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ABSTRACT
A thorough understanding of social media discussions and the
demographics of the users involved in these discussions has
become critical for many applications like business or politi-
cal analysis. Such an understanding and its ramifications on
the real world can be enabled through the automatic summa-
rization of Social Media. Trending topics are offered as a
high level content recommendation system where users are
suggested to view related content if they deem the displayed
topics interesting. However, identifying the characteristics
of the users focused on each topic can boost the importance
even for topics that might not be popular or bursty. We de-
fine a way to characterize groups of users that are focused in
such topics and propose an efficient and accurate algorithm
to extract such communities. Through qualitative and quan-
titative experimentation we observe that topics with a strong
community focus are interesting and more likely to catch the
attention of users.
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INTRODUCTION
The study of social patterns in Online Social Media like Twit-
ter or Facebook can be very helpful in identifying collective
user behavior among specific segments of society. Trending
topics have been popularly used in the detection of breaking
news, as well as in marketing and advertising mechanisms. In
general, a topic is a collection of words or phrases that refer to
a temporarily popular concept. Usually, the origin of a trend-
ing topic is a popular real life event that is being discussed
on social media or a meme that is spreading. Trending top-
ics are used to understand and explain how information and
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memes diffuse through vast social networks with hundreds of
millions of nodes.

Currently, users of popular social media services like Twitter
and Facebook use the real-time list of trending topics pro-
vided by each service to get a glimpse of what users outside
their social circle are talking about, discover major events
happening around them or far away, monitor breaking news,
or get a measure of how popular a social movement is. Both
Twitter and Facebook are putting a significant effort in deliv-
ering topics that are relevant and could lead to high engage-
ment between their users and the posted content. However,
the relevance of a topic to the user’s interests, plays an im-
portant role in the success of such engagement. It has been
observed that the user population involved in a trend offers
high potential in understanding the trend and how other users
might react to it. In a previous study on Twitter topics even
simple social relations between the participants could greatly
enhance the understanding of trending topics [6] or spammer
detection [5]. Alternatively, a space-efficient framework was
proposed [7], that extracts topics which are highly focused in
specific geographical locations. Human evaluations showed
that topics with a high geographical correlation tend to be
more interesting than topics with a dispersed population.

In this paper, we propose a novel community detection al-
gorithm utilizing a spectrum of social characteristics rather
than just geographic locations. The detection of community
characteristics that are meaningfully correlated with a topic,
like gender, age, location, race, ethnicity, political affiliation,
etc., can yield powerful results which are useful in a variety
of domains. Marketers can understand their customers better
by identifying the communities interested in their products.
Advertisements, which usually are linked to a trending topic
or event, can become more personalized. And of course, con-
tent recommendation can be improved through the extraction
of target groups interested in specific topics.

Communities focused on topics, can sometimes be expected
and sometimes unexpected. It is easy to anticipate that young
boys will be interested in the PlayStation 4 gaming console
even without monitoring the widely popular topic #PS4. But
we might not expect that women in the area of Boston, MA,
that also support the Democratic party, showed their solidar-
ity to an arrested female teen named Justina with the not so
popular topic #FreeJustina. It is even more unexpected to
observe the hijacking of the hashtag campaign #ReasonsTo-
VisitEgypt that was originally created to promote tourism in
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Egypt, but local citizens used it negatively to raise awareness
for the country’s political situation. The important take away
is that using only the popularity or bursty behavior of a topic
is usually not enough; a better understanding of the underly-
ing community can yield a better ranking for interesting top-
ics that might not be globally popular.

We start by identifying the concept of a focused community
to enable the efficient extraction of communities interested in
topics on social media. We exploit specific properties of this
definition to propose a novel framework that receives a social
stream as its input and reports topics and the corresponding
focused communities as its output. The framework scales lin-
early with the number of attributes, and reports communities
that share a set of attribute combinations or sub-dimensions.

The current research makes the following contributions:

• The definition of a (maximally) focused community.
• A scalable algorithm for the discovery of maximally fo-

cused communities with amortized linear time complexity.
• The effectiveness of recommending topics with focused

communities is measured through human evaluation.
• The efficiency of the proposed approach is tested through

extensive experimentation and analysis on a massive
dataset from Twitter and synthetic data.

In the following sections the formal definition of a focused
community is provided and then the description of the pro-
posed algorithm to extract such communities is offered. Ex-
perimental results to qualitatively showcase the algorithm on
a real Twitter dataset follow. Finally, we discuss an applica-
tion of our approach to rank topics and hence identify trend-
ing topics based on content rather than simply popularity or
burstiness. Through human evaluations, community-based
ranking is shown to be preferable over other standard base-
lines. The paper concludes with a discussion of related work.

FOCUSED COMMUNITIES
Focused communities are groups of social media users that
have a focus on a specific topic and might not be related oth-
erwise. The set of users belonging in a focused community
share two properties: they all mentioned the same topic and
they all share some characteristics. In order to extract and
understand the underlying communities interested in a par-
ticular topic, T, two pieces of information are necessary. 1)
The topic population P which includes every social posting
that mentions topic T. We will refer to these social postings
using the general term datapoints but in the specific case of
Twitter they are called tweets. 2) The corresponding social
characteristics (attribute values) for every datapoint. These
attributes can include user demographics like Location, Age,
Gender, Race, or characteristics like political affiliation, sup-
porting soccer team, hobbies, etc. Each user that mentions a
topic can be represented by an attribute vector. For example,
a hypothetical 5-dimensional attribute vector could be: [Lo-
cation: Los Angeles, Age: 18, Gender: Male, Citizenship:
USA, Political Affiliation: Republican]. Certain attributes
can be hierarchical, like Location or Age. If a user lives in
Los Angeles, then she also lives in California, or USA, or the
World. If a user is 15 years old then she also belongs in the

“teenager” age bracket. Ultimately, given the population of
a topic T , we want to extract a combination of attribute val-
ues in order to discover the “maximally focused community”
interested in topic T . Note that the process of identifying a
(maximally) focused community has to be applied individu-
ally on each topic’s user population and not the whole stream
of social postings or the whole user base. We will now for-
mally define focused and maximally focused communities.

Suppose a domain with N total attributes where each attribute
ai has a finite set of values Vai . Categorical attribute values
may follow a tree-like hierarchical pattern. As the most no-
table example, the Location attribute can be described using
a tree hierarchy of 4 levels: city, region/state/province, coun-
try, and “Worldwide”. Values in each level of the hierarchy
are connected to a single ancestor from the previous level and
to an arbitrary number of successors in the next level (which
can be zero for the values of the bottom level). We symbol-
ize the root of the hierarchy with the value “*”. Note that
any attribute can be described at the very least by the trivial
hierarchy of 2 levels where the bottom level contains all the
values and the top level contains the root. Numerical attribute
values can be viewed as hierarchical attributes as well. Using
a radius r the hierarchical ancestor of a numerical value v can
be dynamically estimated as the range [v − r,v + r]. Alterna-
tively, the values of a numerical attribute can be discretized
so it becomes categorical. In the current work we focused on
categorical attributes but the proposed algorithm works also
with numerical attributes.

Let P be a set of datapoints where each datapoint is repre-
sented by a vector of N attribute values vi ∈ Vai . For simplic-
ity, we will refer to these attribute vectors as tuples; therefore,
any datapoint is considered a tuple which is practically a com-
bination of attribute values. The support of a single attribute
value is equal to the number of datapoints in P that contain
this value. The support of a tuple is equal to the number of
datapoints with values that match the values of this tuple.

A combination of attribute values (tuple) describes all the
users that match these values and can be visualized as the in-
tersection of the N groups of users that match each individual
attribute value (Figure 1a). These users are not necessarily
connected in the social graph but instead connected through
the fact that they all mentioned the same topic T . We refer to
such groups of users as topic-based communities, or simply
just communities, and represent them through the described
notion of tuples. However, in any given topic population there
is a vast amount or arbitrary attribute intersections that are
mostly meaningless. In order to capture important commu-
nities we explore the notion of focus. The presence of focus
dictates that there is at least one attribute of the community
(possibly more) that is not present to anyone else outside the
topic community. This leads to communities that are not ran-
dom intersections and is captured by the following definition
of focused communities.

Let C be a group of users that all share a combination of com-
mon attributes represented by the tuple Ct . This group C is a
focused community if there is at least one attribute value v in
the tuple Ct that represents the community C which no other
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Figure 1: Illustration of a non focused community (a), which
is the simple intersection of three attribute values va , vb , and
vc . A focused community (b) has at least one attribute (vb)
that is as close to the intersection of va , vb , and vc .

user in the complement P−C matches. This attribute value v
is practically an exclusive feature of the community. Again,
while there is at least one attribute necessary to form a fo-
cused community there can be multiple exclusive attributes.
To capture this difference, we will further introduce the no-
tion of maximally focused communities.

Figure 1 illustrates the difference between an arbitrary com-
munity (non focused) and a focused community with three at-
tributes. As an example, we can assume that attribute a is Lo-
cation with value va equal to Los Angeles, attribute b is Age
with value vb equal to 18 years old, and attribute c is Gender
with value vc equal to Male. In the first case, the popula-
tion corresponding to the intersection of the three attributes
defines a non focused community, ie., 18 year old males who
live in Los Angeles. In the second case, the population corre-
sponding to the attribute vc ≡ 18 years old is almost identical
to the intersection of all three attributes. Therefore, the sup-
port of the Los Angeles male community is almost equal to
the number of users in P that are 18 years old, since almost
nobody else in the complement P−C matches this age.

We also establish the mathematical formulation of the focus
requirement which will be used in the proposed algorithm
that identifies focused communities within all the users that
mention a particular topic T : Let Pv ⊆ P be the set of all
users in the topic population P that match a single attribute
value v. The following must hold for a community C to be
focused: ∃v ∈ Ct so that Pv ≡C. In order to discover focused
communities in the presence of data noise or missing values
this formula needs to be relaxed by introducing a relaxation
threshold ε so that we can measure how close a community is
to being perfectly focused:

�����

��C��
��Pv

��
−1

�����
≤ ε (1)

When the attribute value v is absolutely exclusive to the com-
munity C the left-hand side of the equation will be exactly
equal to 0. When the exclusive attribute “leaks” outside the
community C then the value will become greater than 0. We
will refer to this value as the focus metric of the community.
A value of 0 indicates that the community is perfectly fo-
cused. A value above ε indicates that it is not focused.

Because a focused community can have multiple exclusive
attribute values, we now introduce the notion of maximal-

Figure 2: Partial view of the attribute lattice. Two connected
nodes (solid arrow) in the lattice indicate that a tuple can be
reached from the other through a single attribute generaliza-
tion. A dashed arrow indicates that two nodes have other
nodes between which are omitted due to space restrictions.

ity. A maximally focused community is a focused commu-
nity that cannot become larger by introducing a new or dif-
ferent attribute value without losing its focus property (Equa-
tion (1)). Note that a topic population might contain multi-
ple maximally focused communities which are guaranteed to
not overlap, based on the focus property (or might overlap
slightly depending on the relaxation value of ε).

Since the attributes values are hierarchical, as described
above, a value v can be generalized to a direct ancestor of
v in the hierarchy. Though generalization we can reach fo-
cused communities that were not possible as a combination
of base values. The generalization of any value except “*”
is possible; the root value “*” cannot be generalized since
it has no ancestors. We denote the case of a missing attribute
value using the “⊥” operator (bottom). A “⊥” value can be di-
rectly generalized to “*” through a single generalization step
no matter how high the attribute hierarchy is. In the general
case, an attribute a can be generalized from value va to value
vb if vb precedes or is equal to va in attribute a’s hierarchy.
We denote this relation between va and vb using the operators
� (succeeds) and � (precedes): vb � va or va � vb . As an ex-
ample, for the Location attribute the following relations are
true: Los Angeles � Los Angeles, Los Angeles � California,
Los Angeles � USA, California � *, etc.

The support of a generalized attribute value in P is equal
to the number of datapoints that contain any successor of
the value. For example, in a two-dimensional space, the tu-
ple [Location:California, Gender:*] matches datapoints like
[Los Angeles, Male] or [San Francisco, Female]. The tuple
that contains all the hierarchy roots is called HEAD: HEAD
≡ [∗,∗,...,∗,...,∗]. The HEAD tuple matches every datapoint
in P: ��HE AD | = ��P��. Figure 2 shows an example of the
formed lattice given a specific starting tuple with three at-
tributes: Location, Gender, and Age. Connected nodes are
reachable through a series of attribute value generalizations
(climbing).

Since every single tuple with unique attribute values is a po-
tentially self-contained focused community, we further re-
quire a focused community to meet a minimum support re-
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(a) (b)

Figure 3: (a) Sampling phase example. (b) An example case
where the greedy attribute selection policy can fail to select
the best attribute.

quirement, relative to the population P. More specifically, we
introduce a support threshold ξ ≤ 1 so that every maximally
focused community has support of at least ξ��P��.

EXTRACTING FOCUSED COMMUNITIES
The proposed algorithm aims to extract the (maximally) fo-
cused communities for any topic: Given a topic T , extract all
the maximally focused communities with a focus metric less
or equal to ε and support greater or equal to ξ. The output
of the algorithm is one or more tuples that define maximally
focused community through a combination of attribute val-
ues. We first provide a basic overview of the algorithm, then
discuss its two phases (sampling and climbing), show its effi-
ciency and accuracy based on synthetic data, and finally, offer
a way to deal with missing values in real datasets.

Overview of the Sample&Climb Algorithm
The algorithm can be applied on the set of datapoints that
mention a topic T (for example, all the tweets that mention
the hashtag #ObamaInThreeWords). This set of datapoints is
referred to as topic population P. To extract focused com-
munities for other topics the algorithm needs to be applied
separately to the corresponding sets of datapoints. Grouping
the whole stream of datapoints into separate topic populations
is a simple pre-processing step which will be discussed later.
In this section we will assume and describe a single instance
of the algorithm for a single topic. The extraction of a maxi-
mally focused community is an optimization problem: find a
combination of attribute values (tuple Ct ) that maximizes the
size of the community defined by Ct , while minimizing the
focus metric (Equation (1)). The Sample&Climb algorithm,
named by its two phases, initially selects a random sample of
datapoints from P (sampling phase) and uses each datapoint
as a starting point to reach the attribute values of a focused
community through a series of value generalizations (climb-
ing phase). As a real example, the Twitter hashtag “#Oba-
maInThreeWords” was found to have a single maximally fo-
cused community that includes supporters of the Republican
Party (Political affiliation), that are Male (Gender), between
the ages 19-22 (Age), and that live in the United States (Lo-
cation). In the following subsections we describe each phase
of the algorithm in detail.

Sampling Phase
The sampling phase must efficiently bootstrap the optimiza-
tion problem of extracting a tuple that defines a topic’s maxi-

mally focused community. The main goal is to avoid enumer-
ating all possible attribute combination which would be ex-
ponentially expensive and instead seed the process with base
combinations that are already observed in single datapoints.
To that end, we uniformly sample k tuples from P (datapoints)
and create a new set S; every tuple t ∈ S is then fed to the
climbing phase which will reach a potential maximally fo-
cused community. If the sampled tuple is actually a member
of a maximally focused community (checked by Equation 1),
the climbing phase should extract the community. If the sam-
pled tuple is not a member of any focused community the
climbing phase will not extract a community. The intuition
behind this approach is to probabilistically select datapoints
that might belong to a maximally focused community. This
intuition is visualized in Figure 3a where we assume that in a
population P two focused communities C1 and C2 exist. The
sampling of datapoints d1 or d2 can enable the extraction of
community C1. The sampling of datapoint d4 can enable the
extraction of community C2. The sampling of datapoint d3
does not enable the extraction of any community and a differ-
ent datapoint needs to be sampled. If the datapoint is indeed a
member of a community, then a series of attribute generaliza-
tions and focus metric computations can lead us to the actual
attribute values of the community. For example, if the fol-
lowing focused community exists: [Location: USA, Gender:
*, Age: 13-18] and the datapoint: [Santa Barbara, Male, 18]
is randomly selected then the location value can be general-
ized twice (Santa Barbara→ California→ USA), the gender
value once (Male→ *), and the age value once (18→ 18-23)
to reach the community.

When a sampled tuple successfully leads to the extraction of
a maximally focused community, the result is saved. If the
next sampled tuple succeeds an already extracted community,
by a previous iteration in the sampling phase, then the tuple
is skipped since it can only lead to a known community and
would be a waste of resources to process it. Pseudocode for
the sampling phase is provided in Algorithm 1. Line 5 tests
if the new sampled tuple succeeds an already extracted com-
munity c. If the tuple is already a successor of an extracted
community, the climbing phase is skipped since it will yield
the same result given that the climbing process is determinis-
tic. The returned result of the climbing phase is a maximally
focused community if climbing was successful, or NULL if a
focused community could not be extracted (line 8).

Based on the desired success probability of the sampling
phase pb , the appropriate minimum size of the sample S can
be determined. Let k be the number of sampled datapoints
and C a unique maximally focused community in P.

The sampling of datapoints can be simulated through a series
of Bernoulli trials where success is defined as the selection
of a datapoint tuple t so that t � Ct . The number of trials is
equal to the size of the sample: ��S�� = k. The probability of
success in a single trial is equal to p = ��C��/��P��. The probabil-
ity of at least one success out of k trials (we can assume that
P is large enough for the trials to be independent even without
replacement) is equal to 1 minus the probability of getting 0
successes. This probability is defined by the geometric equa-
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Algorithm 1: Sampling phase
Data: Tuples P, attribute hierarchies H[N]
Result: Set of maximally focused communities C

1 begin
2 C← {};
3 S← sample(P);
4 for t ∈ S do
5 if ∃c ∈ C t � c then
6 continue;
7 c← climb(t,P,H);
8 if c , NULL then
9 C← C∪ {c};

tion that describes the CDF of k Bernoulli trials: 1− (1− p)k .
Therefore, we have:

pb = 1− (1− ��C��/��P��)k = 1− (1− p)k (2)

We want to find the minimum value of k so that the right hand
of Equation (2) is greater or equal to pb . Let q = 1− p be the
probability of failure in a single trial.

pb ≤ 1− (1− p)k =⇒ qk ≤ 1− pb =⇒
q<1

k ≥ logq (1− pb ) =⇒

=⇒ k ≥
log(1− pb )

log(q)
=⇒

argmin
k =

⌈
log(1− pb )

log(q)

⌉

Note that k is not directly dependent to the size of the popu-
lation P, only on the probability of success pb . As an exam-
ple, to find focused communities with at least 30% the size of
population P and with success probability pb = .99 we need
at least 13 samples. For communities with size 70% or more
and the same probability pb we need only 4 samples.

Climbing Phase
The climbing phase follows the sampling phase by consum-
ing the sampled datapoint and producing a maximally fo-
cused community. More specifically, a tuple t is received
from the sampling phase and the focus metric from Equation
(1) is utilized to climb the lattice (see Figure 2) from t to a
new tuple t ′ � t, so that the support of t ′ in P is maximized
and is at least ξ, and t’s focus metric remains below the re-
laxation threshold ε . Similar to hill-climbing techniques, in
every new iteration a new neighbor of the current solution is
generated until an acceptable solution is reached. A tuple t
has N possible neighbors: each one can be reached by gener-
alizing a different attribute value of t.

Basic Climbing Approach
The pseudocode in Algorithm 2 describes this process. Start-
ing from a tuple t, a new neighbor is produced in every iter-
ation till a maximally focused community or a HEAD tuple
is reached. HEAD represents the unique tuple that has all of
its attribute values fully generalized: HEAD ≡ [∗,∗,...,∗,...,∗].
An accepted solution (focused community) is reached when
both conditions in line 5 in Algorithm 2 are satisfied (focus
metric and support). These two conditions alone do not guar-
antee maximality therefore the algorithm will not return at
this point but will continue until the HEAD is reached and at

this point will return the most recent accepted value for t ′.
In line 7 the next attribute for generalization is selected: ag .
Different selection policies will yield different results and of-
fer different guarantees. Using the selected attribute, a new
tuple ttemp is generated, identical to the previous ttemp on
all attributes except ag , which gets generalized (line 8).

Since the climbing process always follows an upward path –
a neighbor is created only by generalizing a single attribute –
there is a well defined maximum number of iterations, equal
to:
∑N

i=1(H[i].numLevels−1), where H[i].numLevels is the
number of hierarchical levels for the ith attribute. This sum
can be approximated by O(N ). However, the selection policy
for the next attribute to generalize has a significant impact on
the performance of extracting a tuple t ′ that eventually cor-
responds to a maximally focused community. We will first
discuss the exact selection policy that guarantees the discov-
ery of a maximally focused community and then propose a
greedy policy for a more efficient selection.

Algorithm 2: Climbing phase
Data: Attribute tuple t, all tuples P, hierarchies H[N]
Result: Maximally generalized tuple t ′

1 begin
2 ttemp ← t;
3 t ′← NULL;
4 while ttemp , HEAD do
5 if f ocus(ttemp ,P) ≤ ε and

support(ttemp ,P) ≥ ξ��P�� then
6 t ′← ttemp ;
7 ag ← getNext AttributeToGeneralize(ttemp ,P,H);
8 ttemp ← {a ∈ ttemp |ag ← H.parentV alue(ag )};

We start with a policy for selecting the next attribute of a tu-
ple t to generalize (ag) which guarantees reaching the correct
attribute values of a maximally focused community C, if one
exists and t � Ct . This policy involves choosing the attribute
with a value that when generalized to the next hierarchical
level results in the largest support for the new tuple:

argmax
ag ∈t

support({a ∈ t |ag .value← H.parent(ag .value)},P)

where ag .value is the current value of the attribute ag (e.g.
if the attribute is Location, it could be Los Angeles or Cal-
ifornia). The argmax function returns the attribute value for
which the tuple support attains its maximum value. The main
drawback of this approach is the need to calculate the support
of N different tuples in each iteration. Since a total of O(N )
iterations is required to reach a maximally focused commu-
nity, the total time complexity becomes quadratic (O(N2)).

Theorem 1. The generalization policy will lead to a
maximally focused community C if the starting tuple t � Ct .

Proof. Let C be a maximally focused community with size
��C�� ≥ ξP and with a focus metric less than ε . Let t be a start-
ing tuple with n attribute values so that t � Ct (Ct can be
reached by generalizing attribute values in t). Ct can be cor-
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rectly reached from t if after O(n) iterations t ′ becomes Ct .
The only way that a selection policy can fail to reach Ct , dur-
ing the climb from t to HEAD, is if one attribute value of t
gets generalized beyond the corresponding attribute value of
Ct . To prove the theorem we need to show that the selection
policy will never select to generalize an attribute of t that has
the same value with the corresponding attribute of Ct .

Let ti and t j be the ith and j th attribute values of t, and ci and
cj the ith and j th attribute values of Ct . Assume that ti has
reached the same value with ci , and that t j has not: t j � cj .
C is a maximally focused community so given the maximal-
ity property any further generalization of an attribute in Ct

cannot lead to a new focused community. Therefore, the gen-
eralization of ti will not increase the support of t while the
selection of attribute t j (or any other attribute not general-
ized to the same level with Ct ) will result in a new tuple t ′
with an increased support. Thus, as long as there are attribute
values in t that are not generalized to the same level of Ct ,
their selection will always be prioritized over attribute values
that have reached the correct level of generalization, till all of
them are correctly generalized.

Greedy Attribute Selection Approach
To improve the efficiency of the focused community extrac-
tion algorithm and render it scalable, we propose a greedy
policy to select the attribute ag : choose the attribute value
of the tuple that has the smallest support in P (argmin). The
intuition behind this approach is that in a focused commu-
nity defined by N characteristics, the characteristic with the
smallest support is the one that likely constrains the size of
the community the most. More specifically, the support of
a tuple t is equal to the size of the intersection of the N at-
tribute values in t and the size of this intersection is bounded
by the support of the attribute value with the smallest sup-
port. The only way to increase this bound is by generalizing
the smallest attribute in order to match more datapoints. This
observation is illustrated in Figure 1b: if either of va or vc is
generalized, the intersection of the three attributes will still be
limited by value vb and remain almost the same size. Instead,
the generalization of vb has the greatest potential to increase
the intersection. The mathematical form of this policy is:

argmin
ag ∈t

support(ag .value,P) (3)

The main benefit of the greedy policy over the exact ap-
proach, is the improvement of time complexity. While we
need to compute the support of N attribute values in each
iteration, we do not need to actually perform the operation
for every attribute value in every iteration, since only one of
the support values changes: the support of attribute ag which
gets generalized. All other attribute values of the tuple re-
main the same therefore their support does not change in the
next iteration. Storing in memory the support of the N − 1
attribute values only a single support calculation needs to be
performed per iteration. With an O(1) time complexity per
iteration the total climbing time complexity becomes O(N ).

The downside of the greedy policy is that it does not offer
specific guarantees for reaching a maximally focused com-

munity. In fact, there is a specific case where the greedy ap-
proach might choose to generalize an attribute value that is
not the correct one. Figure 3b visualizes this scenario where
all of the necessary requirements to fail are met: Assuming
that a correct community exists and is [male, California, 13-
22], if the climbing process seeded by the tuple [male,San
Francisco,18] has currently reached tuple [male, California,
18] then the greedy policy will select attribute value Califor-
nia for generalization since it has the smallest support. How-
ever, the correct choice would be to generalize the value 18 to
13-22 in order to reach the focused community. If California
is generalized, the focused community will not be reached.

Accuracy and Efficiency
To measure the accuracy and efficiency of the proposed al-
gorithm we created a synthetic dataset of artificial topic pop-
ulations that contain random focused communities. Using a
pseudo-random attribute generation process we were able to
inject communities into populations and then test the algo-
rithm for the expected result, something that is not realisti-
cally feasible in this scale on real data. The synthetic dataset
was specifically constructed to examine the accuracy and re-
call of the approach and includes a complete spectrum of
scenarios — some that might be rare in a real dataset. The
generation process for each topic population includes three
phases: (1) Choosing a random attribute space with number
of attributes n (between 5 and 20), possible values for each
attribute ai (between 2 and 50000), and the number of lev-
els in each attribute’s hierarchy hi (between 2 and 5). (2)
Choosing the attributes of the focused community C by ran-
domly selecting a value ci for each attribute ai , given equal
selection probability to each level of the hierarchy hi . The
result is a tuple that defines the expected focused commu-
nity. This community is also assigned a randomly selected
size ratio pC between 30% and 90% of the total size of the
topic population. (3) The creation of the topic population so
that it includes datapoints for the focused community but also
other noisy datapoints that might or might not be part of the
community. The population size was randomly selected be-
tween 10,000 and 1,000,000 datapoints to simulate numbers
close to ones observed in Twitter’s trending topics. A total
of 10,000 population groups were created, each with a sin-
gle maximally focused community. The algorithm settings
that we used are: selection policy: greedy, sampling size: 20
datapoints, ε : 0.15, ξ : 0.3

The algorithm was able to find the correct communities in
each synthetic population with an accuracy of 93.1%. A com-
munity extraction was labeled as successful when the exact
correct community (combination of attributes) could be iden-
tified. In the rest of the cases that failed, most of the time
there would be a community attribute value or two that were
more generalized than they should. Measuring the accuracy
on a per-attribute value basis, instead of the whole tuple, the
average accuracy is 97.2%. The running time for all 10000
cases was a little less than 10 minutes on a 2.6GHz CPU.

Handling Missing Values
As opposed to synthetic data, one of the challenges when
dealing with real social datasets is the sparsity of attribute
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values. This observed sparsity (missing values) is due to the
low recall of specific inference tasks which usually originates
in the general lack of sufficient information to infer attributes
with high confidence (e.g., not enough textual information
to infer the age of a user). In the presence of missing val-
ues (symbolized with ⊥), an attribute tuple will not match
every datapoint that it should. For example, the tuple [Cali-
fornia, Male, *] does not match the datapoint [Los Angeles,
⊥, 18] because ⊥ does not succeed Male. Therefore, if there
are missing values in each attribute, the observed size of the
community and the size of the exclusive feature(s) will differ
and the focus metric will not result to a focused community.

To overcome this problem, we allow a tuple to match missing
values during counting. Referring back to the previous ex-
ample, we allow the tuple [California, Male, *] to match the
datapoint [Los Angeles, ⊥, 18]. This alteration fixes the issue
of under-counting a tuple, but introduces over-counting: ad-
ditional datapoints are now counted as part of a community.
However, the community size over-estimation is statistically
bounded. Let v f be the attribute value that plays the role of
the exclusive feature in the focused community C and let m f

be the ratio of missing values for the attribute a f . The fo-
cused community can be divided in two parts: the datapoints
that belong in the community and have a value v f for the at-
tribute a f and the datapoints that belong in the community
and have a value ⊥ for the attribute a f (missing value). Sim-
ilarly, the datapoints outside the focused community can be
divided in two parts: the datapoints that have a value v′f , v f
for the attribute a f and the datapoints that have a value ⊥ for
the attribute a f (missing value). Note that there are no data-
points outside the community with value v f for the attribute
a f based on the definition of the focused community. The
datapoints that could be mistakenly counted are the ones out-
side the community, with a missing value. The expected size
of this subset is bounded by: m f (1− ξ)��P��. In the presence
of many missing values it is recommended to use a higher
support threshold ξ for the correct detection of focused com-
munities since the above value gets closer to 0 when ξ→ 1.

EXPERIMENTS WITH TWITTER DATA
To understand the effectiveness of the proposed algorithm we
performed experiments on a real dataset from Twitter. We
first present the available data and the inference process of
the user attributes like location and gender. We then discuss
some interesting findings from the extracted topics and the
corresponding communities in the results.

The Twitter Dataset
The used Twitter dataset contains a uniform 10% sample of
all the tweets and Twitter users from the following two pe-
riods: September 12 to October 26 of 2013 (45 days) and
April 16 to May 24 of 2014 (39 days). The pool of topics
contains every mentioned hashtag or capitalized entity from
the tweets’ raw text. The extracted tweet features include lo-
cation, the list of external user mentions (@-replies), the de-
vice the tweet was posted from (e.g. iPhone, Android, web
browser), and the general sentiment. Location extraction was
done on (1) the tweet level using Twitter’s geo-tagging mech-
anism, and to further improve the recall, on (2) the user level

using a user-provided raw text field (similarly to [23, 2]). To
infer location based on the user’s field we applied a simple but
precise pattern matching process that could identify location
patterns like: “City, Region, Country”, or “Region, Country”,
or just “Country”. To validate the patterns we used a Location
hierarchy provided by the MaxMind database [9]. The user
device was extracted from the available information provided
by the Twitter API. To infer the sentiment of a tweet we used
the SentiStrength tool [21]. Note that not all features were
available in every tweet; for example, less than 2% of the
tweets had an explicit location tag or non-neutral sentiment.

Meaningful and interesting community extraction requires a
diverse set of user characteristics/demographics. To expand
the number of extracted attributes from the Twitter dataset we
additionally infer the users’ age, gender, political affiliation,
and sports team preference. To extract gender and age we ap-
plied existing language models extracted from Schwartz et al.
[20] on social media data. To apply the models we gathered
all the tweets of every user for each of the two analyzed pe-
riods of data. While this is an expensive process, especially
space-wise, it can be done offline and does not affect the com-
plexity of our Sample&Climb algorithm. For political affilia-
tion we gathered the official Twitter accounts associated with
the three most popular US political parties: Democratics, Re-
publicans, and Libertarians. Then, a user’s political affiliation
was determined based on the simple majority of interactions
(@-replies) with these accounts (e.g. if a user mostly inter-
acts with Democrats, their party preference was labeled as
Democrat). Similarly for sports, we collected the Twitter ac-
counts of teams, players, and coaches for the following four
US professional sports: Baseball, Basketball, Football, and
Hockey. For every sport, a user’s team preference was in-
ferred based on their interactions with each team’s accounts.
For both party and sports team preference we aimed for high
accuracy even if it sacrificed recall. The average accuracy
across all the attribute inference processes is 92.1% without
including sentiment analysis which has a lower accuracy of
68.7%. Accuracy was manually calculated from random sam-
ples of 100 users and their tweets for each process.

In total, the experimental setup contained 10 attributes: 1)
Location (either from the tweet or the user), 2) Age, 3) Gen-
der, 4) Political affiliation, 5) Baseball team, 6) Basketball
team, 7) Football team, 8) Hockey team, 9) Tweeting device
(e.g. iPhone), and 10) Sentiment. While sentiment is not
strictly a user characteristic, it helps with the interpretation
of the results by hinting at the attitude of the community to-
wards the topic. Apart from Location and Device all hierar-
chies have only 2 levels (trivial). The Location hierarchy has
4 levels: city, region, country, and *. The Device hierarchy
has 3 levels: specific device, mobile/desktop, and *.

Setup and settings. The execution of the community extrac-
tion algorithm was applied on the stream of tweets using a
sliding window of size 500,000. On a typical day this amount
of tweets can be produced within two minutes of real time.
For every new window new topics get introduced, existing
topics receive additional mentions, and old topics get evicted.
To reduce noise, candidate topics are required to have at least

Session: Ranking & Recommendation CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1438



50 mentions during the window. The rest of the algorithm
settings are: selection policy: greedy, sampling size (k): 20
datapoints, ε : 0.15, ξ : 0.3. The choice of ε is based on the
fact that Twitter data is noisy and the community extraction
should be relaxed enough to accommodate this noise. The
value of the support threshold ξ is based on the average pop-
ulation of a Trending Topic on Twitter, which is usually be-
tween 1K and 200K tweets, therefore we can expect commu-
nities of size between 300 and 60K users (smaller communi-
ties would not be interesting).

Qualitative Evaluation of Twitter Results
For each window of 500k tweets, tweets were grouped by top-
ics to form the topic populations and the focused community
extraction algorithm was applied on each topic. The final out-
come of this experiment, is a list of topics and the correspond-
ing maximally focused communities that were extracted, in
each window. The extracted community of a topic might dif-
fer between different windows as additional users mention the
topic and the population changes. We highlight some topics
to showcase interesting behaviors and qualitatively argue that
the results actually make sense. These topics are listed in
Table 1 (general interest trends) and Table 2 (trends with a
sports related focus). A “*” value indicates that the attribute
got generalized to its top level of the hierarchy. A “⊥” value
indicates that there was not enough information to extract a
specific attribute value (due to missing values). Attribute val-
ues for Device and Basketball team are omitted due to lack
of space. Topics that appear twice are taken from different
days, and are listed to show the dynamic nature of focused
communities as the topic population grows or just changes.

An interesting topic worth discussing is the hashtag #Disney-
Side which was a social media campaign by US Disney Parks.
Disney asked fans to tweet photos of their ‘Disney Side’ from
their visit to a Disney theme park. During the first day, most
of the tweets occurred in the two cities where a Disney park is
located: Anaheim, California and Orlando, Florida. The next
day, the campaign audience expanded to include the whole
states of California and Florida.

Other interesting topics and communities identified by our
algorithm include: The hashtag #NavyYardShooting is about
the mass shooting that occurred on September 16, 2013 on a
US military base at Washington, D.C. and at its early stages
it was mostly discussed by young adults in the United States.
The topic #OscarTrial refers to the trial of the South African
Olympian Oscar Pistorius and our algorithm correctly cap-
tured the location of the focused community (South Africa).
Of particular interest, is topic #ReasonsToVisitEgypt which
originally started as a touristic campaign for Egypt but got
highjacked with citizens’ complains, hence the extracted neg-
ative sentiment. Topic Penn State is related to a college foot-
ball match where college Penn State played in Bloomington,
Indiana. Indianapolis is also in the results since it is the cap-
ital of the Indiana state and it is very likely that fans/students
might have specified it as their location. #auspol is a hash-
tag about police brutality in Australia. In the early stages of
the trend it was mostly mentioned in the two largest cities of
Australia but as it became popular, the whole country became

the focused community. The topic #FreeJustina is about an
arrested female teen named Justina from Boston. We observe
that women in the area of Boston, MA, that also support the
Democratic party, showed their solidarity to Justina through
this hashtag. #cdnpoli stands for ‘generic canadian politi-
cal issues’ and this is why the topic’s location is in Canada.
#AZvsNO stands for ‘Arizona vs New Orleans’ and is de-
scribes an American Football match. #Boston is an interest-
ing case with a focused community of users that were fans
of local teams in all three sports. Finally, topics like #PS4,
which stands for ‘Play Station 4’, and #Bring1DtoGreece ,
which stands for ‘Bring 1Direction (the boy band) to Greece’,
further show how our algorithm identified the correct charac-
teristics of the interested populations in each case.

There are also cases of topics and communities that we could
not explain by associating the topic to a real event or expected
behavior. For example, the topic #SundayFunday was found
to have a maximally focused community of young-adult fe-
male residents of Houston, Texas. Or, the topic #DefyExpec-
tations was found to be discussed by a focused community of
teenagers. It is hard to explain why these specific communi-
ties were interested in these generic topics at a particular point
in time. There are several cases like these in our results which
proves that the topic-mentioning behavior of users in Social
Media can be unpredictable and will be further studied in fu-
ture work. However, uncovering the underlying characteris-
tics of the topic population is a significant step towards this
direction. Finally, an interesting general observation is that
for topics related to activism or politics, usually the male de-
mographic was prevalent (with exceptions like #FreeJustina).
For topics related to memes or pop culture, mostly the female
demographic was prevalent.

APPLICATION: COMMUNITY-BASED TOPIC RANKING
One potential application for the extracted focused communi-
ties is to re-rank trending topics in order to increase their en-
gagement potential as a social content recommendation sys-
tem. In this section we discuss a ranking formula and then
show through experimental evaluation that with very basic
calculations, ranking by focused communities leads to more
engaging topics as compared to two standard baselines. Ide-
ally, the community attributes can be exploited to deliver a
more personalized recommendation experience to users by
showing them topics with similar characteristics. We plan
to further explore increasing the relevance of trending topics
through this approach in future work.

Ranking Formula
To obtain an interesting ranking of topics we use a combi-
nation of two measures: Inverse Community Frequency and
Relative Community Popularity. Both measures aim to nor-
malize the raw frequency of a topic in order to boost those
topics with interesting focused communities. Inverse Com-
munity Frequency (icf) is inspired by Inverse Document Fre-
quency from text document ranking in Information Retrieval.
Here we use it in a similar context: to tune down community
characteristics that get associated with many topics. A com-
munity characteristic that appears in few topics only should
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Table 1: Examples of general Trending Topics.

Topic Size Sentiment Location Age Gender Politics Size
#PS4 114 * * 13-18 Male ⊥ 111
#Bring1DtoGreece 117 * Athens:AT:GR 13-18 Female ⊥ 110
#NavyYardShooting 5427 Negative US 19-22 * * 5218
#OscarTrial 1242 Negative Johannesburg:ZA * Female ⊥ 1133
#ReasonsToVisitEgypt 50 Negative AL:EG, CA:EG * * ⊥ 49
#DisneySide (day 1) 54 Positive Anaheim:CA:US, Orlando:FL:US * Female ⊥ 50
#DisneySide (day 2) 53 * CA:US, FL:US * Female ⊥ 51

Penn State 64 Negative Bloomington:IN:US,
Indianapolis:IN:US 19-22 Male * 56

#auspol 55 * Melbourne:VIC:AU,
Sydney:NSW:AU * Male ⊥ 51

#auspol 461 Negative AU * * ⊥ 457
#FreeJustina 54 Negative Boston:MA:US * Female Democrats 51
#cdnpoli 151 Negative ON:CA 23-29 Male Republicans 139
White House 2989 * US * Male Republicans 2868
#ObamaCare 5090 Negative US * Male Republicans 4818
#ObamaInThreeWords 246 Negative US 19-22 Male Republicans 224

Table 2: Examples of Trending Topics in sports.

Topic Size Location Age Gender Baseball Football Hockey Size
#TMLtalk 3437 Toronto:CA 19-22 * ⊥ ⊥ Toronto Maple Leafs 3096

#AZvsNO 50 ⊥ 19-22 * ⊥

Arizona
Cardinals, New
Orleans Saints

⊥ 50

#RedSox 528 Boston:US 19-22 Male Boston Red Sox ⊥ ⊥ 411

#Boston 51 ⊥ ⊥ ⊥ Boston Red Sox New England
Patriots Boston Bruins 51

be more interesting. Inverse Community Frequency, mea-
sures how many topics in the whole window W of datapoints
also share a community characteristic. For example, the icf of
location Santa Barbara will depend on how many topics in W
have a focused community that contains Santa Barbara. The
icf score of a community C is the product of icf scores for
each attribute value in C. The icf score for a single attribute
value a is equal to:

ic f (a) = log
Nt

|{T ∈W |a ∈ C}|

where Nt is the total number of topics in W and the fraction
denominator is equal to the number of topics T in W with
a community C that contains the attribute value a. Relative
Popularity takes values between 0 and 1 and practically com-
pares the size of a topic’s focused community with the size of
the community with the same characteristics in the window
W of datapoints. The relative popularity score is calculated
as the fraction of the support of a community in P over the
support of the community in W:

rp(C) =
support(C,P)
support(C,W )

For example, if a topic is being discussed by 100 women and
the number of women in W is also 100, then this community

has a relative popularity of 1. The overall scoring function
is based on each topic’s extracted focused community C and
uses both notions of relative popularity and exclusive focus:

score(T ) = |P | × rp(C)× ic f (C) (4)

where C is a focused community of the topic T, P is the popu-
lation of the topic. The overall score of a topic is proportional
to the topic’s raw frequency (size of P), the relative popularity
score of the topic’s community, and the icf score of its com-
munity. Using this score metric we rank the candidate topics
and obtain a final list of top-k topics which we will refer to as
community-based topics or c-topics.

Experiments
To evaluate the ranking of community-based topics we used
two baselines: (1) the raw-frequency baseline where top-
ics are ordered by the number of mentions (also referred to
as f-topics) and (2) the burstiness baseline where topics are
ordered based on their temporal trendiness, which is calcu-
lated through chi-squared (expected vs. observed frequency
of the topic). The latter baseline is time sensitive and requires
the monitoring of each topic’s historic frequency to capture
its average and seasonal changes in frequency. The aver-
age historic frequency is the expected value and is used in
the calculation of the chi-squared formula to measure how
bursty a topic might be, given a new observed frequency:
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χ2 = (Expected −Observed)2/Expected. We will also re-
fer to the burstiness-based topics as b-topics.

Based on the experimental results, we found that raw fre-
quency leads to popular but not necessarily informative or
disparate topics (e.g. #ipad). Burstiness leads to better topi-
cal diversity by eliminating those high frequency topics that
are consistently popular. On the other hand, topics ranked
based on their focused-community characteristics appear to
generally be more interesting and are further enhanced with
the information of who is interested in each topic. The aver-
age similarity between the community-based topics and each
baseline was measured with the Set Based Measure described
in [26]. In general, the goal is to determine the fraction of
content overlapping (set intersection) at different depths of
the ranking lists. Between the raw frequency ranking and the
community-based ranking the average set based measure with
a depth of 20 is equal to 0.089 while with a depth of 10 is
0. Between the burstiness based ranking and the community-
based ranking the average set based measure with a depth of
20 is equal to 0.122 while with a depth of 10 is 0.098. These
values indicate that the three rankings produce mostly hetero-
geneous top-k lists and signifies that highly popular or bursty
topics usually do not contain focused communities.

As with many unsupervised learning tasks, evaluating the
produced results is a challenging task. In content recommen-
dation systems used by real users, one can run A/B tests to
compare the success of the algorithm with a baseline. To eval-
uate the community-based topics in terms of potential use-
fulness and interestingness we (a) measure the entropy of the
results as an objective quantitative measure, and (b) asked hu-
man evaluators to choose their favorite topics from a pool.

Using the notions of Self-information and Entropy from In-
formation Theory we provide a measure of the informa-
tion content for community-based trending topics. Self-
information captures how surprising an event is based on
the probability of the event. The entropy of the experiment
(extracting community-based trending topics) is the expected
value of every trending topic’s self-information. The self-
information of the community CT for a single topic T is
I (CT ) = −log2(Prob(CT )). Intuitively, the less likely a com-
munity is to observed the higher its self-information. The
prior probability of CT can be measured in the sliding window
as the percentage of datapoints that contain CT . The entropy
of the results is equal to the expected value of all topic com-
munities: E[I (CT )] (measured in bits). We also measured
in the same way the entropy of communities associated with
trends ranked by raw frequency and burstiness. In the major-
ity of those cases, topics did not have a focused community
but rather were mentioned by users with dispersed attribute
values. However, we can still calculate the probability of the
observed population characteristics for each topic based on
the prior probabilities from the sliding window. The aver-
age entropy for the community-based topics was found to be
1.87 bits, for frequency-based topics it was much lower: 0.27
bits, and for burstiness-based topics it was similarly lower:
0.35 bits. This indicates that the extracted topics using our
method contain surprising and potentially useful communi-

ties that cannot be trivially anticipated or that are not observed
in topics ranked by frequency/burstiness.

Since we aim to use the new ranking to improve the recom-
mended social content, we need to observe that real humans
would be interested in viewing more content related to an ex-
tracted community-based topic. To quantify this property we
use the two baselines described above, raw frequency and
burstiness. We offer to each evaluator an unlabeled selec-
tion of 10 topics (pool) and ask them to pick the top 5 (in
no particular order) based on which they find the most in-
teresting. In the experiment description a topic is defined as
interesting to a user if they would like to read more about
it: get tweets about it, read news articles, see related images,
etc. In the first experiment each pool of 10 topics included 5
frequency-based and 5 community-based topics. In the sec-
ond experiment, each pool contained 5 burstiness-based and
5 community-based topics. In both cases we evaluated how
community-based topics compare to each baseline. To reduce
any bias on the reported evaluations results, we performed
each experiment with 5 different topic pools (so a total of 10
pools was created). Each pool was evaluated by an average
of 61 Amazon Turk workers located in the United States.

The results are shown in Table 3 for the first experiment
(f-topics baseline) and Table 4 for the second experiment
(b-topics baseline). We counted for each pool how many
times each topic was selected as interesting and sorted them
by this number. The first three rows of each table display
the percentage of community-based topics (c-topics) in the
top-1, top-3, and top-5 of the evaluators’ selections respec-
tively. On average, the 73.3% of the top-3 selected topics
was comprised of community-based topics when compared
with raw-frequency topics and 79.96% when compared with
burstiness-based topics. For the top-1 in the majority of the
pools the evaluators selected a community-based topic most
of the times. These values indicate that for both baselines, the
majority of selected topics was community-based. The final
two rows of each table show the percentages of c-topic and
baseline-based topic (f-topic and b-topic) selections — how
many times an evaluator clicked a topic of each category as
interesting. This value can also be viewed as the probability
of each category/method to produce an interesting topic. On
average, community-based topics have 26.86% better chance
to be more interesting than raw-frequency ranked topics and
49.43% better chance than burstiness ranked topics, which
shows that in most cases users found our algorithm’s results
more appealing. Some topics ranked by raw frequency or
burtiness are still interesting to users due to their popularity,
but overall our method delivers more appealing results to the
average person as represented by Amazon Turkers.

RELATED WORK
Existing social content recommendation systems have mainly
relied on the similarity of users in the social network. Walter
et al. [24] have proposed a model to use the users’ social con-
nections to reach contents and filter the contents by their trust
relationship. Golbeck et al. [11] have considered online so-
cial networks as recommendation networks by exploiting the
easiness of information cascades on such platforms. DuBois
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Table 3: Evaluation results from Amazon Turk on 5 different pools of topics. Comparison with raw-frequency baseline.
Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 All Pools Average

% of c-topics in top-1 0% 100% 100% 100% 100% 80%
% of c-topics in top-3 33.3% 100% 66.6% 100% 66.6% 73.3%
% of c-topics in top-5 60% 60% 40% 80% 60% 60%
% of clicks on c-topics 49.75% 54.86% 52.28% 64% 58.75% 55.92%
% of clicks on f-topics 50.25% 45.14% 47.71% 36% 41.25% 44.08%

Table 4: Evaluation results from Amazon Turk on 5 different pools of topics. Comparison with burstiness baseline.
Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 All Pools Average

% of c-topics in top-1 100% 100% 100% 100% 100% 100%
% of c-topics in top-3 66.6% 66.6% 66.6% 100% 100% 79.96%
% of c-topics in top-5 60% 40% 80% 100% 100% 76%
% of clicks on c-topics 54% 52.4% 62.2% 63.6% 66.8% 59.8%
% of clicks on b-topics 46% 47.6% 37.8% 36.4% 33.2% 40.02%

et al. [10] have proposed to improve the collaborative filter-
ing recommendations by using the trust information as the
weights between users. Finally, a hybrid approach was intro-
duced by Wang et al. [25]. In the current work we utilize the
notion of trending topics as a platform for content recommen-
dation and identify communities based on common attributes
(demographics) between the users to further boost this no-
tion. Many algorithms have been proposed for discovering
interesting trending topics utilizing techniques from the ar-
eas of Anomaly Detection, Data Streams, and Clustering. In
existing studies, trending topics are mined for specific inter-
est areas like Sport [15], Earthquakes [18], News reporting
[14, 19], general event detection [17, 1], or search support on
trending events [12]. In this paper we research the novel idea
of identifying the underlying user communities that are inter-
ested in social media topics and then utilize this knowledge
with the overall goal of providing more interesting, insightful,
and relevant content to the users of the social network. Such a
task can be challenging in terms of complexity when dealing
with a non trivial number of community characteristics. The
official Twitter Trending Topics are personalized to the user
by displaying the top topics from categories the user is inter-
ested in. This is a simple approach to serve relevant trends
but focuses only on interests (e.g. Technology, Politics) or
location, and does not identify topics where the underlying
population has specific properties, thus, can miss less popular
topics with highly interesting community characteristics.

Our algorithmic work builds on many techniques in areas
that share common properties with this problem, most no-
tably from Subspace Clustering and Frequent Itemset Extrac-
tion/Association Rule Mining. Association Rule Mining us-
ing Frequent Itemset Extraction [4] is a well studied area and
poses similarities to the attribute-based community extrac-
tion. Techniques that sample the data to perform fast item-
set extraction are the closest to our proposed approach since
probabilistic algorithms are used to reduce complexity. Such
techniques include Toivonen [22] and Chakaravarthy et al.
[8]. Clustering algorithms for data in multiple dimensions,
known as subspace clustering algorithms, are usually divided
in two categories: density-based methods and k-means-based
methods. A detailed survey on both categories can be found
in [13]. Similar algorithmic principles are used to solve the

frequent itemset and association rule mining problems as well
(e.g. a-priori pruning is used in [4] and [3]). Our approach
mainly differs from existing sub-space clustering and associ-
ation rule mining techniques by combining a sample phase
and then a greedy climbing of the lattice to efficiently (lin-
ear time) identify the combination of user characteristics that
form a community for a particular trending topic. Efficiency
is key since vast amounts of data are processed in real time.

Finally, similar to our approach, probabilistic or Monte Carlo
based methods for community extraction have also been ex-
plored in Perozzi et al. [16]. They study extracting commu-
nity attributes that form highly connected subgraphs within
the social network. To detect the correct values for each at-
tribute they utilize Monte Carlo sampling to randomly select
values until a connected subgraph is formed. Our approach
seeds the process by sampling k datapoints from a trending
topic’s population. This leads to a much more agile and effi-
cient attribute value selection process.

CONCLUSIONS
We study the problem of extracting multi-dimensional com-
munities focused on individual topics by introducing the no-
tion of a maximally focused community with properties that
enable the efficient discovery of interested communities de-
fined by a subset of social attributes. These properties led
to the development of an algorithmic framework for the ex-
traction of maximally focused communities of any topic with
proved linear time complexity. Finally, we provide a robust
ranking that boosts topics with relatively popular or exclu-
sively focused communities through metrics adapted from IR.

Extensive experimentation was conducted on two different
datasets: one real from Twitter with data from large periods
in 2013/14 and one synthetic. The results highlight the effi-
ciency, correctness, and stability of our proposed algorithm.
As an application, we demonstrate the power of our approach
to identify interesting communities for trending topics, some-
times expected and sometimes unexpected. It is interesting
to observe that females in Boston, which also support the
Democratic party, show their solidarity to an arrested teen
(#FreeJustina). It is unexpected to discover the hijacking of a
touristic hashtag in Egypt from local citizens that try to raise
awareness for the country’s political situation (#ReasonsTo-
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VisitEgypt). Such data can be used to better understand a
topic’s population and, essentially, recommend more relevant
and interesting social content to the users.
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