(X), there have been numerous results on the existence of
Cannon-Thurston maps of various types (not necessarily fitting into Definition 1.1), especially for Kleinian
groups [35, 60, 64, 81, 70, 18, 72, 73, 74, 75, 19]. Recently, Mj [77] has shown that for any properly
discontinuous action on H? without accidental parabolics, there exists a Cannon-Thurston map, using the
theory of model manifolds which were developed by Minsky. There are extensions of the Cannon-Thurston
maps also for subgroups of mapping class groups [62], and in other related contexts [39, 41].

Mj has also shown [71] that in the case of classical Kleinian surface groups without parabolics, the non-
injective points of a Cannon-Thurston map are exactly the endpoints of the lifts of the ending laminations
to the domains of discontinuity. This characterization of non-injective points of Cannon-Thurston maps
has some applications: for instance, the first and the fourth authors have used this to prove the measurable
rigidity for Kleinian groups (see [46]), which is a generalization of the results by Sullivan [82] and Tukia [84].
Also, using the same kind of characterization for free classical Kleinian groups, Jeon-Kim-Ohshika-Lecuire
[45] gave a criterion for points on the boundary of the Schottky space to be primitive stable.

Another reason to be interested in understanding injective points of Cannon-Thurston maps comes from
the study of dynamics and geometry of fully irreducible elements of Out(Fy). If ¢ € Out(Fy) is an atoroidal
fully irreducible element then the mapping torus group G, = Fv X Z is word-hyperbolic and the Cannon-
Thurston map i : 0Fy — 0G,, exists by the result of [68]. In this case, if T4 are the "attracting” and
"repelling” R-trees for o, there are associated Q-maps (defined in [32]) Q; : 0Fy — Ty = T4 U 0T, and
Q_:0Fy —»T_-T_UdT- (here T, denotes the metric completion of 7% ). These maps play an important role
in the index theory of free group automorphisms, particularly for the notion of Q-index; see [30, 32, 28, 29].
It is shown in [53] that a point @ € OFy is injective for the Cannon-Thurston map i if and only if z is
injective for both Q4 and O_.

There are a number of results in the literature which prove in various situations where the Cannon-
Thurston map exists that every conical limit point is “injective”, that is, has exactly one pre-image under
the Cannon-Thurston map; see, for example, [56, 61, 39]. We discuss some of these facts in more detail
after the statement of Theorem B below. These results naturally raise the question whether the converse
holds, that is whether a point with exactly one pre-image under the Cannon-Thurston map must be a
conical limit point. (The only result in the literature dealing with this converse direction is Theorem 8.6 in
[66], which incorrectly claims that every “injective” limit point is conical in the original setting of a closed
hyperbolic 3-manifold fibering over a circle.) We show in Theorem C below that the converse statement
fails in great generality and prove that, under rather mild assumptions, if a Cannon-Thurston map exists
and is not injective then there always exists a non-conical limit point with exactly one pre-image under the
Cannon-Thurston map.

In this paper, given a non-elementary convergence action of a word hyperbolic group G on a compact
metrizable space Z, such that the Cannon-Thurston map i : 0G — Z exists, we give two characterizations
(a dynamical one and a geometric one) of conical limit points z € Z in terms of their pre-images under the
map 4.
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To state these characterizations we need to introduce some definitions. Under the above assumptions,
denote L; = {(x,y)|z,y € 0G,i(x) = i(y), and = # y}. We say that a point z € G is asymptotic to L; if for
every conical sequence {gy, 152, for  with pole pair (z_,x4), we have (z_,x4) € L;, that is, i(z_) = i(z4).
(See Definition 2.4 below for the notions of a conical sequence and pole pair).

The following result provides a dynamical characterization of conical limit points in Z:

Theorem A. Suppose G is word-hyperbolic and acts on the compact, metrizable space Z as a non-elementary
convergence group, and suppose i: 0G — Z is a Cannon-Thurston map. Let z € i(0G). Then:

(1) The point z € Z is not a conical limit point for the action of G on Z if and only if some point
x € i~ Y(2) is asymptotic to L;.
(2) If |i=Y(2)| > 1, then any x € i~1(2) is asymptotic to L;, and hence z is non-conical.

We also provide a geometric counterpart of Theorem A:

Theorem B. Let G be a word-hyperbolic group and let Z be a compact metrizable space equipped with a
non-elementary convergence action of G such that the Cannon-Thurston map i : 0G — Z exists and such
that i is not injective. Let X be a 0-hyperbolic (where § > 1) proper geodesic metric space equipped with a
properly discontinuous cocompact isometric action of G (so that OG is naturally identified with X ).

Let x € 0G, let z = i(x) € Z and let p be a geodesic ray in X limiting to x.

Then the following are equivalent:

(1) The point z is a conical limit point for the action of G on Z.

(2) There exist a geodesic segment T = [a,b] in X of length > 1005 and an infinite sequence of distinct
elements g, € G such that the 206-truncation ™ of T is not a coarse X -leaf segment of L; and such
that for each n > 1 the segment g, 7 is contained in a 66-neighborhood of p, and that lim, o, gna =
lim,, o0 gnb = x.

See the definition of a “coarse leaf segment” and of other relevant terms in Section 5.

Theorem A is used in the proof of Theorem C, as discussed in more details below. Theorem B is used as
a key ingredient in the proof of Theorem 6.6 of [33].

Theorems A,B are partially motived by the result of M. Kapovich [56], who proved that in the setting of
Cannon and Thurston’s original construction [25] of a Cannon-Thurston map i: G — S?, for G = (%),
if z € 0S? = OG has |i~1(2)| > 2 then z is not a conical limit point for the action of G on S?. This result
was extended by Leininger, Long and Reid [61], who proved that the same result for any doubly degenerate
Kleinian representation (where i exists from [77]), and later by Gerasimov [39], for arbitrary ” x-actions”. In
fact, part (2) of Theorem A follows from a general result of Gerasimov [39, Proposition 7.5.2] about conical
limit points for x-actions. Gerasimov also explained to us how one can derive part (1) of Theorem A from
the results of [39] using a result of Bowditch. We provide a short direct proof of Theorem A here.

It is known by results of Swenson [83] and Mitra [76] that in the geometric context, where the Cannon-
Thurston map i : 0G — 0Y arises from a properly discontinuous isometric action of a word-hyperbolic
G on a proper Gromov-hyperbolic space Y, if ¢ : G — JY is injective then the orbit-map G — Y is a
quasi-isometric embedding; see Proposition 2.13 below for a precise statement. In this case every limit point
z € Y is conical and has exactly one pre-image under i. Therefore Theorem A implies:

Corollary 1.2. Let G be a non-elementary word-hyperbolic group equipped with a properly discontinuous
isometric action on a proper geodesic Gromov-hyperbolic space Y without accidental parabolics. Suppose that
the Cannon-Thurston map i : 0G — JY exists.

Then there exists z € i(0G) such that z is a non-conical limit point for the action of G on JY if and only
if © is not injective.
Proof. If i is not injective and x1, o € G are points such that x1 # x5 and that i(x1) = i(x2) then, by part
(2) of Theorem A, z =i(x1) = i(z2) is not conical. If the map i is injective, then, since 9G and i(0G) C 9Y
are compact and Hausdorff, the map i is a G-equivariant homeomorphism between G and i(9G). Since G
is hyperbolic, every point of G is conical for the action of G on OG, see [86]. Therefore every z € i(9G) is
conical for the action of G on i(0G) and hence, by Lemma 2.6, also for the action of G on JY. O



4 W. JEON, I. KAPOVICH, C. LEININGER AND K. OHSHIKA

The main result of this paper is:

Theorem C. Suppose a word-hyperbolic group G acts on a compact metrizable space Z as a non-elementary
convergence group without accidental parabolics, and suppose that there exists a non-injective Cannon—
Thurston map i: 0G — Z. Then there exists a non-conical limit point z € Z with |i~*(z)| = 1.

Theorem C applies whenever (G is a non-elementary non-quasiconvex word-hyperbolic subgroup of a word-
hyperbolic group G such that the Cannon-Thurston map 0G7 — dG5 exists. Similarly, Theorem C applies
whenever ¥ is a closed hyperbolic surface and 71(X) is equipped with a properly discontinuous isometric
action on H?® without accidental parabolics, assuming that the Cannon-Thurston map S' = 9y (X) — OH? =
S? exists and is non-injective.

Brian Bowditch (private communication) showed us another argument for obtaining the conclusion of
Theorem C for a large class of Kleinian groups, including the original case of a closed hyperbolic 3-manifold
fibering over a circle. His argument is different from the proof presented in this paper and relies on the
Kleinian groups and 3-manifold methods.

Another application of our results concerns “controlled concentration points”. Originally, the notion of
a controlled concentration point was defined for a properly discontinuous isometric action of a torsion-free
group G on H". A point z in OH" is called a controlled concentration point of G when x has a neighborhood
V such that for any neighborhood U of x there is g € G with gU C V and x € g(V'). This is equivalent to
saying that there is a sequence of elements (g,),>1 C G such that g,(x) — x and (gn|smn\{2}) converges
locally uniformly to a constant map to some point y # x. Aebischer, Hong and McCullough [3] showed
that a limit point x € JH™ is a controlled concentration point if and only if it is an endpoint of a lift of
a recurrent geodesic ray in M := H"/G. A geodesic ray a(t) in M is called recurrent if for any tg, there
exists a sequence {¢;} with ¢; — oo such that ‘liﬁm o' (t;) = o/(to) in the unit tangent bundle of M. They

(2 oo

also showed there exist non-controlled concentration points in the limit set of a rank-2 Schottky group.

We generalize the notion of controlled concentration points to points at infinity of general word-hyperbolic
groups by adopting the latter condition above as its definition; see Definition 7.4 below. As an application
of Theorem C, we get the following existence theorem of non-controlled concentration points:

Theorem D. Let G be a non-elementary torsion-free word-hyperbolic group. Then there ezists x € 0G
which is not a controlled concentration point.

In Appendix A we discuss several specific situations where where the Cannon-Thurston map i : G — Z

is known to exist and where a more detailed description of the lamination L; is known.
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2. DEFINITIONS AND BASIC FACTS
2.1. Convergence groups.

Definition 2.1 (Convergence action). An action of a group G on a compact metrizable space Z by home-
omorphisms is called a convergence action (in which case we also say that G acts on Z as a convergence
group) if for any infinite sequence (g, )n>1 of distinct elements of G there exist a,b € Z and a subsequence
(g )k>1 of (gn), called a convergence subsequence, such that the sequence of maps {gn, |2\ {a}} converges
uniformly on compact subsets to the constant map ¢,: Z \ {a} — Z sending Z \ {a} to b. In this case we
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call (a,b, (gn,)) the convergence subsequence data. The action is called elementary if either G is finite or G
preserves a subset of Z of cardinality < 2, and it is called non-elementary otherwise.

Note that if G acts as a convergence group on Z and if Z’ C Z is a nonempty closed G-invariant subset,
then the restricted action of G on Z’ is also a convergence action.

For a group G acting of a set Z and for g € G denote Fixz(g) := {z € Z|gz = z}. The following is a
basic fact about convergence groups, see [17, Lemma 3.1] and [86]:

Proposition 2.2. Suppose G acts as a convergence group on a compact metrizable space Z and let g € G.
Then exactly one of the following occurs:
(1) The element g has finite order in G; in this case g is said to be elliptic.
(2) The element g has infinite order in G and the fized set Fixy(g) consists of a single point; in this
case g is called parabolic.
(3) The element g has infinite order in G and the fized set Fixz(g) consists of two distinct points; in
this case g is called loxodromic.

Moreover, for every k # 0 the elements g and g* have the same type; also in cases (2) and (3) we have
Fixz(g) = Fizz(g*) and the group (g) acts properly discontinuously on Z\ Fixz(g). Additionally, if g € G
is loxodromic then (g) acts properly discontinuously and cocompactly.

It is also known that if ¢ € G is parabolic with a fixed point a € Z then for every z € Z we have

lim ¢"z = lim ¢"z = a. Also, if g € G is loxodromic then we can write Fixz(g) = {a—,a+} and for
n—oo n——oo

every z € Z \ {ay} we have lim ¢"z = a_, and for every z € Z\ {a_} we have lim ¢"z = a4, and these
n— o0 n——00
convergences are uniform on compact subsets of Z \ {a—,a4}.

Definition 2.3 (Limit set). If G acts on Z as a non-elementary convergence group, there exists a unique
minimal nonempty closed G-invariant subset A(G) C Z called the limit set of G in Z. In this case A(G) is
perfect and hence A(G) is infinite [86]. If A(G) = Z, then we say that the action of G on Z is minimal.

Definition 2.4 (Conical limit point). Let G act on Z as a convergence group. A point z € Z is called a
conical limit point for the action of G on Z if there exist an infinite sequence (g, )n>1 of distinct elements of
G and a pair of distinct points z_, z4 € Z such that hm 0 gn2 = 24 and that (gn|z\{-}) converges uniformly

on compact subsets to the constant map ¢, : Z '\ {z} — Z sending Z \ {z} to z_. We call such a sequence
gn a conical sequence for z, and the pair (z,,z+) the pole pair corresponding to z and (gn)n>1. If every
point of Z is a conical limit point, then the action is called a uniform convergence action. In particular, in
this case the action is minimal.

Note that if g € G is loxodromic with Fizz(g) = {a—,a+} then both a;,a_ are conical limit points for
the action of G on Z, and one can use (¢"),>1 as the conical sequence with pole pair (a_, ay).

As usual, for § > 0, a §-hyperbolic space is a geodesic metric space X such that for every geodesic triangle
in X each side of this triangle is contained in the -neighborhood of the union of two other sides. A metric
space X is Gromouv-hyperbolic if there exists & > 0 such that X is §-hyperbolic. A finitely generated group G
is called word-hyperbolic if for some (equivalently, any) finite generating set S of G, the Cayley graph of G
with respect to S is Gromov-hyperbolic. See [21] for basic background information about Gromov-hyperbolic
spaces and word-hyperbolic groups; also see [49] on the background regarding boundaries of hyperbolic spaces
and of word-hyperbolic groups.

Example 2.5. Let G be an infinite word-hyperbolic group, and write G to denote the Gromov boundary.
Then the action of G on OG is a uniform convergence action. In fact, according to a result of Bowditch [16],
if the action of a group G on a compact metrizable space Z is a uniform convergence action, then G is a
word-hyperbolic and there is a G—equivariant homeomorphism between G and Z.

Lemma 2.6. Let a group G act as a convergence group on Z and let Z' C Z be a nonempty infinite closed
G-invariant subset, and let z € Z'. Then z is a conical limit point for the action of G on Z if and only if z
is a conical limit point for the action of G on Z'.
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Proof. The “only if” direction is obvious from the definition of a conical limit point. Thus suppose that
z € Z' is a conical limit point for the action of G on Z'. Let (g,), be a conical sequence for z for the action
of G on Z' and let (z_, z;) be the corresponding pole pair (also for the action of G on Z’). Since G acts
on Z as a convergence group, there exists convergence subsequence data (a,b, (g, )). By assumption Z' is
infinite and hence for every x € Z’\ {a, z} we have hm 0 gnd = 2 and hm 0 gt = b, it follows that z_ = b.

We claim that a = z. Indeed, suppose that a # z. Smce z€Z\ {a} 1t follows that hm D gn2 = b=~z_.

On the other hand, by assumption about (z_,z;) being the pole pair for z and (gn)n, it follows that
lim g,z = z;. By definition z_ # z,, which gives a contradiction. Thus indeed a = z. Hence z is a conical
n—oo

limit point for the action of G on Z, as claimed. (]
The following basic fact is well-known; see, for example, [17].

Proposition 2.7. Let G be a word-hyperbolic group acting as a non-elementary convergence group on a
compact metrizable space Z.

Then a G-limit point z € Z is a conical limit point for the action of G on Z if and only if for every
point s € Z such that s # z there exists an infinite sequence g, € G of distinct elements of G and points
Soos Zoo € Z such that Sso # zZeo and such that nan;ognz = Zoo and nli_{rologns = Soo-

Definition 2.8 (Accidental parabolic). Let G be an infinite word-hyperbolic group acting as a non-
elementary convergence group on a compact metrizable space Z. An accidental parabolic for this action
is an infinite order element g € G such that g acts parabolically on Z.

2.2. Cannon-Thurston map.

Definition 2.9 (Cannon-Thurston map). Let G be a word-hyperbolic group acting as a non-elementary
convergence group on a compact metrizable space Z. A map i: 0G — Z is called a Cannon—Thurston map
if ¢ is continuous and G-equivariant.

Lemma 2.10. Let G be a word-hyperbolic group acting as a non-elementary convergence group on a compact
metrizable space Z and suppose i: 0G — Z is a Cannon—Thurston map. Then:

(1) If g acts as a lozodromic on Z, then the attracting and repelling fized points in OG of g, respectively,
are sent by i to the attracting and repelling fived points of g in Z, respectively.

(2) If g is an accidental parabolic, then there is exactly one fized point for g on Z, which is the i—image
of the two fized points in 0G.

Proof. Let g € G be an element of infinite order. Denote by g°° and g~ the attracting and repelling points
for g in OG respectively. Since i is G-equivariant and the points g¥>° € 9G are fixed by g, it follows that
i({g>®,97>°}) C Fixz(g). If g is parabolic and Fizz(g) = {a} it follows that i(¢t>°) = a.

Suppose now that g acts on Z loxodromically. Since by assumption G acts on Z and hence on i(9G)
as a non-elementary convergence group, the set i(0G) is infinite. Hence there exists x € 9G such that
i(z) € Fizz(g) (and hence z & {g™,g~>°}). If g acts loxodromically on Z with Fizz(g) = {a4,a_} then
lim g"x = ¢ and hence, by continuity and g-equivariance of 1, nh_}n;og"z(x) = i(¢*°). On the other hand, by

n—o0
definition of a loxodromic element, since i(z) # a_ we have lim ¢"i(x) = a4. Thus i(¢°°) = a4. Replacing
n—oo

g by g1 we get i(¢g7°) =a_. O

Proposition 2.11 (Cannon-Thurston map unique). Let G be a word-hyperbolic group acting as a non-
elementary convegence group on a compact metrizable space Z, then any two Cannon—Thurston maps
i,j: 0G — Z, if they exist, must be equal.

Proof. Since i, j are continuous, they are determined by what they do to a dense set of points. The set of
attracting endpoints of any infinite order element g € G and its conjugates {g"},cq forms such a dense set.
By Lemma 2.10, ¢ and 7 must agree on this set, hence must be equal. O

In the situation where Proposition 2.11 applies, if a Cannon-Thurston map i : 0G — Z exists, we will
refer to i as the Cannon-Thurston map.
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There is a particular geometric situation where the Cannon-Thurston map has a more natural geometric
meaning:

Proposition 2.12. Let G be a non-elementary word-hyperbolic group equipped with a properly discontinuous
(but not necessarily co-compact) isometric action of a proper Gromov-hyperbolic geodesic metric space Y, so
that every element of infinite order acts as a loxodromic isometry of Y. Then the following hold:

(1) Then Y is compact and G acts on Y as a convergence group without accidental parabolics. (Thus
Proposition 2.11 applies.)
(2) Suppose the Cannon-Thurston map i : 0G — Y exists. Then for every p € Y the map

f:GUIG = YUY

given by f(g) = gp for g € G, and f(x) = i(x) for x € OG, is continuous for the hyperbolic
compactification topologies on GUIG and Y U JY .

Proof. Part (1) is well-known and due to Tukia [85].
For part (2), note that the topology on G is discrete. Thus we only need to check continuity of f at points
of OG. Since 7 is assumed to be continuous, it suffices to establish the following;:

Claim. If z € 0G and (gn)n>1 C G is an infinite sequence of distinct elements of G such that lim g, = =
= n— oo
in GUOG then lim g,p=1i(z)in Y UQJY for every pe Y.
n—oo

Assume that = and (g,) are as in the Claim, but that the sequence g,p does not converge to i(z) in
Y udY. Since G acts properly discontinuously on Y, it follows that, after replacing g,, by a subsequence, we
have lim,, o0 gnp = z for some z € JY such that z # i(x). Then there exist a subsequence g,, and points
a,b € 9G and c,d € 9Y such that (gn,|oc\{a}) converges uniformly on compact sets to the constant map to
b, and gn, [oy\{c} converges uniformly on compact sets to the constant map to d. Moreover, the fact that

hm 0 gn = & implies that = b and, similarly, the fact that hm 0 gnp = 2 implies that z = d (see [85]). Since

the set i(OG) is infinite, we can find y € 9G such that y 7& a and i(y) # c¢. Then, on one hand, we have
limg 00 gn, i(y) = d = z. On the other hand, khm gn, ¥y = b = x and therefore, by continuity of i, we have
—00

klim 9n,4(y) = i(z). This contradicts z # i(x). O
— 00

A general result of Mj shows that in this situation injectivity of the Cannon-Thurston map is equivalent
to the orbit map X — Y being a quasi-isometric embedding [76, Lemma 2.5]:

Proposition 2.13. Let G and Y be as in Proposition 2.12 and Let p € Y. Then the following conditions
are equivalent:

(1) The Cannon-Thurston map i : 0G — Y exists and is injective.
(2) The orbit map G =Y, g — gp, is a quasi-isometric embedding.

Proof. As noted above, this proposition holds by [76, Lemma 2.5]. The proposition also follows directly
from the older result of Swenson [83]. Indeed, (2) obviously implies (1). Thus assume that (1) holds and
that the Cannon-Thurston map i : G — Y exists and is injective. Since both G and 9Y are compact
and Hausdorff, the map ¢ is a G-equivariant homeomorphism between 0G and Z’' = i(9G). Since G is
word-hyperbolic, every point of OG is conical. Therefore every point of Z’ is conical for the G-action on Z’
and hence, by Lemma 2.6, also for the action of G on Y. The main result of Swenson [83] then implies that
the orbit map G — Y, g — gp, is a quasi-isometric embedding. O

Proposition 2.13 implies, in particular, that if G; is a word-hyperbolic subgroup of a word-hyperbolic
group G9 and if the Cannon-Thurston map i : 0G; — 0G4 exists and is injective then G is quasiconvex in
Gs.
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3. ALGEBRAIC LAMINATIONS

If G is a word-hyperbolic group, we denote 9°G := {(z,5) € 0G x dG|z # s}. The set 9°G is equipped
with the subspace topology from the product topology on G x OG. The group G has a natural diagonal
action on 9?G: for g € G and (z,s) € 9?°G we have g(z,s) := (gz,gs). Let G x 0G — G x AG be the
“flip” map given by j : (z,y) — (y,z) for (z,y) € 0G.

Definition 3.1 (Algebraic lamination). Let G be a word-hyperbolic group. An algebraic lamination on G
is a subset L C %G such that L is closed in %G, flip-invariant and G-invariant. A pair (z,y) € L is called
a leaf of L. An element x € 9G is called an end of L if there exists y € G, y # x such that (x,y) € L.

For an algebraic lamination L on G denote by End(L) the set of all ends of L. Note that End(L) is a
G-invariant subset of 0G.

Definition 3.2 (Lamination and relation associated to a Cannon-Thurston map). Let G be a word-
hyperbolic group and let Z be a compact metrizable space equipped with a convergence action of G such
that the Cannon-Thurston map ¢ : 9G — Z exists. Denote

L; :={(z,y) € 0G x 0G|i(z) = i(y),x # y}.

Since i is continuous and G-equivariant, L; is a closed G-invariant and flip-invariant subset of 9>G. Thus L;
is an algebraic lamination on G.

4. DYNAMICAL CHARACTERIZATION

Suppose G is a word-hyperbolic group acting as a non-elementary convergence group on Z, and let
i: 0G — Z be a Cannon—Thurston map. We say that a point € 9G is asymptotic to L; if for every conical
sequence {g,}22, for  with pole pair (z_,x4) we have (z_,x4) € L;, that is, i(z_) = i(xy).

In this section, we prove the first theorem from the introduction.

Theorem A. Suppose G is word-hyperbolic and acts on the compact, metrizable space Z as a non-
elementary convergence group, and suppose i: G — Z is a Cannon—Thurston map. Let z € i(0G). Then:
(1) The point z € Z is not a conical limit point for the action of G on Z if and only if some point
x € i~1(z) is asymptotic to L;.
(2) If [i=1(2)| > 1, then any x € i~1(2) is asymptotic to L;, and hence z is non-conical.

In the rest of this section, we make the assumptions of the theorem. Our first lemma shows that, up to
subsequences, conical sequences in G for Z must come from conical sequences for 9G.

Lemma 4.1. Suppose that z € Z is a conical limit point and that (gn)n>1 is a conical sequence for z. Then
there exists v € i1(2) and a subsequence (gn, )k>1 which is a conical sequence for . Moreover, if (x_, )
is the pole pair for (gn,) and x, then (i(x_),i(x1)) is the pole pair for (gn,) and z, and in particular,

i(e-) # i(ay).

Proof. Without loss of generality, we may assume that the action of G on Z is minimal, so i(0G) = Z. Let
(2—, z4+) be the pole pair for z and (g,,). This is also a pole pair for any subsequence of (gy,).

By the convergence property, there exists subsequence data (z,7_, g,, ) such that (gn, lag\{z})r>1) con-
verges locally uniformly to the constant map to z_. By passing to a further subsequence, we may assume
that klingo Gn,, () = x4, for some x4 € OG (possibly equal to z_).

Since i is continuous, it follows that for any y € 0G, we have
i(Jim g, (1) = lim g, (i(s)).
—00 k—o0
From this, we see that if y € G\ (i7*(z) U {z}) then i(z_) = i(klim 9n, (¥)) = z—. Furthermore, since any
—00
y € 0G\{z} has klim 9n,, (1(y)) = i(z_) = z_, it follows that i(0G\{z}) C Z\{z}; that is, i(x) = z. Finally,
—00
we have

Z(er) = Z(klggo Gy, ({L‘)) = khanolo Iny (2) = 24.
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Therefore i(zy) = 24 # z_ = i(x_), and so x4 # x_ and {g,, } is a conical sequence for x with pole pair
(x_,z4). O

Proof of Theorem A. To prove part (1), first, suppose that z € Z is conical. Let (g5)n>1 be a conical
sequence for z with pole pair (z_,2;). According to Lemma 4.1, there exist # € i~!(z) and a subsequence
(gny, )k>1 which is a conical sequence for = with pole pair (x_,z4). Since i(z_) = z_ # 24 = i(xy), it follows
that x is not asymptotic to L;.

Now suppose z is not asymptotic to L; and let {g,}52,; be any conical sequence for x with pole pair
(x_,x4) such that i(x_) # i(r4+). Because the action of G on Z is a convergence action, there exist a
subsequence (gn, )x>1 and z,z_ € Z such that on Z \ {z}, g, converges locally uniformly to z_. For any
y € 0G \ {z} we have kli)nolo gn, (i(y)) = i(x_). Thus taking y ¢ i~!(z), this implies i(x_) = z_. On the

other hand, klim i(gn, (z)) = i(zy) # i(z_) = z_ by assumption. It follows that i(x) = z (since anything
— 00

else must converge to z_ on applying g, ). Therefore, setting z4 = i(xy), it follows that {g,, } is a conical
sequence for z with pole pair (z_, z1), and z is a conical limit point. Thus part (1) of Theorem A is proved.

For part (2) of Theorem A we suppose |i~*(z)| > 1, and prove that any = € i~!(z) is asymptotic to L;.
For this, let y € i~1(2) be any other point with y # x. Let (g,)n>1 be a conical sequence for z with pole
pair (z_,z4). Then nh_}rrologn(x) =24 and nh_)rréogn(y) = x_. Since L; is G-invariant, i(g,(z)) = i(gn(y)) and
since L; is closed (or equivalently, the algebraic lamination L; is closed), it follows that i(x_) = i(x). Since
(gn) was an arbitrary conical sequence for z, the point x is asymptotic to L;, as required. Hence, by part
(1), z is not a conical limit point for the action of G on Z. O

5. GEOMETRIC CHARACTERIZATION

Definition 5.1 (Coarse leaf segments). Let G be a word-hyperbolic group and let L C 92G be an algebraic
lamination on G.

Let X be a d-hyperbolic (where § > 1) proper geodesic metric space equipped with a properly discontin-
uous cocompact isometric action of G, so that G is naturally identified with .X.

For an algebraic lamination L on G, a geodesic segment 7 = [a,b] in X is called a coarse X -leaf segment
of L if there exist a pair (z,y) € L and a bi-infinite geodesic 7 from z to y in X such that 7 is contained in
the 24-neighborhood of ~.

If C' > 0, for a geodesic segment 7 = [a, b] of length > 2C, the C-truncation of 7 is defined as [a’, V'] C [a, D]
where a’,b’ € [a,b] are such that d(a,a’) = d(b,b') = C.

Theorem B. Let G be a word-hyperbolic group and let Z be a compact metrizable space equipped with
a non-elementary convergence action of G such that the Cannon-Thurston map i : G — Z exists and such
that ¢ is not injective. Let X be a d-hyperbolic (where § > 1) proper geodesic metric space equipped with a
properly discontinuous cocompact isometric action of G (so that 9G is naturally identified with 0.X).

Let x € 0G, let z = i(x) € Z and let p be a geodesic ray in X limiting to x.

Then the following are equivalent:

(1) The point z is a conical limit point for the action of G on Z.

(2) There exist a geodesic segment 7 = [a, b] in X of length > 100§ and an infinite sequence of distinct
elements g, € G such that the 205-truncation 7/ of 7 is not a coarse X-leaf segment of L; and such
that for each n > 1 the segment g,,7 is contained in a 66-neighborhood of p. [Note that this condition
automatically implies that lim,, o gna = lim, 00 gnb = 2.

Proof. Suppose first that (1) holds and that z is a conical limit point for the action of G on Z. Since by
assumption ¢ is not injective, there exists a pair (y',y) € L; such that i(y) = i(y’). Denote s =i(y) = i(y’).
By translating by an element of ¢ if necessary, we may also assume that s # z.

Since i(x) = z and z # s, we have z # y. Note that y € End(L;).

Consider a geodesic v from y to z in X. Since z is conical, by Proposition 2.7 there exists an infinite
sequence of distinct elements h, € G such that lim, o hn(8,2) = (Soo, 200) fOr sOmMe Sy, 200 € Z such
that seo # 2eo. After passing to a further subsequence, we may assume that lim, . hpt = 2z, and
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limy, 00 hnY = Yoo for some Zoo, Yoo € G = 0X. By continuity of i we have i(Zoo) = 2oo and i(Yoo) = Sco-
In particular, this means that 7o, # Yoo and that lim,, oo hn (¥, 7) = (Yoo, Too) in O?G. Let 7o, be a geodesic
in X from ys t0 Too-

Then there exists a sequence of finite subsegments 7,, = [gy,, r] of v and a sequence of subsegments [a,,, by,
of 7 with the following properties:

a) We have lim,, o0 @n = Yoo, liMy 00 by = Too and [ay, by,] is a subsegment of (a1, bni1].
b) We have either lim,,—, o0 ¢n = limy, 00 7 = @ OF limy, 00 gp, = limy 00 75 = ¥

¢) For all n > 1 the paths hy[gn,r,] and [a,, b,] are 49-close.

d) We have h,qn —n—oo Yoo a0d ApTy —n—s00 Too-

If limy, 00 ¢ = lim,, oo 7, = ¥y then, since y € End(L;) and since L; C 0*G is closed, it follows that
(Yoo, Too) € Li. Therefore zoo = i(%oo) = i(Yoo) = Soo, Which contradicts the fact that soo 7# peo. Therefore
limy, o0 @n, = liMy 00 7y = @. SINCE Soo # Zoo, it follows that (Yoo, Too) € Li. Then there exists m > 1 such
that d(am,bm) > 1006 and such that for 7 := [am, by,] the 205-truncation 7" = [a],,b],] C Yoo of 7 is not
a coarse X-leaf segment of L;. By construction, for every n > m, h,, 17 is contained in a 4d-neighborhood
of [gn,Tn] and hence, for all sufficiently large n, in a 66-neighborhood of p. Thus we have verified that (1)
implies (2).

Suppose now that (2) holds and that there exist a geodesic segment 7 = [a,b] in X of length > 1006
and an infinite sequence of distinct elements g, € G such that the 100-truncation 7/ = [a’, b'] of 7 is not an
X-leaf segment of L; and such that for each n > 1 the segment g, 7 is contained in a 6§-neighborhood of p.
We claim that z is a conical limit point for the action of G on Z. In view of Lemma 2.6, we may assume
that i(0G) = Z.

Indeed, let s € Z be arbitrary such that s # z. Recall that i(x) = 2. Choose y € dG such that i(y) = s.
Thus © # y. Consider the bi-infinite geodesic v from y to = in X. Recall that p is a geodesic ray in X
limiting to x.

After chopping-off a finite initial segment of p if necessary, we may assume that there is a point w € ~
such that the ray p’ from w to x contained in « is 2d-close to p. By assumption, for every n > 1 the geodesic
gty from gty to g, 'z contains a subsegment which is 86-close to 7. By compactness, after passing to
a further subsequence, we may assume that lim,, o g, 'y = Yoo and lim, . g, 7 = x4 for some distinct
points oo, Yoo € OG. Let v be a geodesic from y, to T4 in X.

We have 7/ = [a/, ] C [a,b] = 7 with d(a,a’) = d(b,b") = 204. Since 7 is contained in the 85-neighborhood
of g, v, the segment 7’ is contained in a 2d-neighborhood of 7., and 7’ has length > 505. Since by
assumption 7’ is not a coarse X-leaf segment of L;, it follows that (Yoo, Zoo) & L; and hence i(z) #
i(Yoo). Denote zoo = i(To) and Soo = i(Yoo). Since i(x) = z, i(y) = s and since lim, 00 9, 'Y = Yoo
and lim,, o g, ' = o, the continuity of i implies that lim, o0 g, 1(8,2) = (Soo, Zoo). SiNCE Soo # Zoo,
Proposition 2.7 implies that z is indeed a conical limit point for the action of G on Z, as required.

O

6. INJECTIVE, NON-CONICAL LIMIT POINTS
Here we prove that injective non-conical limit points occur quite often.

Theorem C. Suppose a hyperbolic group G acts on a compact metrizable space Z as a non-elementary
convergence group without accidental parabolics, and suppose that there exists a non-injective Cannon—
Thurston map i: G — Z. Then there exists a non-conical limit point 2z € Z with [i~(2)| = 1.

Suppose that G is a hyperbolic group acting as a non-elementary convergence group on Z as in the
statement of the theorem, from which it follows that G is also non-elementary. Fix a finite generating set
S for G, such that S = S7!, and let X be the Cayley graph of G with respect to S, endowed with the
usual geodesic metric in which every edge has length 1. Then X is é—hyperbolic for some é > 0. We denote
the length of a geodesic segment o in X as |o|. Recall that for » > 0 an r—local geodesic in X is a path «
parameterized by arclength such that every subsegment of « of length r is a geodesic. There exist integers
r > 0 and D > 0 such that any r—local geodesic in X is quasi-geodesic (with constants depending only on
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r and 0), and such that the Hausdorff distance between an r—local geodesic and the geodesic with the same
endpoints is at most D; see e.g. [21, Part III, Chapter 1].

Given an algebraic lamination L C 9?G, define the geodesic realization of L with respect to S, denoted L,
as the set of all £ C X such that there exist z,y € G with (x,y) € L such that ¢ is a bi-infinite geodesic in
X from z to y.

Convention 6.1. For the remainder of this section, we assume G, Z, i are as in the statement of the theorem,
S,X,4,r, D are as above, let L; be the algebraic lamination associated to ¢ as in Definition 3.2, and let £;
denote the geodesic realization of L;.

Given integers p > 1, a p—periodic, r—local geodesic in X is a bi-infinite r—local geodesic v in X for which
some element g € G acts on « translating a distance p along . As « is a quasi-geodesic, it follows that g
has infinite order (and -y is a quasi-geodesic axis for g in X).

We will use the following lemma in the proof of the theorem.

Lemma 6.2. For any p > 1, there exists c(p) > 1 with the following property. If v is a p—periodic, r—local
geodesic in X and £ € L; contains a segment o C v in its 6 + D neighborhood, then |o| < c¢(p).

Proof. Tt suffices to prove this statement for any fixed p—periodic, r—local geodesic v in X (since, for a given
p, there are only finitely many G-orbits of such 7). Translating such ~ if necessary, we may assume that
passes through the identity 1 in G C X. Let g € G be a translation of length p along ~.

Now if the requisite ¢(p) does not exist, then there exists a sequence {¢,},>1 of elements of £; so that
each /,, contains a segment o,, C v of length at least n in its § + D-neighborhood. Since £; is G-invariant,
after applying an appropriate power of g to £, if necessary, we can assume that the midpoint of o,, lies within
distance p of 1 € G. In particular, for n > p, 1 € o, and ¢, is within § + D of 1. Passing to a subsequence,
we can assume that ¢, — £ € L; as n — oo (since L; is closed). On the other hand, since o,, — 7, as n — oo,
we see that ~ is within 6 + D of £. Therefore, £ and ~ have the same endpoints on dG. Since the endpoints
of v are the fixed points of g, and the endpoints of ¢ are identified by 4, it follows that g is an accidental
parabolic for the action on Z, yielding a contradiction. O

We are now ready for the proof of the theorem.

Proof of Theorem C. Let ¢ € L; be a bi-infinite geodesic in £; and ¢4 C ¢ be a geodesic ray contained in .
We can view ¢ as a semi-infinite word over the alphabet S.

For any m > r, let v,, € S* be a word of the length m which occurs (positively) infinitely often in ¢,.
Such a word exists, for every m, by the pigeonhole principal. Now we define several additional families
of sub-words of £,. These subwords will serve as the building blocks for a new r—local geodesic (hence
quasigeodesic) infinite ray.

For each m > r

(1) let w,, be any subword of £ of length at least m so that v, u;, vy occurs in £4. Such wu,, exists
because vy, occurs in £ infinitely often;

(2) let t,, be any nonempty word so that v, tmvmy1 occurs in £. These exist for the same reason as
Um;

(3) put aun = Vi lgy,.

Let py = |aml, and let £, > 0 be an integer such that &mpm > ¢(pm). Note that, since v, tm,vy, is a
subword of a geodesic ray £y with |um,|, |vm| > m, it follows that the word o, = vt is cyclically reduced
and that for every k > 1 every subword of length m in a’fn is a geodesic and occurs as a subword of v, U,V
and thus of /.

Now consider the following semi-infinite word (which we also view as a semi-infinite path in X with origin
1e€G):

Weo 1= af*vrtrafrilUT+1tT+1aff22 e
This word we, is naturally a union of subwords of the following forms:
(1) @y, which is a subword of £ ;
(2) VmtmUms1, which is a subword of .
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(3) afm . which is a word of length p,,km > ¢(pm), is contained in a p,,—periodic, r—local geodesic. As
such, the word afim is not contained in a D+ §-neighborhood of any ¢ € £;, by Lemma 6.2. However,
any subword of length m of afm occurs in £ .

Moreover, any subword v of ws, of length r is contained in at least one such word, and thus v occurs as a
subword of £ . Therefore wy is an r—local geodesic in X and hence a global quasigeodesic in X. Furthermore,
note that as m tends toward infinity, the lengths of the words «,, and vt vm11 tend to infinity. Denote
the endpoint of wy, in OG by .

First, we claim that |i1(i(z))| = 1. If this were not the case, then the ray w., would be asymptotic to
(i.e. have a finite Hausdorff distance to) an infinite ray ¢/, C ¢’ for some geodesic £’ € £;. In this case, a
subray w., C ws would be contained in the § + D neighborhood of ¢/_. Since this ray contains arcs labeled
afm for m sufliciently large, this contradicts Lemma 6.2.

Second, we claim that i(x) is non-conical. To prove this, let v be an r—local geodesic containing we, as a
subray. For example, let v be the concatenation of the ray which is o, * with w. One endpoint of v is z,
and we denote the other by y. Let (g,,)n>1 be any convergence sequence for « with pole pair (z_,z4). Then
gn(x) = x4 and gn(y) — x_. Since x_ # z, after passing to a subsequence (g, ), the r—local geodesics
gn,7y must converge to an r—local geodesic with endpoints x_,z,. After passing to a further subsequence
(still denoted (gy,)), it follows that g,,y converges to an r—local geodesic with endpoints z_,2,. Since
(gn,) is a convergence sequence for x, if k is sufficiently large, any closest point hy € gp, 7y to 1 must have
gl (hi) € woe with distance to the initial point of ws tending toward infinity. Passing to yet a further
subsequence if necessary, we can assume that the subword wy C ws of length 2k centered on g;klhk is a
subword of ¢ C £. Thus for all k there exists ¢, € £; (a translate of ¢) so that the segment wy, is contained
in Ek

Now observe that g,, (wg) is a segment of g, ({x) € L;. Because gy, (wy) is a geodesic of length 2k
centered on hy, it follows that g,, (wg), and hence g, (¢x), converges to a geodesic with endpoints (x_,z)
as k — oo. However, g, (¢x) must converge to a leaf of £; since L; is closed. Since (g,,) was an arbitrary
convergence sequence for x, x is asymptotic to L;, and by Theorem A, i(z) is non-conical. O

7. CONTROLLED CONCENTRATION POINTS

Definition 7.1. Let G be a non-elementary torsion-free discrete subgroup of hyperbolic isometries acting on
H" and let S7! be the ideal boundary of H”. A neighborhood U C S% ! of # € A(G) is called concentrated
at z if for every neighborhood V' of z, there exists an element g € G such that z € g(U) and g(U) C V. If
such ¢ can always be chosen so that « € g(V') then we say U is concentrated with control. A limit point z in
A(G) is called a controlled concentration point if it has a neighborhood which is concentrated with control.

A geodesic ray in H" is called recurrent with respect to G if its image o in M = H"/G by the covering
projection is recurrent. Recall that a geodesic ray « parametrized by [0, c0) in M is called recurrent if for any
tangent vector v = o/ (¢g), %o > 0 in the unit tangent bundle UT (M) of M, there exists an infinite sequence of
times {¢;} such that o/(¢;) converges to v in UT'(M). The main result of [3] is that controlled concentration
points correspond to the end points of recurrent geodesic rays.

Theorem 7.2 (Aebischer, Hong and McCullough [3]). Let G be as in Definition 7.1. Then for a limit point
x € A(G), the following are equivalent:

(1) There is a recurrent geodesic ray whose endpoint is x.
(2) x is a controlled concentration point.
(3) There exists a sequence {gn} of distinct elements of G such that for any geodesic ray [ whose

endpoint 5(00) is z, gn(B) converges to some geodesic ray whose endpoint is again x up to taking a
subsequence.

(4) There exists a sequence {gn} of distinct elements of G and y € S™% with y # x such that gnx — x
and gn|sgo\{$} converges uniformly on compact subsets to the constant map to y.

From the last characterization of a controlled concentration point, it is clear that every controlled con-
centration point is conical, but the converse is not true in general. In fact [3, Prop. 5.1] gives an example of
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a conical limit point which is not a controlled concentration point in the case of a rank-2 Schottky group. It
is also known that the set of controlled concentration points has full Patterson-Sullivan measure in A(G) if
G is of divergence type. Note that for a geodesic lamination A in a hyperbolic surface S, a leaf of X is always
a recurrent geodesic, and hence its endpoints are controlled concentration points.

The following proposition follows easily from the condition (1) of Theorem 7.2.

Proposition 7.3. A limit point x in A(G) C S% 1 is a controlled concentration point if there exists a
geodesic ray B in H™ which limits to x and the w-limit set of B in the geodesic foliation on the unit tangent
bundle UT(M) of M =H"/G has only one minimal component.

We extend the notion of controlled concentration points to the case of hyperbolic groups.

Definition 7.4. Let G be a non-elementary hyperbolic group. Then we say x € 9G is a controlled con-
centration point if there exists a sequence {g,} of distinct elements of G and y € dG with y # x such that
gnx — x and gnloc\ (o} converges locally uniformly to the constant map to y.

Proposition 7.5. Suppose G is word-hyperbolic and acts on the compact, metrizable space Z as a non-
elementary convergence group, and suppose i: O0G — Z is a Cannon-Thurston map. If a controlled concen-
trated point x € G satisfies |i~1(i(x))| = 1 then i(z) € Z is conical.

Proof. Since z is a controlled concentrated point, there exist y € OG with y # x and a sequence {g,} of
distinct elements in G such that lim g,z = x and (gn|sg\{2}) locally uniformly converges to the constant
n—oo

map to y. Note that [i71(i(x))] = 1 implies i(z) # i(y). Suppose i(z) € Z is not conical. Then by
Proposition 2.7 there exists a subsequence (gn, ) of (g,) such that klim n,i(x) = klim gn, #(y) and hence by
— 00 —o0

continuity
(i(2),i(y)) = lm (i(gn,2),i(gn,y)) = N (g0, 8(2), 9n, i(y)) = (2, 2)
00 k—o0
for some z € Z, and hence i(x) = i(y). This is a contradiction. O

We can now prove the last theorem from Introduction:

Theorem D. Let G be a non-elementary torsion-free word-hyperbolic group. Then there exists x € dG
which is not a controlled concentration point.

Proof. Kapovich [47] proved that, given a non-elementary torsion-free word-hyperbolic group G, there exists
a word-hyperbolic group G, containing G as a non-quasiconvex subgroup. Moreover, G, is constructed in
[47] as an HNN-extension

G. = (G tt 'Kt = K;)

where K < G is a quasiconvex free subgroup of rank 2 and where K; < K is also free of rank 2 (and hence K3
is also quasiconvex in G). Therefore, by a general result of Mitra [69] (see also [78]) about graphs of groups
with hyperbolic edge and vertex groups, there does exist a Cannon-Thurston map i : 0G — 0G,. Since
G < G, is not quasiconvex, Proposition 2.13 implies that the map 7 is not injective. Therefore, by Theorem
C, there exists a non-conical limit point z € i(0G) with |i=1(2)| = 1. By Proposition 7.5, z = i~!(2) € 0G
is not a controlled concentration point. (]

APPENDIX A. DESCRIPTIONS OF L;

There are several situations where the Cannon-Thurston map i : 0G — Z is known to exist and where a
more detailed description of the lamination L; is known. Theorem A and Theorem B may be useful in these
contexts. The proof of Theorem 6.6 in [33] uses Theorem B as a key ingredient in this way.
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A.1. Kleinian representations of surface groups. Let G be the fundamental group of a closed, orientable
hyperbolic surface S. The universal covering of S is isometric to the hyperbolic plane H? with G acting
cocompactly by isometries, and so we can identify the Gromov boundary of G with the circle at infinity
0G = S! . A faithful Kleinian representation p: G — PSL(2,C) = Isom™ (H?) is an injective homomorphism
with discrete image. This determines a convergence action of G on S2,, and hence also on the limit set A(G).
The existence of a Cannon—Thurston map for such groups was first proved in the special case when p(G) is
the fiber subgroup of a hyperbolic 3—manifold fibering over the circle by Cannon and Thurston [25]. This
was extended to include other classes of Kleinian representations of G in [65, 69] and then arbitrary faithful,
Kleinian representation of G in [77].

The hyperbolic 3-manifold M = H?3/p(G) is homeomorphic to S x (—oo,00) by the Tameness Theorem
([15], and [1, 24] in more general settings) and thus M has only two ends, F; and E_. Assume that p(G)
has no parabolics. Associated to each end is a (possibly empty) ending lamination Ay and A_, which is a
geodesic lamination on S, that is a closed union of pairwise disjoint complete geodesics; see [27] for more on
geodesic laminations and [87, 66, 23] for more on the ending laminations associated to ends of 3—manifolds.
The preimage Xi C H? of the ending laminations in H? are geodesic laminations in H?, and the endpoints of
the leaves determine a pair of algebraic laminations L+ C 9?G. Set R4, R_ C 0G x 9G to be the reflexive,
and transitive closures of the pair L, L_, respectively. Then for the Cannon—Thurston map ¢ has i(z) = i(y)
if and only if (z,y) € R4+ UR_ according to [25] in the original setting, [65] the cases treated there, and in
general in [71]. Furthermore, the transitive closure adds only endpoints of finitely many G-orbits of leaves,
and thus L; is equal to Ly UL_, together with finitely many additional G—orbits of leaves (which correspond
to the “diagonals” of the complementary components of X+ and X,)

A.2. Short exact sequences of hyperbolic groups. Let
1) 112G —-Gy—Q

be a short exact sequence of three word-hyperbolic groups, such that GG; is non-elementary. In this case G
acts on Z = 0G5 as a non-elementary convergence group without accidental parabolics. Mitra [68] proved
that in this case the Cannon-Thurston map i : 0G; — 0G5 does exist. Therefore the results of this paper,
including Theorem B, do apply. In [67] Mitra also obtained a general geometric description of L; in this case
in terms of the so-called “ending laminations”.

We give here a brief description of the results of [67].

Given every ¢ € 0Q, Mitra defines an “ending lamination” A¢ C §°G;. To define A¢, Mitra starts with
choosing a quasi-isometric section r : Q — G2 (he later proves that the specific choice of r does not matter).
Then given any £ € JQ, take a geodesic ray in @) towards £ and let &, be the point at distance n from the
origin on that ray. Lift £, to G2 by the section r to get an element g, = r(&,) € G2. Conjugation by g, gives
an automorphism ¢,, of G defined as ¢,,(h) = g,hg, ', h € G1. Now pick any non-torsion element h € Gj.
Then look at all (x,y) € G such that there exists a sequence of integers k,, — oo and of conjugates (with
respect to conjugation in G1) w,, of @i, (h) in Gy such that lim, . (w, >, w) = (z,y) in 9°G;. For a
fixed non-torsion h € G, the collection of all such (z,y) € 8?G; is denoted A¢ . Denote by A the set of all
elements of infinite order in G;. Finally, put Ag = Upeal¢ . The main result of Mitra in [67] says that, in
this case

L; = UEG@QAE-

For every £ € 9Q the subset A¢ C 902Gy is an algebraic lamination on Gy, and Mitra refers to A¢ as the
”ending lamination” on G corresponding to £&. Moreover, the arguments of Mitra actually imply that if
&1,& € 0Q are distinct, then End(A¢, ) N End(Ag,) = @. Mitra also notes that for any £ € 9Q there exists
a finite subset B C A such that Ay = UpepAep.

In general, for a short exact sequence (}) and £ € 9Q, the “ending lamination” A¢ C 9?°Gy can, at least
a priori, be quite large and difficult to understand. This is the case even if Q = (t) = Z is infinite cyclic,
so that 0Q = {t7°°,¢>°} consists of just two points. However, in some situations the laminations A¢ are
well-understood.



CONICAL LIMIT POINTS AND THE CANNON-THURSTON MAP 15

A.3. Hyperbolic extensions of free groups. In particular, let N > 3, let ¢ € Out(Fy) be a fully
irreducible atoroidal element and let ® € Aut(Fy) be a representative of the outer automorphism class of ¢
(see [8, 9, 10, 28, 43, 44, 48, 63] for the relevant background). Then

G=Fn XNo Z = (FN,t|twt_1 :(I>(w)7wEFN>

is word-hyperbolic and we have a short exact sequence 1 — Fy — G — (t) — 1. Thus, by [68], there
does exist a Cannon-Thurston map ¢ : 0Fy — 9G. Using the results of Mitra [67] mentioned above as
a starting point, Kapovich and Lustig proved in [53] that Ai = diag(Lpru(p)) = L(T-) and, similarly,
Ao = diag(Lpru(e™t)) = L(Ty). Here Lpru(p) C 0?Fy is the “stable” lamination of ¢, introduced by
Bestvina, Feighn and Handel in [9], and diag(Lprm(p~!)) is the “diagonal extension” of Lprg(y), that is,
the intersection of 02> Fy with the equivalence relation on OFx generated by the relation Lgp u(p) C 0°Fy
on OFy. Also, here L(T_) is the ”dual algebraic lamination” (in the sense of [30, 32, 51]) corresponding to
the "repelling” R-tree T_ for ¢ (the tree T is constructed using a train-track representative for ¢=! and
the projective class of T_ is the unique repelling fixed point for the right action of ¢ on the compactified
Outer space. Thus, in view of the discussion above, we have

L; = diag(Lpru(p)) U diag(Lpru(¢~")) = L(T-) U L(Ty)

in this case. The stable lamination Lgrg(p) of ¢ is defined quite explicitly in terms of a train-track
representative f : I' — T of ¢. Thus a pair (x,y) € ?>Fy belongs to Lgrg () if and only if for every finite
subpath © of the geodesic from = to y in f, the projection v of ¥ to I' has the property that for some edge
e of ' and some n > 1 the path v is a subpath of f™(e). Kapovich and Lustig also proved in [52] that
diag(Lpru(p)) is obtained from Lprp(p) by adding finitely many Fi orbits of “diagonal” leaves (x,y) of
a special kind. These extra “diagonal leaves” play a similar role to the diagonals of ideal polygons given by
complimentary regions for the lift to H? of the stable geodesic lamination of a pseudo-anosov homeomorphism
of a closed hyperbolic surface.

In [33] Dowdall, Kapovich and Taylor generalize the above description of L; to the case of word-hyperbolic
extensions Er of Fy determined by purely atoroidal “convex cocompact” subgroups I' < Out(Fy). See [33,
Corollary 5.3] for details.
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