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a b s t r a c t

We consider multicomponent reactive transport in porous media involving three reacting species, two of

which undergo a nonlinear homogeneous reaction, while a third precipitates on the solid matrix through

a heterogeneous nonlinear reaction. The process is fully reversible and can be described with a reaction of

the kind Aþ B!C! S. The system’s behavior is fully controlled by Péclet (Pe) and three Damköhler

ðDaj; j ¼ f1;2;3g) numbers, which quantify the relative importance of the four key mechanisms involved

in the transport process, i.e. advection, molecular diffusion, homogeneous and heterogeneous reactions.

We use multiple-scale expansions to upscale the pore-scale system of equations to the macroscale, and

establish sufficient conditions under which macroscopic local advection–dispersion–reaction equations

(ADREs) provide an accurate representation of the pore-scale processes. These conditions reveal that

(i) the heterogeneous reaction leads to more stringent constraints compared to the homogeneous reac-

tions, and (ii) advection can favorably enhance pore-scale mixing in the presence of fast reactions and

relatively low molecular diffusion. Such conditions are summarized by a phase diagram in the (Pe,Daj)-

space, and verified through numerical simulations of multicomponent transport in a planar fracture with

reacting walls. Our computations suggest that the constraints derived in our analysis are robust in iden-

tifying sufficient as well as necessary conditions for homogenizability.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear reactive transport in media with micro-structure is

ubiquitous to many environmental, industrial and biological sys-

tems. While a majority of classical results in porous media theory

have been obtained in the context of single- and multi-phase sub-

surface transport [8,13,19], more effective recent investigations

have focused on biological systems, e.g. calcium dynamics in cell

membranes [12,18], and technological applications [4]. Other

applications include chemical weathering, contaminant transport

in aquifers [8], and geologic CO2 sequestration [27].

The plethora of scales involved in such systems allows one to

employ two general approaches in modeling transport phenom-

ena: pore-scale or Darcy-scale (macroscopic, upscaled, continuum)

models. Pore-scale simulations, e.g. pore-network models, lattice

Boltzmann simulations [33], and particle methods [29], are based

on first principles, and therefore have strong physical foundations.

Such models allow one to gain significant insight in the physical

process at the pore-scale. However, they require the knowledge

of pore-scale geometry at any location in the computational do-

main, information seldom available in most applications. This ren-

ders them impractical as a predictive tool at spatial and temporal

scales much larger than the pore-scale. Continuum-scale models

are based on an effective medium representation of the system

with effective transport parameters such as porosity, dispersion

coefficient, hydraulic conductivity, and effective reaction rates.

Since upscaled models significantly alleviate computational bur-

den, they are routinely used to model reaction processes at the

macro-scale. However they rely on phenomenological descriptions

and/or closure assumptions which typically include geometrical

constraints that guarantee scale separation between the pore-

and continuum-scales, linearization of pore-scale equations, and

empirical closures, just to mention a few. These assumptions are

often necessary to fully decouple the pore-scale description and

its continuum counterpart, and to obtain a local upscaled equation.

Upscaling techniques - e.g. volume averaging [36], the methods of

moments [11], homogenization [19] and its modifications to in-

clude evolving microstructure [1,28], pore-network models, and

thermodynamically constrained averaging [16] – allow one to for-

mally establish the connection between pore- and continuum-

scale models.

While Darcy’s law has proven to be very robust in modeling

flow through porous media from the field- (i.e. kilometer-) to the

micron-scale [3,4], the advection–dispersion-reaction equations

(ADREs) fail to capture a number of observed transport features,

including the extent of reactions in mixing-controlled chemical

transformations [38] and asymmetrical long tails of breakthrough
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curves [26], just to mention a few. Further, scale dependence of

effective transport parameters [21,22] and discrepancy between

lab and field experiments have long been recognized. They are

attributed to concentration gradients and mass transport limita-

tions at the pore-scale [24]. These shortcomings manifest them-

selves when the approximations and/or closure assumptions

underlying the continuum model are not fulfilled. Most upscaling

studies focus on the derivation of effective medium representa-

tions for specific physical and geochemical processes [15, and ref-

erences therein]. However, they rarely specify in which range of

parameters or physical regimes (e.g. diffusion- or reaction-con-

trolled), such continuum-scale models are valid. Therefore, the

application of macroscopic models to reactive systems with strong

chemical/physical heterogeneity can be problematic since pore-

scale reaction rates might exhibit a broad variability, and the trans-

port process span significantly different regimes [38, and refer-

ences therein].

The growing attention towards the mathematical foundations

of effective models and the connection between pore-scale pro-

cesses and their representation at the continuum scale is reflected

by the increasing interest in modeling reactive transport at the

micro-scale [9,29,33,37], and the concurrent development of mul-

ti-algorithm (or hybrid) models which combine descriptions at

different scales [7,31,33]. In a number of works, e.g. [24,32],

pore-scale simulations served as a tool to both gain insight in the

physical processes, and to verify the validity of macroscopic mod-

els. Fewer are the works which have explicitly addressed the prob-

lem of establishing conditions under which the pore-scale

processes correctly upscale to local macroscopic equations, e.g.

[2,5,6,23,35]. Studies on the applicability range of macroscopic

equations have involved the advection–dispersion equation

(ADE) for conservative transport [2], the Taylor dispersion problem

in a fracture with reactive walls [23], purely reactive–diffusive

multicomponent systems with nonlinear homogeneous reactions

[6], and single component advective systems with nonlinear heter-

ogeneous reactions [5]. The influence of mixing on the effective

reaction rate has had a long history in mathematics and engineer-

ing, e.g. [14,38, and references therein].

In this work we generalize [5] by considering multicomponent

reactive transport in porous media involving three reacting spe-

cies, two of which undergo a nonlinear homogeneous reaction in

the liquid phase, while a third precipitates on the solid matrix

through a heterogeneous nonlinear reaction at the solid–liquid

interface. The fully reversible biomolecular precipitation/dissolu-

tion process can be described with a reaction of the type

Aþ B!C! S. Calcite precipitation provides one example for this

type of reactions [24]. Additionally, numerical simulations of mul-

ti-component reactive flow in a planar fracture are employed to

verify the homogenizability conditions derived by multiple-scale

expansions.

We start, in Section 2, by formulating a pore-scale model for the

system under consideration, and by defining the dimensionless

Péclet (Pe) and three Damköhler ðDaj; j ¼ f1;2;3g) numbers which

quantify the relative importance of the four key mechanisms in-

volved in the transport process, i.e. advection, molecular diffusion,

homogeneous and heterogeneous reactions. In Section 3, by means

of multiple-scale expansions [19], we upscale the pore-scale

system of equations to the macroscale, and establish sufficient

conditions under which macroscopic local advection–dispersion–

reaction equations (ADREs) provide an accurate representation of

pore-scale processes. Such conditions are summarized by a phase

diagram in the (Pe,Daj)-space. Section 4 discusses a number of spe-

cial cases. In Section 5 we verify the previously derived conditions

through pore-scale numerical simulations of multicomponent

transport in a planar fracture with reacting walls. Finally, the main

results are summarized in the concluding Section 6.

2. Problem formulation

Consider reactive transport in a porous medium X̂ whose char-

acteristic length is L. Let us assume that the medium can be rep-

resented microscopically by a collection of spatially periodic ‘‘unit

cells’’ Ŷ with a characteristic length ‘, and a scale parameter

e $ ‘=L % 1. The unit cell Ŷ ¼ B̂ [ Ĝ consists of the pore space B̂

and the impermeable solid matrix G, separated by the smooth

surface Ĉ. The pore spaces B̂ of each cell Ŷ form a multi-con-

nected pore-space domain B̂e & X̂ bounded by the smooth surface

Ĉe.

2.1. Governing equations

Let us assume the porous medium to be fully saturated with an

incompressible fluid. Single-phase incompressible Stokes flow in

the pore-space B̂e is described by the Stokes and continuity equa-

tions subject to the no-slip boundary condition on Ĉe,

mr2
v̂e 'rp̂ ¼ 0; r ( v̂e ¼ 0; x̂ 2 B̂e; v̂e ¼ 0; x̂ 2 Ĉ

e; ð1Þ

where v̂eðx̂Þ is the fluid velocity, p̂ denotes the fluid dynamic pres-

sure, and m is the dynamic viscosity. The liquid is a solution of two

chemical (or biological) species A and B (with concentrations âeðx̂; t̂Þ

and b̂eðx̂; t̂Þ at point x̂ 2 B̂e and time t̂, respectively) that react to

form an aqueous reaction product C. Whenever ĉeðx̂; t̂Þ, the concen-

tration of C, exceeds a threshold value c in proximity of a reactive

wall, C undergoes a heterogeneous reaction and precipitates on

the solid matrix, forming a precipitate S. In general, this process is

fully reversible, and its speed is controlled by the reaction rates

kab; k; kc and kd corresponding to the following reactions,

Aþ B!
kab

C!
k
S and Aþ B 

kc
C 

kd
S: ð2Þ

The aqueous concentrations âeðx̂; t̂Þ; b̂eðx̂; t̂Þ and ĉeðx̂; t̂Þ ½mol L'3 sat-

isfy a system of advection–reaction–diffusion equations (ARDEs)

@ t̂âe ¼ r̂ ( ðDar̂âe ' v̂eâeÞ ' kabâeb̂e þ kc ĉe; x̂ 2 B̂e; t̂ > 0 ð3aÞ

@ t̂b̂e ¼ r̂ ( ðDbr̂b̂e ' v̂eb̂eÞ ' kabâeb̂e þ kc ĉe; x̂ 2 B̂e; t̂ > 0 ð3bÞ

@ t̂ ĉe ¼ r̂ ( ðDcr̂ĉe ' v̂eĉeÞ þ kabâeb̂e ' kc ĉe; x̂ 2 B̂e; t̂ > 0; ð3cÞ

where the molecular diffusion coefficient Di, i ¼ fa; b; cg, is, in gen-

eral, a positive-definite second-rank tensor. At the solid–liquid

interface Ĉe impermeable to flow, mass flux of the species C is bal-

anced by the difference between the precipitation and dissolution

rates, Rp ¼ kĉne and Rd ¼ kd, respectively [20]. Therefore,

'n (Dcr̂ĉe ¼ kðĉne ' cnÞ; x̂ 2 Ĉ
e; t̂ > 0; ð4Þ

where n is the outward unit normal vector of Ĉe; k ½L3n'2T'1mol
1'n

+

is the heterogeneous reaction rate constant, n 2 Z
þ is related to the

order of reaction [25, Eq. 6] and the threshold concentration

cn ¼ kd=k represents the solubility product [25]. Due to precipita-

tion on the solid–liquid interface, Ĉeðt̂Þ evolves in time with velocity

v̂s, according to qsv̂s ( n ¼ kðĉne ' cnÞ, where qs is the molar density

of the precipitate [34]. In the following analysis, we disregard pre-

cipitation-induced changes in pore geometry which occur on a time

scale longer than the processes under investigation [6]. No-flux

boundary conditions hold for species A and B on the (multi-con-

nected) liquid–solid interface Ĉe, i.e.

n ( ðDar̂âeÞ ¼ n ( ðDbr̂b̂eÞ ¼ 0: ð5Þ

Further, the flow and transport equations (1) and (3) are supple-

mented with proper boundary conditions on the external boundary

of the flow domain X̂ and with the initial conditions

âeðx̂;0Þ ¼ âinðx̂Þ; b̂eðx̂;0Þ ¼ b̂inðx̂Þ; ĉeðx̂;0Þ ¼ ĉinðx̂Þ: ð6Þ
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Specifically, we consider a scenario in which reactants A and B, with

initial concentrations âin > 0 and b̂in > 0 respectively, are initially

(i.e. t̂ < 0) separated in space, and brought in contact with each

other at time t̂ ¼ 0. Therefore the initial concentration of reaction

product C is ĉin ¼ 0. Such initial distribution of the three species

has the advantage of amplifying the reactions occurring along the

reactive walls since ĉin – c, and inducing the formation of a local-

ized reacting front.

2.2. Dimensionless formulation

For the sake of simplicity, we assume that the three reacting

species A, B and C have the same diffusion coefficient, i.e.

Da ¼ Db ¼ Dc ¼ D. We introduce the following dimensionless

quantities

ae ¼
âe
ĉH

; be ¼
b̂e
ĉH

; ce ¼
ĉe
c
; D ¼

D

D0

; x ¼
x̂

L
; ve ¼

v̂e

U
;

p ¼
p̂‘2

mUL
; ð7Þ

where U;D0 and ĉH ¼ maxfâin; b̂ing are characteristic values of v̂e;D

and the concentration of the reactants A and B, respectively. Proper

rescaling of pressure p̂ ensures that the pressure gradient has the

same order of magnitude of the viscous term, as prescribed by

Stokes equation [2, Eqs. 15, 16]. Furthermore, the following time

scales can be defined

t̂d ¼
L2

D0

; t̂a ¼
L

U
; t̂r1 ¼

L

k!cn'1
; t̂r2 ¼

1

kabĉH
; t̂r3 ¼

1

kc
; ð8Þ

where t̂d and t̂a are the time scales associated to diffusion and

advection. The three reactions, i.e. heterogeneous, nonlinear homo-

geneous and linear homogeneous reactions, are described by the

time scales t̂r1; t̂r2 and t̂r3, respectively. Ratios between these time

scales define the dimensionless Péclet (̂td=t̂a) and Damköhler

(̂td=t̂rj; j ¼ f1;2;3g) numbers,

Pe ¼
UL

D0

; Da1 ¼
Lk

D0

cn'1; Da2 ¼
L2kab
D0

ĉH; Da3 ¼
L2kc
D0

ð9Þ

Rewriting (1), (2) and (3) in terms of the dimensionless quantities

(7) and the dimensionless time t ¼ t̂=t̂d yields a dimensionless form

of the flow equations

e2r2
ve 'rp ¼ 0; r ( ve ¼ 0; x 2 Be; ð10Þ

subject to

ve ¼ 0; x 2 C
e ð11Þ

and of the transport equations

@tae þr ( 'Drae þ Peveaeð Þ ¼ 'Da2aebe þ gDa3ce; ð12aÞ

@tbe þr ( 'Drbe þ Pevebeð Þ ¼ 'Da2aebe þ gDa3ce; ð12bÞ

@tce þr ( 'Drce þ Peveceð Þ ¼ g'1Da2aebe ' Da3ce; ð12cÞ

where g ¼ !c=ĉH. The system (12) is subject to

n (Drae ¼ n (Drbe ¼ 0; 'n (Drce ¼Da1 cne '1
! "

; x 2Ce; t > 0:

ð13Þ

The initial conditions read

aeðx;0Þ ¼ ainðxÞ; beðx;0Þ ¼ binðxÞ; ceðx; 0Þ ¼ cinðxÞ: ð14Þ

3. Homogenization via multiple-scale expansions

We proceed by employing the method of multiple-scale expan-

sions [2,19] to homogenize (upscale) the transport equations (10),

(11), (12a)–(12c), (13) from the pore-scale to the macro-scale, and

to derive effective equations for the average flow velocity hveðxÞi

and solutes’ concentrations haeðx; tÞi; hbeðx; tÞi, and hceðx; tÞi.

In Section 3.1 we provide the relevant definitions and the

general framework of the upscaling procedure. While the techni-

cal details of the derivation are presented in Appendix, the re-

sults of the homogenization procedure are summarized in

Section 3.2. Here, we present a phase diagram identifying condi-

tions under which the upscaled (macroscopic) system of equa-

tions is valid.

3.1. Preliminaries

Given any pore-scale quantity we,

hwei $
1

jY j

Z

BðxÞ

wedy; hweiB $
1

jBj

Z

BðxÞ

wedy; and

hweiC $
1

jCj

Z

CðxÞ

wedy ð15Þ

are three local averages (function of x) over the pore space BðxÞ of

the unit cell YðxÞ centred at x. In (15), hwei ¼ /hweiB and / ¼ jBj=jY j

is the porosity.

Within the framework of multiple-scale expansions method, we

introduce a space variable y defined in the unit cell, i.e. y 2 B, and

four time variables. One of the four time variables is related to the

advection time scale sa, while three are associated with the reac-

tions time scales. The latter are represented by the vector sr with

components ½sr+j ¼ srj; j ¼ f1;2;3g. Each variable is defined as

follows,

y ¼ e'1x; sa ¼ Pe t ¼ t̂'1
a t̂; and srj ¼ Daj t ¼ t̂'1

rj t̂; j ¼ f1;2;3g:

ð16Þ

Furthermore, any pore-scale function weðx; tÞ (e.g. concentration in

(12)) is represented as we x; tð Þ :¼ wðx; y; t; sa; srÞ. Replacing we x; tð Þ

with wðx; y; t; sa; srÞ gives the following relations for the spatial

and temporal derivatives,

rwe ¼ rxwþ e'1ryw; and

@we

@t
¼

@w

@t
þ Pe

@w

@sa
þ Daj

@w

@srj
; j ¼ f1;2;3g; ð17Þ

respectively, where Einstein summation is implied whenever a re-

peated index is present. The function w is represented as an asymp-

totic series in powers of e,

wðx; y; t; sa; srÞ ¼
X1

m¼0

emwmðx; y; t; sa; srÞ; ð18Þ

wherein wmðx; y; t; sa; srÞ;m ¼ 0;1; . . ., are Y-periodic in y. Finally,

we set

Pe ¼ e'a; Da1 ¼ eb; Da2 ¼ ec; and Da3 ¼ ed ð19Þ

with the exponents a;b; c and d determining the system behavior.

3.2. Upscaled transport equations and homogenizability conditions

The upscaling of Stokes equations 10 and 11 is a classical result

of homogenization theory, e.g. [2,19,23, and references therein],

and leads to Darcy’s law and the continuity equation for the aver-

age velocity hvi, i.e.

hvi ¼ 'K (rp0; r ( hvi ¼ 0; x 2 X; ð20Þ

where K is the dimensionless permeability tensor defined as the

average, K ¼ hk yð Þi, of the closure variable kðyÞ, solution of a unit

cell problem,

r2kþ I'ra ¼ 0; r ( k ¼ 0; y 2 B; ð21Þ
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subject to the boundary condition kðyÞ ¼ 0 for y 2 C, e.g. [2]. In (21),

a is Y-periodic and satisfies the condition hai ¼ 0. See [19, pp. 46–

47, Theorem 1.1] for a review.

In Appendix, we show that the pore-scale reactive transport

processes described by (12) and (13) can be homogenized, i.e.,

approximated up to order e2, with an effective ADRE

/@thaiB ¼r ( ðDHrhaiB'PehaiBhviÞ'/Da2haiBhbiBþ/gDa3hciB; ð22aÞ

/@thbiB ¼r ( ðDHrhbiB'PehbiBhviÞ'/Da2haiBhbiBþ/gDa3hciB; ð22bÞ

/@thciB ¼r ( ðDHrhciB'PehciBhviÞþ/g'1Da2haiBhbiB'/Da3hciB

'e'1/Da1K
HðhcinB'1Þ; ð22cÞ

provided the following conditions are met:

(1) e % 1,

(2) hvi
C
, hviB ,

(3) Pe < e'2,

(4) Da1 < 1,

(5) Da2 < e'2,

(6) Da3 < e'2,

(7) Da1=Pe < e,
(8) Da2=Pe < e'1,

(9) Da3=Pe < e'1.

In (22), the dimensionless effective reaction rate constant, KH, and

dispersion tensor, DH, are given by

KH ¼
jCj

jBj
; and DH ¼ hDðIþryvÞiþ ePe hvkirxp0; ð23Þ

where the closure variable vðyÞ has zero mean, hvi ¼ 0, and is de-

fined as a solution of the decoupled local problem

'ry ( Dðryvþ IÞ þ ePev0ryv ¼ ePeðhv0iB ' v0Þ; y 2 B; ð24aÞ

' n ( Dðryvþ IÞ ¼ 0; y 2 C: ð24bÞ

Here, v0 ¼ 'k (rxp0 and the pressure p0 is a solution of the effec-

tive flow equation (20).

Beside the classical constraint on geometrical scale-separation

(constraint 1), and the operative constraint 2 which allows one

to simplify the mathematical treatment for terms of the type

hw1iC (see Appendix A.3), the set of conditions 1–9 imposes bounds

on the order of magnitude of the system’s dimensionless numbers,

and consequently on its dynamics, i.e. on the relative importance

of advection, diffusion, linear and nonlinear homogeneous and het-

erogeneous reactions. Condition 3 requires that the system is not

advection dominated at the pore-scale, and corresponds to the

homogenizability contraint for a non-reacting tracer, as obtained

by [2]. The upscaling of the nonlinear heterogeneous reaction re-

quires additional constraints on the rate of reaction compared to

both advection and diffusion processes, i.e. constraints 4 and 7.

They correctly coincide with those identified by [5] for a simplified

reactive system involving only species C. The constraint 4 imposes

restrictions on the speed of the heterogeneous reactions compared

to the diffusion process and guarantees that reaction-dominated

conditions, characterized by narrow reacting fronts and high con-

centration gradients, do not occur at the pore-scale. It is worth

noticing that the order n of the heterogeneous reaction does not

play a role in defining the magnitude of the bounds 4 and 7. There-

fore heterogeneous linear and nonlinear reactions share the same

set of sufficient conditions for the applicability range of one-point

closure upscaled equations, contrary to the common presumption

that macroscopic equations are more robust if only linear reactions

are involved in the system dynamics. Such sufficient conditions

guarantee that the system is homogenized at the microscale and,

consequently, there are no mass transport limitations at the

pore-scale. A similar scenario holds for the nonlinear and linear

homogeneous reactions, were the constraints 5 and 6 on Da2 and

Da3, respectively, are identical although the nonlinear homoge-

neous reaction requires mixing between A and B to occur: an

almost uniform concentration profile at the pore-scale is a suffi-

cient condition for the reactants to be well-mixed, regardless of

the type of reaction involved (linear or nonlinear, single- or mul-

ti-component). Similarly to condition 7, the additional constraints

8 and 9 impose conditions on the ratio between the advective and

reactive timescales. Combining conditions 3 and 8 (or 9) leads to

the constraints

eDa2 < Pe < e'2 and eDa3 < Pe < e'2;

which impose lower, as well as upper, bounds on the order of mag-

nitude of Pe for any given Daj < e'2; j ¼ f2;3g. Importantly, the

lower bounds require that advection is sufficiently faster than reac-

tion processes (both homogeneous and heterogeneous), and reveal

that advection can improve system homogenizability in presence of

slow diffusion by enhancing pore-scale mixing and/or resupplying

reactants removed by reactive processes. Also, the constraints re-

lated to the heterogeneous reaction, 4 and 7, are more stringent

than those on the homogeneous reactions, 5, 6, 8 and 9. This can

be attributed to the inherently local nature of heterogeneous reac-

tions, which occur only in the vicinity of the solid–liquid interface.

It is worth noticing that while the choice of the macroscopic

length scale L is, to some extent, arbitrary and non unique, this

does not render the constraints 3–9 invalid. Given L such that

L > ‘, or e :¼ ‘=L < 1, let us assume without loss of generality that

the constraint 3 is satisfied, i.e. Pe :¼ UL=D0 < e'2. Let us pick a

new macroscopic length scale, ~L ¼ qL, where q P 1. Then, for this

scenario, ~e :¼ H=~L ¼ e=q, and ~Pe ¼ qPe. Since Pe < e'2, then
~Pe < qe'2 or, equivalently, ~Pe < ~e'2=q. The latter condition implies
~Pe < ~e'2 since q P 1, i.e. the sufficient condition 3 is still satisfied.

Therefore, if L > H and Pe < e'2, then ~Pe < ~e'2 for any ~L P L. A sim-

ilar argument can be carried out for the remaining constraints.

These conditions can be graphically visualized in a phase

diagram in the ðPe;DajÞ-space with j ¼ f1;2;3g, or the ða; b; c; dÞ-
space. For the sake of clarity and since the constraints on Da2
and Da3 (or c and d) coincide, we summarize the former conditions

in the ða; b; cÞ-space, only. In Fig. 1 the planes a ¼ 2; b ¼ 0, and

c ¼ '2 corresponds to Pe ¼ e'2;Da1 ¼ 1, and Da2 ¼ e'2, respec-

tively; the half-spaces aþ b > 1 and aþ c > '1 correspond to

the constraints 7 and 8, respectively. These bounds identify a

semi-infinite space, the coloured volume in Fig. 1, within which

the sufficient conditions for homogenizability are satisfied. Fig. 1

generalizes the phase diagram developed by [5], which represents

a cross-section of our phase diagram at Da2 ¼ 0 and Da3 ¼ 0 (or

c! þ1 and d! þ1, respectively). Outside such region the valid-

ity of local upscaled equations is not guaranteed to represent pore-

scale processes within errors of order e2. Also, the patterns in Fig. 1

identify different transport regimes depending on the order of

magnitude of Pe and Daj as described in the following Section 4.

4. Special cases

In this section, we investigate how the system of upscaled Eq.

(22), with effective coefficients defined by (23) and (24), can be

further simplified in specific transport regimes. The latter are indi-

cated by the differently patterned regions of Fig. 1. As previously

discussed, the homogenizability constraints 1–9 require that the

system is not reaction-dominated at the pore-scale. In the follow-

ing we will therefore investigate diffusion- and advection-domi-

nated regimes, and show that the system (22) correctly reduces

to the conditions identified for non-reacting tracers [2], purely dif-

fusive multi-component reactive systems [6], and single compo-

nent advection–diffusion systems with nonlinear reaction [5].
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4.1. Transport regime with Pe < 1

For small Péclet number, i.e. Pe < 1, diffusion dominates advec-

tion at the continuum- and pore-scales. Therefore the system of

equations (22) can be simplified to

/@thaiB ¼ r ( ðDHrhaiBÞ ' /Da2haiBhbiB þ /gDa3hciB; ð25aÞ

/@thbiB ¼ r ( ðDHrhbiBÞ ' /Da2haiBhbiB þ /gDa3hciB; ð25bÞ

/@thciB ¼ r ( ðDHrhciBÞ þ /g'1Da2haiBhbiB ' /Da3hciB

' e'1/Da1K
HðhcinB ' 1Þ; ð25cÞ

with DH ¼ hDðIþryvÞi. The closure variable v is the solution of the

following reduced closure problem:

'ry ( Dðryvþ IÞ ¼ 0; y 2 B; ð26aÞ

' n ( Dðryvþ IÞ ¼ 0; y 2 C: ð26bÞ

Eqs. (25c) and (26) coincide with Eqs. (25) and (26) in [5, Sec-

tion 4.1] for the diffusion-dominated transport regime of a single

reactive species (i.e. Da2 ¼ Da3 ¼ 0) undergoing heterogeneous

reaction. The order of magnitude of Daj; j ¼ f1;2;3g determines

the relative importance of the reactions compared to diffusion pro-

cesses, as discussed in the following.

Diffusion dominates reactions, Daj < e; j ¼ f1;2;3g. In this re-

gime diffusion dominates advection as well as all reactive trans-

port processes at the macro-scale. Each species obeys a

dispersion equation (DE) where all the reaction terms in (25) are

negligible. Such transport regime is represented by the diagonally

patterned (DE) region in Fig. 1. For a single component (i.e.

Da2 ¼ Da3 ¼ 0) undergoing nonlinear heterogeneous reactions, re-

sults from [5, Eq. 27] are recovered.

Diffusion and homogeneous reactions are comparable,

Da1 < e; e 6 Daj < e'1; j ¼ f2;3g. In this regime (DR23E region in

Fig. 1), the heterogeneous reaction is negligible compared to other

transport mechanisms. As a result, the corresponding reaction

term in Eq. (25c) can be neglected. On the other hand, the homoge-

neous reactions cannot be neglected since e < Da2;3 6 e'1.

4.2. Transport regimes with 1 6 Pe < e'2

For 1 6 Pe < e'2, advection cannot be neglected at the macro-

scale and advection terms have to be retained in Eq. (22). For

e'1 6 Pe < e'2, advection and diffusion are of the same order of

magnitude at the pore-scale as well, and (24) must be employed.

If, on the other hand, 1 6 Pe < e'1 (vertically striped region in

Fig. 1), advection becomes negligible at the microscale, and the clo-

sure problem can be simplified to (26). As a result, the effective

coefficient DH to be employed in (22) must be obtained from the

solution of the appropriate closure problem (24) or (26), if

e'1 6 Pe < e'2 or 1 6 Pe < e'1, respectively. The impact of Daj is

discussed in the following.

Diffusion and reactions are comparable, e 6 Da1 < 1;

2e 6 Daj < e'2; j ¼ f2;3g. In this regime (region ADRE in Fig. 1),

all the transport mechanisms are of the same order, and (22) must

be employed.

Diffusion and heterogeneous reaction are comparable, and domi-

nate homogeneous reactions, e 6 Da1 < 1;Daj < e; j ¼ f2;3g. In this

regime (region ADR1E in Fig. 1), the homogeneous reaction terms

can be neglected in (22), while the heterogeneous reaction term

in (22c) has to be retained. No coupling between species holds,

since hai and hbi behave as nonreactive tracers undergoing advec-

tion and dispersion, whereas hci obeys its own advection–disper-

sion-reaction equation as in [5, Section 4.2], and is produced (or

consumed) only through dissolution (or precipitation) processes

at the solid–liquid boundary.

Diffusion and homogeneous reactions are comparable, and domi-

nate heterogeneous reactions, Da1 < e; e 6 Daj < e'2; j ¼ f2;3g. In

this regime (region ADR23E in Fig. 1), heterogeneous reactions are

characterized by a slow kinetics and can be neglected in (22c),

while homogeneous reaction terms are not negligible.

Diffusion dominates reactions, Daj < e; j ¼ f1;2;3g. In this re-

gime (region ADE in Fig. 1), transport can be modeled separately

for each species, since both homogeneous and heterogeneous reac-

tions are negligible. The transport of each species at the contin-

uum-scale can be modeled by advection–dispersion equations

decoupled from each other. The resulting equations correspond

to the macroscopic equation for a tracer undergoing diffusion

and advection, as described in [2]. In this scenario, constraints 7–

9 are automatically fulfilled.

5. Reactive flow through a planar fracture

In this section we employ numerical simulations, both at the

pore- and macro-scale, to test the sufficient conditions 1–9. We

consider a pressure-driven flow through a bidimensional fracture

X ¼ x; yð Þ: x 2 0;1ð Þ; yj j < ef g of width 2e and unitary length, with

solid boundary C
e ¼ x; yð Þ: x 2 0;1ð Þ; y ¼ -ef g. We assume that

the precipitation/dissolution process does not significantly affect

the interface C
e, and the evolution of the solid–liquid boundary

needs not to be taken into account. For a fracture of width H, the

length L is to be interpreted as the ‘‘observation scale’’ [23]. In all

the numerical simulations we set e :¼ H=L ¼ 6:25 ( 10'3.

5.1. Flow and transport equations

Fully developed flow within a planar fractureX is characterized

by a pore-scale velocity vðyÞ ¼ ½vðyÞ0+, with

v yð Þ ¼
3

2
1'

y

e

# $2
% &

; for y 6 jej: ð27Þ

Fig. 1. Phase diagram indicating the range of applicability of macroscopic equations

for the advection–reaction–diffusion system (12), (13) in terms of Pe and Daj
(j ¼ f1;2;3g). The colored region identifies the sufficient conditions under which

the macroscopic equations hold. In the white region, macro- and micro-scale

problems are coupled and have to be solved simultaneously. Also, the patterns

identify different transport regimes depending on the order of magnitude of Pe and

Daj as described in Section 4. Transport regimes where Pe < 1 (Section 4.1), i.e.

a < 0, can be dominated by diffusion (region DE) or by diffusion and homogenous

reactions concurrently (region DR23E). In regimes where 1 6 Pe < e'2 (Section 4.2),

i.e. 0 6 a < 2, advection cannot be neglected and transport processes are advective–

dispersive if diffusion dominates reactions (ADE region), or advective–dispersive-

reactive when homogeneous and/or heterogeneous reactions are not negligible

(ADRE, ADR1E and ADR2E regions). Diffusion, advection, and reactions are of the

same order of magnitude at the point ða;b; c; dÞ ¼ ð1;0;'2;'2Þ.

258 F. Boso, I. Battiato / Advances in Water Resources 62 (2013) 254–265



The pore-scale transport Eq. (12) reduce to

@tae ' Dð@xxae þ @yyaeÞ þ PevðyÞ@xae ¼ 'Da2aebe þ gDa3ce; ð28aÞ

@tbe ' Dð@xxbe þ @yybeÞ þ PevðyÞ@xbe ¼ 'Da2aebe þ gDa3ce; ð28bÞ

@tce ' Dð@xxce þ @yyceÞ þ PevðyÞ@xce ¼ g'1Da2aebe ' Da3ce; ð28cÞ

subject to

@yae ¼ @ybe ¼ 0; 'D@yce ¼ Da1 cne ' 1
! "

; x 2 C
e; t > 0: ð29Þ

In Eqs. (28) and (29), we set n ¼ 1 and g ¼ 1. Species A and B are

spatially separated at t ¼ 0. We set the position of the initial con-

centration discontinuity at !x ¼ 0:25. Since species A and B are not

mixed at t ¼ 0, the initial concentration of the product C is zero,

and the initial conditions for ae; be and ce are:

aeðx 6 !x; y; t ¼ 0Þ ¼ 1; aeðx > !x; y; t ¼ 0Þ ¼ 0; ð30aÞ

beðx 6 !x; y; t ¼ 0Þ ¼ 0; beðx > !x; y; t ¼ 0Þ ¼ 1; ð30bÞ

ceðx; y; t ¼ 0Þ ¼ 0: ð30cÞ

Additionally, the following boundary conditions are imposed at the

fracture inlet (x ¼ 0) and outlet (x ¼ 1):

aeð0; y; tÞ ¼ 1; @xaeð1; y; tÞ ¼ 0 ð31aÞ

beð1; y; tÞ ¼ 1; @xbeð0; y; tÞ ¼ 0 ð31bÞ

@xceð0; y; tÞ ¼ 0; @xceð1; y; tÞ ¼ 0: ð31cÞ

From any pore-scale quantity we, the corresponding macroscopic

quantity hwi is determined as follows,

hwiBðx; tÞ ¼
1

2e

Z e

'e
weðx; y; tÞdy: ð32Þ

The transport equations (22) for the upscaled concentrations

haiB; hbiB and hciB simplify to

@thaiB ' DH@xxhaiB þ Pe@xhaiB ¼ 'Da2haiBhbiB þ Da3hciB; ð33aÞ

@thbiB ' DH@xxhbiB þ Pe@xhbiB ¼ 'Da2haiBhbiB þ Da3hciB; ð33bÞ

@thciB ' DH@xxhciB þ Pe@xhciB ¼ Da2haiBhbiB ' Da3hciB

' e'1Da1K
HðhciB ' 1Þ; ð33cÞ

since / ¼ 1;g ¼ 1; n ¼ 1, and hvðyÞi ¼ 1. In (33),

KH ¼ 1 and DH ¼ Dþ
2

105

ðePeÞ2

D
: ð34Þ

The effective dispersion coefficient, DH, is analytically determined

by solving a simplified pore-scale problem (24) [23, Eq. (69)]. The

impact of sub-scale velocity non-uniformities on DH is reflected

by the impact of Pe number: the bigger Pe the bigger the deviations

of DH from D. Eqs. (33) are subject to initial conditions

haiBðx6 !x;y;t¼0Þ¼ hbiBðx> !x;y;t¼0Þ¼1; ð35aÞ

haiBðx> !x;y;t¼0Þ¼ hbiBðx6 !x;y;t¼0Þ¼ hciBðx;y;t¼0Þ¼0; ð35bÞ

and boundary conditions

@xhaiBð0; y; tÞ ¼ @xhbiBð1; y; tÞ ¼ @xhciBð0; y; tÞ ¼ @xhciBð1; y; tÞ ¼ 0;

ð36aÞ

haiBð0; y; tÞ ¼ hbiBð1; y; tÞ ¼ 1; hciBð0; y; tÞ ¼ hciBð1; y; tÞ ¼ 0:

ð36bÞ

The numerical solution of (28) and (33) subject to (29)–(31) and

(35), (36), respectively, is achieved by means of smoothed particle

hydrodynamics (SPH) simulations, a fully Lagrangian particle meth-

od.While originally developed in the context of astrophysical appli-

cations, SPH has been successfully used to model (unsaturated,

saturated and multiphase) flows and (non-) reactive transport in

the subsurface at the micro-scale, e.g. [29,30], as well as at the

continuum-scale [10,17]. Both the pore- and continuum-scale sys-

tem of equations (28) and (33) are solved with a longitudinal spatial

resolution Dx ¼ 2:5 ( 10'4.An explicit time-marching scheme im-

poses that the time steps, Dt ¼ 0:1h
2
=eD, with eD ¼ D or eD ¼ DH for

pore- and continuum-scale systems, respectively, and h a smooth-

ing length assigned as a function of the mean particle distance, sat-

isfy the Courant-Friedrichs-Lewy (CFL) condition, see [29] for

details. A set of parameters used in the numerical solutions of

(28) and (33) is listed in Table1. For details regarding the numerical

implementation of the complete reactive problem, see [29, and ref-

erences therein].

5.2. Simulation results

In this section we present the results of numerical simulations

for different combinations of ða; b; c; dÞ to investigate the robust-

ness of the homogenizability conditions 3–9. We consider five dif-

ferent test cases, whose parameter values are listed in Table 2. Case

1 and 2 satisfy the constraints 3–9, while cases 3, 4 and 5 violate

one or more conditions for homogenizability. For each scenario,

we compare macroscale concentration profiles along the fracture

hwiB;M;w ¼ fa; b; cg, obtained by solving the continuum-scale sys-

tem (33), with the spatially averaged microscale concentration

fields hwiB;m calculated by numerical integration of pore-scale con-

centration profiles we according to (32). Inside the homogenizabil-

ity region, the solution of (33) is expected to be within errors Oðe2Þ
from the averaged pore-scale solution, i.e. hwiB;m ¼ hwiB;M þOðe2Þ,
or the absolute error Ew ¼ jhwiB;m ' hwiB;Mj , Oðe

2Þ.

The parameter values of the first scenario (Case 1 in Table 2)

satisfy the homogenizability conditions. Fig. 2(i) shows the longi-

tudinal profiles for the averaged concentration of each species.

Grey lines represent the averaged microscale solution

hwiB;m;w ¼ fa; b; cg, whereas black lines refer to the macroscale

solution hwiB;M. As predicted by homogenization theory, the

absolute errors along the fracture Ew;w ¼ fa; b; cg, are of order e2

(Fig. 2(ii)). Errors are larger across the initial concentration discon-

tinuity where the concentration gradients are the highest. The pro-

duction of species C is concentrated around the mixing front

between A and B, as shown in Figs. 2(iii), whereas C production

along the fracture boundaries is negligible because of relatively

slow heterogeneous reaction kinetics, i.e. relatively big b. This re-

sults in a well-mixed system due to strong transversal mixing,

i.e. weðx; yÞ , weðxÞ;w ¼ fa; b; cg.

Table 1

SPH simulation parameters.

Pore-scale Continuum-scale

Dx 2:5 ( 10'4 2:5 ( 10'4

Dy 2:5 ( 10'4 n/a

h 5 ( 10'4 5 ( 10'4

Table 2

Simulation scenarios considered in this study with corresponding values of a; b; c, and
d. Case 1 and 2 satisfy all the homogenizability conditions 3–9. Case 3, 4 and 5 violate

at least one of the sufficient conditions for homogenizability. The parameters’ values

that do not satisfy the constraints are highlighted in boldface.

Case 1 Case 2 Case 3 Case 4 Case 5

a 1 1 1/2 1 1/2

b 1 1/4 1/4 '1 1

c '7/4 '1 '1 '1 '7/4

d '7/4 '1 '1 '1 '7/4

aþ b 2 5/4 3/4 0 3/2

aþ c '3/4 0 '1/2 0 '5/4

aþ d '3/4 0 '1/2 0 '5/4
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Case 2, with ða; b; c; dÞ ¼ ð1;1=4;'1;'1Þ, satisfies the homoge-

nizability conditions and corresponds to a scenario where the het-

erogeneous reaction is faster, i.e. b is smaller, while the

homogeneous reactions are slower, i.e. c and d are larger, than in

Case 1. Fig. 3(i) and (ii) show the longitudinal concentration and

absolute error profiles for the three species, respectively. The abso-

lute error Ew;w ¼ fa; b; cg is bounded by e, as expected. A faster het-

erogeneous reaction leads to an accumulation of C close to the solid

boundaries as showed in Fig. 3(iii). Further, since the homogeneous

reactions are slower compared to Case 1, there is only negligible

accumulation of C at locations in proximity of x ¼ 0:25. This is be-

cause A and B diffuse away from the original concentration discon-

tinuity at x ¼ 0:25 more quickly than in Case 1, and before the

homogeneous reaction to form C goes to completion. This trans-

lates in a lower maximum ce compared to Case 1, and in the

appearance of mild nonlocal effects, i.e. C production in areas other

than those where mixing between A and B originally occurs.

Case 3 shares the same set of parameters with Case 2, except for

a lower value of a, corresponding to slower advection at the

micro-scale. Contrary to intuition, a slower advection drags the

system outside the homogenizability regime, since constraint 7 is

now violated. Slower advection results in an increased longitudi-

nal, rather than transversal, mixing, as showed in Fig. 4(iii), where

the width of the diffusion and reaction fronts is much wider than in

Fig. 4(iii). The appearance of significant nonlocal effects, i.e. stron-

ger longitudinal mixing to the detriment of transversal one, is

accentuated by C production at the solid boundaries. As a result,

the errors Ew > e (see Fig. 4(ii)), and the macroscopic equation sig-

nificantly underestimates C production, Fig. 4 (i). This suggests that

advection can act as a physical mechanism which enhances trans-

versal mixing in presence of relatively slow diffusion.

Fig. 2. Test Case 1 with ða;b; c; dÞ ¼ ð1;1;'7=4;'7=4Þ. Snapshot of hwiB;M (black lines) and hwiB;m (gray lines) with w ¼ fa; b; cg at time t ¼ ea . (i) Longitudinal concentration
profiles hwiB;M and hwiB;m obtained from either solving the macroscale system of equations (33), or averaging the pore-scale concentration profiles, respectively. (ii) Absolute

error along the fracture EwðxÞ ¼ jhwiB;mðxÞ ' hwiB;MðxÞj. Red horizontal lines identify different orders of magnitude of the absolute error in terms of integer powers of e. (iii)
Concentration maps in a portion of the fracture, x 2 ½0:2;0:3+ and y ¼ ½'e; e+, for species A (top), B (middle) and C (bottom) around the original concentration discontinuity
!x ¼ 0:25.

Fig. 3. Test Case 2 with ða; b; c; dÞ ¼ ð1;1=4;'1;'1Þ. Snapshot of hwiB;M (black lines) and hwiB;m (gray lines) with w ¼ fa; b; cg at time t ¼ ea . (i) Longitudinal concentration
profiles hwiB;M and hwiB;m obtained from either solving the macroscale system of equations (33), or averaging the pore-scale concentration profiles, respectively. (ii) Absolute

error along the fracture EwðxÞ ¼ jhwiB;mðxÞ ' hwiB;MðxÞj. Red horizontal lines identify different orders of magnitude of the absolute error in terms of integer powers of e. (iii)
Concentration maps in a portion of the fracture, x 2 ½0:2;0:3+ and y ¼ ½'e; e+, for species A (top), B (middle) and C (bottom) around the original concentration discontinuity
!x ¼ 0:25.
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An increase in the heterogeneous reaction rate compared to

Case 2 leads to a reaction-driven regime at the microscale, i.e.

b < 0, which drives the system outside the homogenizability

region (Case 4). At the pore-scale, the production of C from

dissolution of the fracture boundary dominates its production

due to mixing of A and B (Fig. 5(iii)). Therefore, C is not concen-

trated around the discontinuity front, and is poorly mixed in the

transversal direction, i.e. ceðx; yÞ , ceðyÞ. As a result, the contin-

uum-scale solution hciB;M significantly overestimates the actual va-

lue of the averaged pore-scale concentration hciB;m (Fig. 5(i)). This

leads to Ec > e along the fracture, while Ea and Eb are still bounded

by e, as showed in Fig. 5(ii). It is worth noticing that failed mixing

at the pore-scale (i.e. in the y-direction) leads to a global break-

down of the continuum-scale solution, i.e. EcðxÞ > e for any x.

The last test case (Case 5) exhibits the same set of parameters as

Case 1, except for a slower advection, i.e. smaller a. Similarly to

Case 3, a slower advection drives the system outside the homoge-

nizability regime, and translates into wider diffusive and reacting

fronts, as showed in Fig. 6(iii). The product C diffuses longitudinally

along the fracture much more efficiently: this leads to an averaged

microscopic concentration hciB;m with a nearly uniform profile (see

Fig. 6.(i)) along the fracture, compared to its macroscopic value

hciB;M which cannot properly capture C longitudinal diffusion after

its production due to mixing of A and B. Fig. 6(i) shows that the

macroscopic equation significantly overestimates hcei, while

Fig. 4. Test Case 3 with ða;b; c; dÞ ¼ ð1=2;1=4;'1;'1Þ. Snapshot of hwiB;M (black lines) and hwiB;m (gray lines) with w ¼ fa; b; cg at time t ¼ ea . (i) Longitudinal concentration
profiles hwiB;M and hwiB;m obtained from either solving the macroscale system of equations (33), or averaging the pore-scale concentration profiles, respectively. (ii) Absolute

error along the fracture EwðxÞ ¼ jhwiB;mðxÞ ' hwiB;MðxÞj. Red horizontal lines identify different orders of magnitude of the absolute error in terms of integer powers of e. (iii)
Concentration maps in a portion of the fracture, x 2 ½0:2;0:3+ and y ¼ ½'e; e+, for species A (top), B (middle) and C (bottom) around the original concentration discontinuity
!x ¼ 0:25.

Fig. 5. Test Case 4 with ða; b; c; dÞ ¼ ð1;'1;'1;'1Þ. Snapshot of hwiB;M (black lines) and hwiB;m (gray lines) with w ¼ fa; b; cg at time t ¼ ea . (i) Longitudinal concentration
profiles hwiB;M and hwiB;m obtained from either solving the macroscale system of equations (33), or averaging the pore-scale concentration profiles, respectively. (ii) Absolute

error along the fracture EwðxÞ ¼ jhwiB;mðxÞ ' hwiB;MðxÞj. Red horizontal lines identify different orders of magnitude of the absolute error in terms of integer powers of e. (iii)
Concentration maps in a portion of the fracture, x 2 ½0:2;0:3+ and y ¼ ½'e; e+, for species A (top), B (middle) and C (bottom) around the original concentration discontinuity
!x ¼ 0:25.
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underestimating both haei and hbei. The errors, plotted in Fig. 6(ii),

are greater than e.
It is worth noticing that, despite constraints 1–9 represent suf-

ficient conditions, they appear extremely robust in identifying nec-

essary conditions for homogenizability.

6. Conclusions

Reactive transport in the subsurface involves coupledmulticom-

ponent systemswhere bothnonlinear/linear homogeneous andhet-

erogeneous reactions occur. Such systems have challenged classical

local (one-point closure) macroscopic (continuum-scale) models,

which fail to capture a number of critical transport features, includ-

ingaccurate locationof reacting fronts, andamountof reactingprod-

ucts, just tomentiona few.While such shortcomingshavedrawn the

interest of the scientific community towards more robust modeling

techniques (e.g. non-local multi-point closure approaches, hybrid

and multiscale models), the conditions under which the latter are

necessary are still subject of current investigations.

In this work we considered multicomponent reactive transport

in porous media with three species undergoing a fully reversible

mixing-controlled precipitation/dissolution process involving a

homogeneous reaction, Aþ B!C, and a heterogeneous reaction,

C! S on the solid–liquid interface. By means of multiple-scale

expansions, we established sufficient conditions under which mac-

roscopic local advection–dispersion-reaction equations (ADREs)

provide an accurate representation of pore-scale processes. Such

conditions can be expressed as bounds on Péclet (Pe) and three

Damköhler ðDaj; j ¼ f1;2;3g) numbers, which quantify the rela-

tive importance of the four key mechanisms involved in the trans-

port process, i.e. advection, molecular diffusion, homogeneous and

heterogeneous reactions. Such a set of conditions delimits a

homogenizability region in a (Pe,Daj)-phase diagram (Fig. 1), where

the pore-scale reactive transport processes can be homogenized,

i.e. approximated up to order e2, with an effective ADRE, and the

effective coefficients in the upscaled equations can be determined

by solving a closure problem fully decoupled from the transport

dynamics at the microscale. Whenever the coupling between mi-

cro- and macro-scale occurs, it is not guaranteed that the ADREs

will accurately describe pore-scale processes within errors of order

e2. Additionally, we verified the previously derived conditions

through pore-scale numerical simulations of multicomponent

transport in a planar fracture with reacting walls. Our major con-

clusions can be summarized as follows:

(1) Our conditions are consistent with the results of [5], in the

absence of advection, and with the limits individuated by

[2], in the absence of reactions;

(2) Heterogeneous reaction imposes more severe constraints on

the system dynamics than homogeneous ones, since the for-

mer are localized on the solid–liquid boundaries;

(3) In a planar fracture, stronger advection can act as a physical

mechanism which enhances transversal mixing in presence

of relatively slow diffusion.

(4) Numerical simulations for reactive flow through a planar

fracture suggest that the constraints derived in our analysis

appear robust in identifying sufficient as well as necessary

conditions for homogenizability.

Appendix A. Homogenization of transport equations

For convenience and compactness, we upscale only the govern-

ing equation for ae. The other two equations are upscaled in a sim-

ilar fashion. Derivations related to ce will be made explicit only

whenever its upscaling significantly differs from that of ae.

Let us represent weðx; tÞ as weðx; tÞ :¼ wðx; y; t; sa; srÞ;
w ¼ fa; b; cg. Inserting (17) in (12a) and the first of (13), we obtain

@taþPe@saaþDaj@srjaþrx ( ½'Dðrxaþe'1ryaÞþPeva+

þe'1ry ( ½'Dðrxaþe
'1ryaÞþPeva+þDa2ab'gDa3c¼0; y2B;

ðA:1Þ

subject to

n ( ½Dðrxaþ e'1ryaÞ+ ¼ 0; y 2 C: ðA:2Þ

For species C, combining (12c) with (17) leads to

@tcþPe@sacþDaj@srjcþrx ( ½'Dðrxcþe'1rycÞþPevc+

þe'1ry ( ½'Dðrxcþe
'1rycÞþPevc+'g'1Da2abþDa3c¼0; y2B;

ðA:3Þ

Fig. 6. Test Case 5 with ða; b; c; dÞ ¼ ð1=2;1;'7=4;'7=4Þ. Snapshot of hwiB;M (black lines) and hwiB;m (gray lines) with w ¼ fa; b; cg at time t ¼ ea . (i) Longitudinal concentration
profiles hwiB;M and hwiB;m obtained from either solving the macroscale system of equations (33), or averaging the pore-scale concentration profiles, respectively. (ii) Absolute

error along the fracture EwðxÞ ¼ jhwiB;mðxÞ ' hwiB;MðxÞj. Red horizontal lines identify different orders of magnitude of the absolute error in terms of integer powers of e. (iii)
Concentration maps in a portion of the fracture, x 2 ½0:2;0:3+ and y ¼ ½'e; e+, for species A (top), B (middle) and C (bottom) around the original concentration discontinuity
!x ¼ 0:25.
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subject to the boundary condition

n ( ½Dðrxc þ e'1rycÞ+ ¼ Da1ðc
n ' 1Þ; y 2 C: ðA:4Þ

We insert the ansatz (18) in A.1,A.2, and collect like-power of e. We

obtain

e'2fry ( ð'Drya0 þ e1'aa0v0Þ þ e2þcð@sr2a0 þ a0b0Þ

þ e2þdð@sr3a0 ' gc0Þgþ e'1f'rx ( Drya0 'ry ( Dðrya1 þrxa0Þ

þ e1'a½@saa0 þ eaþb@sr1a0 þrx ( ða0v0Þ þry ( ða1v0 þ a0v1Þ+

þ e2þc½@sr2a1 þ a0b1 þ a1b0+ þ e2þd½@sr3a1 ' gc1+g

þ e0f@ta0 'rx ( Dðrxa0 þrya1Þ 'ry ( Dðrxa1 þrya2Þ

þ e1'a½@saa1 þ eaþb@sr1a1 þrx ( ða1v0 þ a0v1Þ

þry ( ða1v1 þ a0v2 þ a2v0Þ+ þ e2þc½@sr2a2 þ a0b2 þ b0a2 þ a1b1+

þ e2þd½@sr3a2 ' gc2+g ¼ OðeÞ; y 2 B; ðA:5Þ

subject to the boundary condition

e'1 n ( Drya0
' (

þ e0 n ( D rxa0 þrya1
! "' (

þ e n ( D rxa1 þrya2
! "' (

¼ Oðe2Þ; y 2 C: ðA:6Þ

The equation for c reads as follows

e'2fry ( ð'Dryc0þe1'ac0v0Þþe2þcð@sr 2c0'g'1a0b0Þ

þe2þdð@sr 3c0þc0Þgþe'1f'rx (Dryc0'ry (Dðryc1þrxc0Þ

þe1'a½@sac0þeaþb@sr 1c0þrx ( ðc0v0Þþry ( ðc1v0þc0v1Þ+

þe2þc½@sr 2c1'g'1ða0b1'a1b0Þ+þe2þd½@sr 3c1þc1+g

þe0f@tc0'rx (Dðrxc0þryc1Þ'ry (Dðrxc1þryc2Þ

þe1'a½@sac1þeaþb@sr 1c1þrx ( ðc1v0þc0v1Þ

þry ( ðc1v1þc0v2þc2v0Þ+þe2þc½@sr 2c2'g'1ða0b2'b0a2'a1b1Þ+

þe2þd½@sr 3c2þc2+g¼OðeÞ; y2B; ðA:7Þ

subject to

e'1ð'n ( Dryc0Þ þ e0½'n ( Dðrxc0 þryc1Þ ' ebðcn0 ' 1Þ+

þ e½'n ( Dðrxc1 þryc2Þ ' ebncn'1
0 c1+ ¼ Oðe2Þ; y 2 C: ðA:8Þ

A.1. Terms of order O e'2
! "

Collecting the leading-order terms in (A.5) and (A.6), we obtain

ry(ð'Drya0 þ e1'aa0v0Þ þ e2þcð@sr2a0 þ a0b0Þ

þ e2þdð@sr3a0 ' gc0Þ ¼ 0; y 2 B; ðA:9Þ

subject to

n ( Drya0 ¼ 0; y 2 C: ðA:10Þ

Since (A.9) and (A.10) are homogeneous, the solution does not de-

pend on y, i.e. a0 ¼ a0 x; t; sa; sr1; sr2; sr3ð Þ. The same result applies

to b0 and c0.

A.2. Terms of order O e'1
! "

Since rya0 ¼ 0, collecting terms of Oðe'1Þ leads to

'ry ( Dðrya1 þrxa0Þ þ e1'a½@saa0 þ eaþb@sr1a0 þrx ( ða0v0Þ

þry ( ða1v0 þ a0v1Þ+ þ e2þc½@sr2a1 þ ða0b1 þ a1b0Þ+

þ e2þd½@sr3a1 ' gc1+ ¼ 0; y 2 B; ðA:11Þ

subject to the boundary conditions

'n ( D rxa0 þrya1

! "

¼ 0; y 2 C: ðA:12Þ

Boundary conditions for c read

'n ( Dðrxc0 þryc1Þ ¼ ebðcn0 ' 1Þ; y 2 C: ðA:13Þ

Integrating (A.11) over B, while accounting for (A.12) and the no-

slip boundary condition, gives

e1'a@saa0 þ e1þb@sr1a0 ¼ 'e1'arx ( a0 v0h iB
! "

' e2þc @sr2 a1h iB þ a0 b1h iB þ b0 a1h iB
! "' (

' e2þd @sr3 a1h iB ' g c1h iB
' (

:

ðA:14Þ

Combining (A.11) and (A.14), while accounting for

ry ( v0 ¼ 0;rx ( v0h iB ¼ 0;ry ( v1 þrx ( v0 ¼ 0, and rya0 ¼ 0, leads

to

'ry ( Dðrya1 þrxa0Þ þ e1'a½ðv0 ' v0h iBÞ (rxa0 þ v0 (rya1+

þ e2þc½@sr2 a1 ' a1h iB
! "

þ a0ðb1 ' b1h iBÞ þ b0ða1 ' a1h iBÞ+

þ e2þd @sr3 a1 ' a1h iB
! "

' g c1 ' c1h iB
! "' (

¼ 0; y 2 B; ðA:15Þ

subject to

'n ( D rxa0 þrya1
! "

¼ 0; y 2 C: ðA:16Þ

Similarly, the boundary value problem for species C reads as follows

'ry (Dðryc1 þrxc0Þ þ e1'a½ðv0 ' v0h iBÞ (rxc0 þv0 (ryc1

' eaþb'1KHðcn0 ' 1Þ+ þ e2þcf@sr2 ðc1 ' c1h iBÞ ' g'1½a0ðb1 þ b1h iBÞ

þ b0ða1 ' a1h iBÞ+gþ e2þd½@sr3 ðc1 ' c1h iBÞ þ ðc1 ' c1h iBÞ+ ¼ 0; y 2 B;

ðA:17Þ

where KH ¼ Cj j Bj j'1, and is subject to the non-homogeneous

boundary condition

'n ( D rxc0 þryc1
! "

¼ eb cn0 ' 1
! "

; y 2 C: ðA:18Þ

Eqs. (A.15), (A.16) and (A.17), (A.18) represent a boundary value

problem for a1 (or b1) and c1, respectively. We look for a solution

in the following form

w1ðx;y;t;sa;srÞ¼vw yð Þ (rxw0ðx;t;sa;srÞþw1ðx;t;sa;srÞ; w¼ fa;b;cg;

ðA:19Þ

where the dependence upon y is isolated in the Y-periodic closure

variable vw, with zero mean hvwi. Inserting (A.19) in (A.15), (A.16),

(A.17) and (A.18), we obtain

½'ry ( Dðryva þ IÞ þ e1'av0 (ryva+ (rxa0

þ e2þc @sr2 ðva (rxa0Þ þ a0vb (rxb0 þ b0va (rxa0
' (

þ e2þd½@sr3 ðva (rxa0Þ ' gvc (rxc0+

¼ e1'a v0h iB ' v0

! "

(rxa0; y 2 B; ðA:20Þ

subject to

'n ( D ryva þ I
! "

¼ 0; y 2 C; ðA:21Þ

if rxa0 – 0, and

½'ry ( D ryvc þ I
! "

þ e1'av0 (ryvc+ (rxc0

þ e2þc½@sr2 vc (rxc0
! "

' g'1ða0vb (rxb0 þ b0va (rxa0Þ+

þ e2þd½@sr3 ðvc (rxc0Þ þ vc (rxc0+ ' ebKHðcn0 ' 1Þ

¼ e1'aðhv0iB ' v0Þ (rxc0; y 2 B; ðA:22Þ

subject to

' n ( D ryvc þ I
! "' (

(rxc0 ¼ ebðcn0 ' 1Þ; y 2 C; ðA:23Þ

respectively. The boundary value problems for the closure variables

vw;w ¼ fa; b; cg are generally fully coupled to the macroscale

through w0 and its gradients. In order to ensure that the closure

problem is fully decoupled from its continuum-scale counterpart

and vw is function of y only, consistently with (A.19), all the terms
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in (A.20)–(A.23) containing macroscopic quantities must be negligi-

ble as e% 1. We first observe that no additional constraints are re-

quired to decouple (A.20)-(A.21) from the macroscale problem, if vc

is function of y only. We start with the boundary value problem

(A.22)-(A.23) for vc . The right-hand side in (A.23) is negligible com-

pared to the left-hand side if b > 0 (constraint 4). Additionally, for

the terms of order eb; e2þc and e2þd to be negligible relative to the

smallest term in (A.22), b; c and d must satisfy the following

constraints: b > maxf0;1' ag;2þ c > maxf0;1' ag, and

2þ d > maxf0;1' ag, respectively. Since a < 2 (constraint 3), then

b > 0; c > '2 (constraint 5) and d > '2 (constraint 6) if 1 < a < 2,

and b > 1' a (constraint 7), c > '1' a (constraint 8) and

d > '1' a (constraint 9) if a < 1.

A.3. Terms of order O e0
! "

Collecting terms of order e0 in (A.5), leads to

@ta0 'rx ( Dðrxa0 þrya1Þ 'ry ( Dðrxa1 þrya2Þ

þ e1'a½@saa1 þ eaþb@sr1a1 þrx ( ða1v0 þ a0v1Þ

þry ( ða1v1 þ a0v2 þ a2v0Þ+ þ e2þc½@sr2a2 þ a0b2 þ b0a2 þ a1b1+

þ e2þd½@sr3a2 ' gc2+ ¼ 0; y 2 B; ðA:24Þ

subject to

'n ( Dðrxa1 þrya2Þ ¼ 0; y 2 C: ðA:25Þ

Integration of (A.24) over B with respect to y while accounting for

(A.25), (A.19) and periodicity, leads to

@tha0iB 'rx ( hDðIþryvaÞiBrxa0

þ e1'a½@saha1iB þ eaþb@sr1 ha1iB þrx ( ðha1v0iB þ a0hv1iBÞ+

þ e2þc½@sr2 ha2iB þ a0hb2iB þ b0ha2iB þ ha1b1iB+

þ e2þd½@sr3 ha2iB ' ghc2iB+ ¼ 0: ðA:26Þ

We insert (A.19) in (A.26) while accounting for the relationships

w0 ¼ hw0iB and v0 ¼ 'kðyÞ (rxp0, and obtain

@tha0iB þ e1'a@sa ha1iB þ e1þb@sr1 ha1iB þ e2þc@sr2 ha2iB

þ e2þd@sr3 ha2iB ¼ rx ( ð/
'1DHrxha0iBÞ

' /'1e1'arx ( ðha0iBhv1iþ !a1hv0iÞ ' e2þcðha0iBhb2iB

þ hb0iBha2iB þ ha1b1iBÞ þ e2þdghc2iB; ðA:27Þ

where DH ¼ hDðIþryvaÞiþ e1'ahvakirxp0. Multiplying (A.27) by e
and adding it to (A.14) and to the integral of (A.9) over B gives

e@thaiB ¼ erx ( ð/
'1DHrxha0iBÞ ' e1'arx ( ðha0iBhv0iB

þ eha0iBhv1iB þ e!a1hv0iBÞ ' e1þc½ha0iBhb0iB

þ eðha0iBhb1iB þ hb0iBha1iBÞ þ e2ðha0iBhb2iB

þ hb0iBha2iB þ ha1b1iBÞ+ þ e1þdgðhc0iB þ ehc1iB

þ e2 c2h iBÞ þOðe
2Þ; ðA:28Þ

since hwiB ¼ hweiB ¼ hw0iB þ ehw1iB þOðe
2Þ, and

e@thaiB ¼ e@tha0iB þ e1'a@sa ha0iB þ eDaj@srj ha0iB þ eðe@tha1iB

þ e1'a@sa ha1iB þ eDaj@srj ha1iBÞ þOðe
2Þ ðA:29Þ

with Daj, j ¼ f1;2;3g, defined in (19). Additionally, using (A.19), (18)

and (15), it can be showed that !a1 ¼ ha1iB; haiBhviB ¼ ha0iBhv0iB
þeha0iBhv1iB + eha1iBhv0iB þOðe

2Þ; ehaiB ¼ eha0iB þOðe
2Þ and

haiBhbiB ¼ ha0iBhb0iB þ eðha0iBhb1iB þ hb0iBha1iBÞ þOðe
2Þ. Finally,

accounting for the previous equalities while retaining terms of order

up to e in (A.28), we obtain (22a). The latter describes pore-scale pro-

cesses within errors of order e2.
Collecting terms of order e0 in (A.7) leads to

@tc0 'rx ( Dðrxc0 þryc1Þ 'ry ( Dðrxc1 þryc2Þ

þ e1'a½@sac1 þ eaþb@sr1c1 þrx ( ðc1v0 þ c0v1Þ

þry ( ðc1v1 þ c0v2 þ c2v0Þ+

þ e2þc½@sr2c2 ' g'1ða0b2 þ b0a2 þ a1b1Þ+

þ e2þd½@sr3c2 þ c2+ ¼ 0; y 2 B; ðA:30Þ

subject to

'n ( Dðrxc1 þryc2Þ ¼ nebcn'1
0 c1; y 2 C: ðA:31Þ

A similar procedure to that just presented allows one to derive (22c)

for hciB ¼ hc0iB þ ehc1iB þOðe
2Þ, while imposing the additional con-

straint hvciC ¼ hvciB . Eqs. (22a)–(22c) govern the dynamics of

haiB; hbiB and hciB up to e2.

Appendix B. Notation

ae dimensionless pore-scale aqueous concentration of species A.

âe pore-scale aqueous concentration of species A, [mol L'3].

haei average of ae over the unit cell Y.

haeiB average of ae over the pore volume B.

haeiC average of ae over the solid–liquid interface C.

be dimensionless aqueous concentration of species B.

b̂e pore-scale aqueous concentration of species B, [mol L'3].

hbei average of be over the unit cell Y.

hbeiB average of be over the pore volume B.

hbeiC average of be over the solid–liquid interface C.

B pore space domain in the unit cell Y.

jBj volume of B.

Be pore space domain in the porous medium X.

ce dimensionless pore-scale aqueous concentration of species C.

ĉe pore-scale aqueous concentration of species C, [mol L'3].

hcei average of ce over the unit cell Y.

hceiB average of ce over the pore volume B.

hceiC average of ce over the solid–liquid interface C.

c :¼
ffiffiffiffiffiffiffiffiffiffi

kd=k
n
p

, threshold aqueous concentration of species C, [mol

L'3].

ĉH :¼ maxfâin; b̂ing, characteristic value of concentrations â and

b̂, [mol L'3].

D dimensionless molecular diffusion coefficient defined by (7).

D :¼ Da ¼ Db ¼ Dc , [L
2T'1].

Di i ¼ fa; b; cg, molecular diffusion coefficients for species A;B

and C, respectively, [L2T'1].

D0 characteristic value of D, [L2T'1].

DH dimensionless dispersion tensor defined by (23).

Daj :¼ t̂d=t̂rj; j ¼ f1;2;3g, Damköhler numbers defined by (9).

G solid matrix domain in the unit cell Y.

k reaction rate of the forward heterogeneous reaction C ! S.

kab reaction rate of the forward homogeneous reaction

Aþ B! C.

kc reaction rate of the backward homogeneous reaction

Aþ B C.

kd reaction rate of the backward heterogeneous reaction C  S.

k closure variable defined by (21).

K :¼ hkðyÞi, permeability tensor.

KH effective reaction rate constant defined by (23).

‘ characteristic length of the periodic unit cell Ŷ .

L characteristic length of macroscopic porous medium domain

X.

n heterogeneous reaction order, [-].

p̂ fluid dynamic pressure, [ML'1T'2].

Pe Péclet number defined by (9).

Rp :¼ kĉne , precipitation rate.
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Rd :¼ kd, dissolution rate.

t :¼ t̂=t̂d, dimensionless time.

t̂a advection timescale, [T].

t̂d diffusion timescale, [T].

t̂rj j ¼ f1;2;3g, reaction timescales, [T].

U characteristic velocity associated to v̂e, [TL
'1].

ve dimensionless pore-scale fluid velocity.

v̂e pore-scale fluid velocity, [TL'1].

x spatial coordinate of the pore space Be.

y spatial coordinate of the unit cell Y.

Y spatially periodic unit cell.

jY j volume of the spatially periodic unit cell.

e :¼ ‘=L, scale separation coefficient, [-].

g :¼ c=ĉH, normalization coefficient, [-].

/ unit cell porosity, [-].

C solid–liquid interface in the unit cell Y.

C
e solid–liquid interface in the porous medium X.

m fluid dynamic viscosity, [ML'1T'1].

vw w ¼ fa; b; cg, closure variable for the transport problem of

species w.

X porous medium domain.

win w ¼ fa; b; cg, initial dimensionless concentration for species w.
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