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Abstract Coupled flows through and over permeable layers occur in a variety of natural phenomena

including turbulent flows over submerged vegetation. In this work, we employ a two-domain approach to

model flow through and over submerged canopies. The model, amenable of a closed-form solution, couples

the log-law and the Darcy-Brinkman equation, and is characterized by a novel representation of the drag

force which does not rely on a parametrization through an unknown drag coefficient. This approach limits

to one, i.e., the obstruction permeability, the number of free parameters. Analytical expressions for the aver-

age velocity profile through and above the canopies, volumetric flow rate, penetration length, and canopy

shear layer parameter are obtained in terms of the canopy layer effective permeability. The model suggests

that appropriately rescaled velocities in the canopy and surface layers follow two different scaling laws. The

analytical predictions match with the experimental data collected by Ghisalberti and Nepf (2004) and Nepf

et al. (2007).

1. Introduction

Submerged vegetation plays a pivotal role in regulating flow and transport in fresh- and sea-water systems.

Canopies provide essential ecosystem service: they offer protection to fishes and microinvertebrates and

improve the stability of riverbanks by increasing the roughness of the riverbed and decreasing the shear

stress which controls erosion and sediment transport [e.g., Kothyari et al., 2009; Nepf, 2012; Peruzzo et al.,

2013]. Accurate modeling of the velocity profile within and above the canopies is not only crucial in deter-

mining the nutrient dynamics, but also in designing vegetated channels and wetlands, which possess

important ecological [e.g., Ostendorp et al., 2008; Mitsch and Gosselink, 1986], environmental [e.g., Istanbul-

luoglu, 2005], and socioeconomic functions [e.g., Costanza et al., 1997; Katul et al., 2011]. Yet, modeling of

such complex systems has proven to be a formidable task.

A plethora of modelling approaches, both empirical and theoretical, have spurred in the past decades to

describe vegetated channel flows. They include phenomenological models based on scale analysis [e.g.,

Ghisalberti and Nepf, 2002; Huthoff et al., 2007; Katul et al., 2011; Konings et al., 2012], momentum balance

equations derived from double-averaging methods [e.g., Ghisalberti and Nepf, 2004], multiple-domain

approaches [e.g., Nepf and Vivoni, 2000; Hsieh and Shiu, 2006; Huai et al., 2009], and their combinations [e.g.,

Lowe et al., 2008; Poggi et al., 2009]. We refer to Nepf and Ghisalberti [2008] and Nepf [2012] for thorough

reviews on the topic. While empirical approaches offer simple relationships between relevant quantities

(e.g., vegetation-resistance laws), they suffer from an intrinsic lack of generality, as their applicability is lim-

ited to the physical conditions in which such models were originally developed. On the other hand, theoret-

ical approaches (derived from balance laws of continuum mechanics) gain in robustness to the detriment of

simplicity. They are based on Reynolds equations for turbulent transport which require (first or higher order)

closure schemes. The latter can achieve a high degree of sophistication, such as the k-x and k-e formula-

tions [e.g., L�opez and Garc�ıa, 2001], compared to their first-order counterparts, e.g., eddy viscosity hypothe-

sis and mixing length approaches [e.g., Poggi et al., 2009]. Yet, experimental evidence of universal scaling

laws suggests that ‘‘simple’’ models may be appropriate to capture the main dynamical features of such

multiscale systems [Ghisalberti, 2009; Papke and Battiato, 2013].

In this letter, we propose a parsimonious (single calibration-parameter) self-consistent two-domain frame-

work to describe turbulent flow in a vegetated open channel. The model, which couples the Darcy-
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Brinkman equation with the log-law

for the flow through and above rigid

vegetation, is amenable of a closed-

form solution for the mean velocity

profile and a number of relevant flow

parameters, e.g., volumetric dis-

charge, penetration length, canopy

shear layer parameter, and friction

factor (section 2). In section 3, we

show that appropriately rescaled

velocities in the surface and canopy

layers follow two different universal

scaling behaviors and we compare

the model predictions with experi-

mental data collected by Ghisalberti

and Nepf [2004] and Nepf et al. [2007].

Finally, we summarize our results in

section 4.

2. Model Formulation

2.1. Two Domain Approach

We consider a two-dimensional fully

developed incompressible turbulent

flow in an open channel of total

height H1 L and slope h, such that

S0 :5tan h � sin h. The upper part of

the flow domain, ẑ 2 ðH;H1LÞ, con-
sists of a nonvegetated surface layer

of thickness L, while the bottom part of the channel, ẑ 2 ð0;HÞ, is occupied by rigid canopies, referred to as

the canopy layer (see Figure 1). We model the latter as a porous medium of permeability K [e.g., Hsieh and

Shiu, 2006]. Such an approach has proven successful in modeling flows above obstructions for a variety of

systems at different scales [e.g., Battiato et al., 2010; Battiato, 2012; Papke and Battiato, 2013].

Two main approaches can be used to couple flow over and through permeable layers: single- and multiple-

domain approaches. While the former represents the system with a single domain with nonconstant effec-

tive parameters, the latter employs different mathematical models in each subdomain and enforces appro-

priate boundary conditions at shared interfaces. Here, we employ a two-domain approach and couple the

logarithmic mean velocity profile, or log law, with a porous medium equation to model the coupled flow

above and within the canopies [e.g., Ghisalberti and Nepf, 2009]. Although such an approach cannot capture

the stem-scale turbulence, it has been largely employed since it allows one (i) to quantify the average flow

and the momentum transfer, which regulates biogeochemical processes in the vegetated region, and (ii) to

potentially describe arbitrarily complex geometries with a limited number of parameters [Lowe et al., 2008,

and references therein]. The main novelty of the proposed model, compared to existing ones, lies in its rep-

resentation of the drag force and in its parametrization, which limit to one (i.e., the obstruction permeabil-

ity) the number of free parameters.

In the surface layer, the mean velocity in the direction parallel to the channel bottom, ûðẑÞ, is commonly

described by one (of the many) variant of the log law [Stephan and Gutknecht, 2002]:

ûðẑÞ5Û1
ûs

j
ln

ẑ

H

� �

; ẑ 2 ðH;H1LÞ: (1)

In (1), j50:19 is the reduced von K�arm�an constant for vegetated channels [Franca et al., 2008], Û is the

(mean) velocity at the top of the canopies, and ûs is the friction velocity. The value of von K�arm�an coeffi-

cient has undergone, and is still undergoing, intense scientific scrutiny both in smooth-wall flows,

Figure 1. Sketch of fully developed turbulent flow through, ẑ 2 ð0;HÞ, and above,

ẑ 2 ðH;H1LÞ, rigid canopies in an open channel of slope h. A qualitative sketch of

the mean velocity profile ûðẑÞ is also provided (solid back line).
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atmospheric boundary layers and vegetated flows [e.g., Leonardi and Castro, 2010, and references therein].

Some authors go no further than stating that there is no compelling evidence that j is flow independent.

However, there seems to be consensus that in atmospheric boundary layers and flows above permeable

layers j is measurably lower than the smooth-wall value. For dense canopies, the measured K�arm�an con-

stant are included in the range of 0.16–0.19 [Kubrak et al., 2008]. The friction velocity is defined in terms of

the stress at the interface between the free and filtration flow, ŝðH1Þ:

ûs :5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝðH1Þ=q
p

: (2)

An estimate of ŝðH1Þ can be obtained from Reynolds equation for the fully developed turbulent flow above

the canopies,

dẑ ŝ1qgS050; ẑ 2 ðH;H1LÞ; (3a)

where

ŝðẑÞ:5ldẑ û2qhû0v̂ 0i; ẑ 2 ðH;H1LÞ; (3b)

is the total shear stress, g, l, and q are the gravitational acceleration, the fluid dynamic viscosity, and

density, respectively. In (3b), û 0 and v̂ 0 represent the velocity fluctuations about their respective mean, and

hû0v̂ 0i is the Reynolds stress. We employ a turbulent viscosity hypothesis to close (3), i.e., hû0v̂ 0i52mtðẑÞdẑ û ,
where mt is the eddy viscosity [e.g., Ghisalberti and Nepf, 2004; Poggi et al., 2009]. Inserting the former into

(3b) gives

ŝðẑÞ5lT ðẑÞdẑ û; (4)

where lT : 5l1qmtðẑÞ; ẑ 2 ðH;H1LÞ. Integrating (3a) from ẑ5H to ẑ5H1L, while accounting for the zero

shear condition at the free surface, ŝðH1LÞ50, yields

ŝðH1Þ5qgS0L: (5)

Combining (5) and (2), gives

ûs5

ffiffiffiffiffiffiffiffiffi

gS0L
p

: (6)

Consistency between the log law (1) where ûs is given by (6), and the turbulent viscosity hypothesis (4)

requires that, at ẑ5H,

lT ðH1Þdẑ ûjH15qgS0L; (7)

where û is defined by (1). This yields to

lT ðH1Þ5qjHûs; (8)

which provides a self-consistent estimate of lT at the interface between the free and vegetated flows.

Inside the canopies, we employ the Darcy-Brinkman equation for the horizontal component of the intrinsic

mean velocity ûðẑÞ [e.g., Stephan and Gutknecht, 2002; Katul et al., 2011],

ledẑ ẑ û2leK
21û1qgS050; ẑ 2 ð0;HÞ (9)

where K (L2) is the canopy permeability and le is the fluid ‘‘effective’’ viscosity, respectively.

Guided by experimental evidence [e.g., Ghisalberti and Nepf, 2004; White and Nepf, 2007; Poggi et al.,

2009], equation (9) is subject to the no shear condition at ẑ50, and the continuity of velocity

and shear stress at the interface, ẑ5H, between the free and obstructed flows [e.g., Katul et al.,

2011],

ŝð0Þ50; ûðH2Þ5ûðH1Þ5Û; ledẑ ûjH25lT ðH1Þdẑ ûjH1 : (10)

While not strictly accurate in proximity of the soil layer [Huai et al., 2009], a free shear condition has

proved successful in describing the mean velocity profile in most of the canopy layer [e.g. Ghisalberti

and Nepf, 2004; White and Nepf, 2007; Poggi et al., 2009]. A more accurate evaluation of shear stress

at the bed can be implemented considering a three layer approach [e.g., Huai et al., 2009]. Since
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experimental data suggest smoothness of the mean velocity profile at the interface, we set the

effective viscosity equal to the turbulent viscosity at the interface between free and filtration flows,

i.e., le :5lT ðH1Þ in (9) [Katul et al., 2011; Papke and Battiato, 2013]. Equation (9), which accounts for

the viscous and turbulent stresses, the canopy drag and the gravity potential (first, second and third

term, respectively), is equivalent to a double-averaged streamwise momentum equation [Nepf, 2012,

equation (2)], where unsteady and dispersive stress effects have been neglected, as justified by the

findings of Poggi et al. [2004]. Yet, unlike other models [Nepf, 2012, and references therein], where

the canopy drag is generally parametrized through a (unknown) drag coefficient, we model the for-

mer as a Darcy-type resistance and indirectly account for the turbulence at the canopy scale by

including le ð:5lT Þ in the canopy drag term. The first term in (9), where an eddy viscosity closure

assumption is employed, is consistent with former formulations of the total stresses [e.g., Hsieh and

Shiu, 2006; Nepf, 2012]. We emphasize that, despite le is assumed constant, the viscous term

becomes negligibly small ‘‘deeply’’ inside the canopies, i.e., ẑ � ð0;
ffiffiffi

K
p

Þ, due to the singular nature of

Darcy-Brinkman equation in the low-permeability limit.

Choosing the height of the canopies, H, the effective viscosity le and the velocity scale q5qgS0H
2=le as

repeating variables, (9) can be cast in dimensionless form

dzzu2k2u1150; z 2 ð0; 1Þ; (11)

subject to sð0Þ50; uð12Þ5U, and dzuj125d, where z5ẑH21; u5ûq21; d5LH21;U5Ûq21; k25H2K21. The

analytical solution of (11) for the mean velocity profile u(z) inside the vegetated layer z 2 ½0; 1� is

uðzÞ5k22
1Cðekz1e2kzÞ; (12a)

C5
1

2
dk21cschk (12b)

The interfacial velocity, U : 5uð1Þ, and the velocity deep inside the canopy (or Darcy velocity), Ud : 5uð0Þ,
are given by

U5k22
1dk21cothk; (13)

Ud5k22
1dk21cschk; (14)

respectively. We emphasize that (13) (or (14)) provides an operational way of estimating the canopy layer

permeability, k, based on measurements of interfacial (or Darcy) velocity only, once the geometrical features

of the channel (S0 and L) and the height of the canopy layer (H) are determined. Above the canopy layer,

the dimensionless log law holds:

uðzÞ5U1dln z; z 2 ð1; 11dÞ: (15)

since us : 5ûs=q5jd from the definition of q.

The dimensionless shear stress s : 5ŝH=ðleqÞ5dyu can be readily determined from (12)–(15) as

sðzÞ5kCðekz2e2kzÞ; z 2 ð0; 12Þ; (16a)

sðzÞ5dz21; z 2 ð11; 11dÞ: (16b)

Figure 2 plots u(z) and sðzÞ for different values of k � 1. As permeability decreases (or k increases), the flow

profile inside the obstruction becomes progressively more uniform and the shear stress decreases quickly

to zero within the porous layer.

In the following, we provide analytical expressions for a number of relevant quantities, generally employed

to characterize flows in vegetated channels, e.g., volumetric discharge, penetration length, drag length

scale, canopy shear layer parameter, and the friction factor.

2.2. Analytical Expressions

The closed-form expressions (12) and (15) allow one to analytically determine various quantities, relevant in

describing vegetated flows, with no need of additional parametrization. All such quantities can be uniquely

determined from the channel geometrical features, once the canopy layer permeability has been estimated

(from, e.g., velocity measurements).

Water Resources Research 10.1002/2013WR015065
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2.2.1. Discharge, Bulk Velocity and

Friction Factor

The volumetric discharge Q̂ [L3T –1]

through a vegetated channel of width Ŵ

[L] can be estimated from integration of

the properly rescaled mean velocity pro-

files within and above the canopy layer

(12) and (15), respectively. The dimension-

less volumetric discharge per unit width

QW : 5Q=W , where Q5Q̂q21H22 and

W5Ŵ=H are the dimensionless volumetric

flow rate and channel width, respectively,

is given by QW5
Ð 1

0
½k22

1Cðekz1e2kzÞ�dz
1

Ð 11d

1
ðU1dln zÞdz. Integration yields to

QW5k22
1Ck21ðek2e2kÞ

1d½ð11dÞln ð11dÞ1U2d�:
(17)

We emphasize that QW can be determined

solely from canopy attributes, i.e., d and k.

The bulk velocity Ûb can be readily calcu-

lated as

Ûb5
qQW

11d
: (18)

The friction factor f is defined as

f :58
ŝðHÞ
qÛ

2

b

; (19)

(i.e., f :54Cf , where Cf is the skin friction coefficient). From (5) and (6), ŝðHÞ5qû2
s . Then, (19) can be rear-

ranged to recover the classical Darcy-Weisbach formula:

ûs

Ûb

5

ffiffiffi

8

f

r

: (20)

2.2.2. Penetration Length

The depth, below the canopy surface, where the stress reaches a fixed (however arbitrary) value of the max-

imum stress, smax5ŝðHÞ, is referred to as penetration length d̂e. Generally this percentage is fixed at 10% of

ŝmax [Nepf and Vivoni, 2000; Murphy et al., 2007; Ghisalberti, 2009]. In dimensionless form,

de : sð12deÞ50:10sð1Þ (21)

where de :5d̂e=H. Combining (21) with (16a) leads to

de512k21asinhð0:1sinh kÞ: (22)

2.2.3. Drag Length Scale and Canopy Shear Layer

Another relevant parameter is CDa, the product between the medium drag coefficient, CD, and the frontal area

of the canopies per unit volume, a, referred to as the inverse of the drag length scale ([CDa]5L– 1). It is defined as

CDa5
2jF̂ j
qÛ

2

c

; (23)

where F̂ is the drag force per unit volume of porous medium, and Ûc is a characteristic flow velocity, which

we set equal to Û [Papke and Battiato, 2013]. Since F̂ð1Þ52leÛ=K at the interface of a Brinkman medium

and ŝ=s5leq=H from the definition of dimensionless stress, (23) can be rewritten as

Figure 2. Dimensionless mean velocity u(z) and shear stress sðzÞ (inset)
within and above the canopy layer for different values of the dimensionless

permeability k.
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CDa5
2k2

H

U

sð1Þ

 

ûs

Û

!2

: (24)

As sð1Þ5d and us5jd, (24) becomes

CDa5
1

H

2d

U
ðkjÞ2; (25)

which provides a closed-form expression for CDa in terms of geometric features of the channel and the

interfacial velocity. The canopy shear layer, CSL, is defined in terms of CDa as

CSL:5CDa
Û

dẑ ûjH
: (26)

Nepf et al. [2007] showed experimentally that the CSL is statistically independent of the canopy Reynolds’

number Reh :5HÛ=m for Reh 2 ð103; 106Þ, and its value approximately equal to 0.23 60.06. In particular, they

proposed, and experimentally supported, the scaling law [Nepf et al., 2007, equation (5)],

d̂e

H
� CSL

CDaH
: (27)

In the following, we verify that the proposed model is consistent with the experimental observation by Nepf

et al. [2007] and with the scaling law (27). Multiplying both sides of (24) by Û=ðdẑ ûjHÞ, yields to

CSL52ðkjÞ2; (28)

since dzuj15sð1Þ5d and us5jd. Consistently with data, CSL is independent of Reynolds number. Yet,

according to the proposed model, CSL is not a constant among canopy flows characterized by different

obstruction permeabilities. For canopy layers of low permeability (i.e. k ! 1), the dimensionless penetra-

tion length de scales as

de � k21ln 10 (29)

since sð1Þ � d and sð12deÞ � de2dek. The asymptotic behavior of CDaH for thin vegetated layers,

K:5kd � 1, is

CDaH � 2k3j2; (30)

since U � d=k when K � 1, i.e. it is independent of d. The asymptotic behavior of CSL, de and CDaH given

by (28), (29), and (30), respectively, suggests that

CSL

CDad̂e
� const; (31)

i.e. the ratio is invariant for thin vegetated layers in the low-permeability limit. This is consistent with (27). In

the following, we validate our theoretical predictions against experimental data published elsewhere.

3. Comparison With Experimental Data

We compare our model predictions with the data set collected by Ghisalberti and Nepf [2004] and Nepf et al.

[2007].

Unlike other models, the proposed approach allows one to fully determine the flow response once H, L,

S0, and K are known. Current analytical and semianalytical models contain many additional fitting param-

eters. For example, concurrent measurements of CD, a, H, L, S0, and a momentum absorption coefficient,

b, are often required [Katul et al., 2011]. The latter can be determined using empirical relationship which

contains additional fitting parameters, [Katul et al., 2011, equation (19)]. Alternatively, estimates of the

mixing length de and other constants [e.g. Huai et al., 2009, equation (1)] are necessary beyond CD, a, H, L,

and S0 values. Other models necessitate of both the zero-plane displacement and the momentum rough-

ness height, or employ empirical relationships for parameter estimation [Nepf et al., 2007]. More parsimo-

nious models, which provide estimates of overflow and in-patch depth-averaged velocities, have been

Water Resources Research 10.1002/2013WR015065
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proposed [e.g., Huthoff et al., 2007; Yang and Choi, 2010; Konings et al., 2012; Luhar and Nepf, 2013]. They

generally require a smaller set of fitting parameters, yet they do not provide a vertical distribution of the

mean velocity.

Since permeability is a function of the geometrical properties of the array, we assume that model canopies

with the same value of a possess the same K (or k). Therefore, we group the available measurements into

four classes of equivalent porous media corresponding to the four values of a, a5f0:025; 0:034; 0:040; 0:080g.

For each class of porous medium, we calculate K (or k) from a single measurement of the interfacial velocity

in one particular run through (13). Specifically, we employ runs A, C, E, and H to calculate the permeability

for each geometrical configuration. The calculated values are KA57:53 � 1023m2ðkA51:60Þ; KC56:26 � 1023

m2ðkC51:76Þ; KE57:16 � 1023m2ðkE51:63Þ and KH55:27 � 1023m2ðkH51:90Þ for runs A, C, E, and H, respec-

tively. After calculating permeability, we perform a parameter-free prediction on available quantities

(e.g. Û; Ûd , and Q̂) for the same and remaining runs. A list of dimensional and dimensionless model

parameters, including the fitted values of K (or k), is provided in Table 1. We emphasize that there are a

number of alternative options to estimate permeability K (or k). These include (i) drag coefficient meas-

urements or estimates (e.g., CD � 1) which can be linked to k through (25) or (30); (ii) velocity measure-

ments at arbitrary locations in the flow field, e.g., the velocity deep inside the canopy or any velocity

measurements in the surface layer; (iii) prediction from geometric information of the canopy layer, i.e.

porosity / and stem density a (obtained from remote sensing or lidar data) through either (semi-)empir-

ical, analytical, or numerical models [e.g., Sobera and Kleijn, 2006; Mattis et al., 2012, and references

therein].

Figure 3a shows a comparison between the measured interfacial velocity Û and the model prediction pro-

vided by (13) for runs B, D, F, G, I, J, and K. We emphasize that, for the previous runs, the prediction is

parameter free. Similarly, Figure 3b presents a comparison between the velocity deep inside the canopy

(or Darcy velocity) as predicted by the model and the measured values for all the runs. Figure 3c compares

the experimentally determined volumetric discharge Q̂ and its prediction through (17) for each run. The

predicted values are generally in good agreement with the experimental data. The discrepancy between

the predicted and measured volumetric flow rate for low values of discharge is to be expected. The log

law employed to compute Q̂ is not valid in proximity of the surface where a free shear condition should

Figure 3. Comparison between measured and predicted (a) interfacial velocity Û , (b) velocity deep inside the canopies Ûd , and (c) volumetric discharge Q̂ for runs A (square), B (dia-

mond), C (right-pointing triangle), D (left-pointing triangle), E (star), F (black square), G (asterisk), H (cross), I (circle), J (triangle), and K (inverted triangle). Figure 3a does not include the

runs used for fitting, i.e. runs A, C, E, and H. The line 1:1 is showed.

Table 1. Model Parameters

Run A B C D E F G H I J K

d [-] 2.36 2.36 2.36 2.36 2.38 2.38 2.38 2.38 2.38 2.38 2.38

k [-] 1.60 1.60 1.76 1.76 1.63 1.63 1.63 1.90 1.90 1.90 1.90

K [-] 3.78 3.78 4.14 4.14 3.89 3.89 3.89 4.52 4.52 4.52 4.52
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be satisfied; this leads to overesti-

mate the velocity profile close to the

free surface, and consequently the

total discharge. This effect becomes

more noticeable for low values of dis-

charge, where such overestimate

constitutes a higher percentage of

the total discharge.

The CSL parameter can be promptly

estimated through (28). The analyti-

cal predictions of CSL corresponding

to the minimum and maximum

values of k among all the runs are

CSL � 0:19 and CSL � 0:26 for k51:6

and k51:9, respectively. These

results are in excellent agreement

with the experimental mean value of

0.23 and a standard deviation

between all measurements of 0.06

[Nepf et al., 2007, Figure 2]. Our theo-

retical result suggests that the scatter

between the different sets of data

may be attributed to different values

of permeabilities between the can-

opy layers. The analytical solution

well compares with the experimental

data.

Given the obstruction permeability

and the geometric features of the

channel, the mean velocity profile is

uniquely determined by (12)–(15).

Figure 4a compares the experimen-

tal measurements and the simulated

dimensional mean velocity profiles

for runs H, I, and J. We emphasize

that the analytical predictions for

runs I and J are parameter free. The

results indicate the model is able to

successfully reproduce the velocity

profile except in proximity of the

free interface where the log law is invalid. The inset in Figure 4a, which plots the dimensionless velocity

profile (12a) and the correspondingly rescaled data, supports the hypothesis that arrays with equal stem

density a possess the same permeability and exhibit a similar dynamical response, if appropriately

rescaled.

For canopy layers of different permeabilities, we seek dynamic similarity by investigating the asymptotic

behavior of (12) in the low-permeability limit, i.e. k ! 11 [Battiato, 2012; Papke and Battiato, 2013]. Since

C � dk21e2k, we can define

u? :5
uðy?=k; kÞ2k22

k=d
(32)

whose asymptotic behavior u? � ey
?
is independent of k, where y?5kðz21Þ and y? 2 ð2k; 0Þ. Figure 4b

plots rescaled data (according (32)) for velocity profiles B, C, H, I, J, and PD5 [Katul et al., 2011]. As k � 2

(solid line) for the data set considered here, the asymptotic limit for k ! 1 (dashed line) is not fully

Figure 4. (a) Comparison between experimental velocity measurements (points) and

model predictions (solid lines) for runs H, I, and J. The permeability value K (or k) for

the three configurations is obtained through a one-point fitting of the interfacial

velocity Û for run H by means of (13). The fitted value of k (� 1:90) is then employed

to perform a pure prediction on the remaining data set. The inset shows a plot of u(z)

(solid line) and the appropriately rescaled data. It supports the model assumption

that canopy layers with the same stem density, as for runs H, I, and J, have the same

permeability. (b) Rescaled data (according (32)) for velocity profiles B, C, H, I, J, and

PD5 [Katul et al., 2011], corresponding to canopy layers with different permeabilities.

The main figure shows that the asymptotic limit for k ! 1 (dashed line) is not fully

reached, since k � 2 (solid line) for the data set considered here. The nonrescaled

data corresponding to runs B, C, and PD5 and the model predictions (solid lines) are

presented in the inset.
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reached, as apparent from the k-

dependent tails deviating from (32).

The nonrescaled data for runs B, C,

and PD5 and the model predictions

(solid lines) are presented in the inset

of Figure 4b.

It is worth noticing that (15) and (32)

suggest that two different velocity

scalings exist in the surface and can-

opy layers, respectively. In particular,

(15) gives

u?s‘ :5
û2Û

ûs

5j21ln z (33)

with z5ẑ=H, i.e. u?s‘ is a universal func-

tion in the surface layer, z> 1. In the

canopy layer, combining (29) with (32),

while accounting for U2Ud � kd21

(as k ! 11), yields to the following

scaling

u?c‘ :5
û2Ûd

Û2Ûd

� ecz
?
c‘ ; k ! 11

(34a)

z?c‘ : 5
ẑ2H

d̂e
; (34b)

with c5ln 10, i.e. ln ðu?c‘Þ is linearly
proportional to z?c‘. The previous scal-

ings are similar to those proposed by,

e.g., Katul et al. [2011, equation (14)].

Although derived under the assump-

tion of free-shear at the channel bed,

the universal scaling (34) is independ-

ent from the specific boundary condi-

tion imposed at the bed surface

[Battiato, 2012]. The scaling laws (33)

and (34) demonstrate that appropriately rescaled quantities become independent of k (or permeability), as

k ! 11 (or permeability is sufficiently small). This has two direct implications. First, it shows that the space

dimension of independent (dimensionless) parameters that fully describe the system dynamics can be

reduced from two (d and k) to one (d only). Second, it suggests that appropriately rescaled flow quantities

become approximately independent of k when the former is large enough, i.e. the system response is not

strongly sensitive to k estimates (and/or measuring errors) when permeability is small. In this sense, k

appears as a robust parameter for modeling vegetated flows. Yet, for vegetated conditions where k is not

much larger than one, deviations from (34) may occur. In Figure 5a, we plot the experimental data rescaled

according to (33). The data in the surface layer collapse onto the theoretical prediction. In Figure 5b, we

rescale the velocity data according to (34). In a semilogarithmic plot, the rescaled velocity data ln ðu?c‘Þ are
indeed linearly dependent with the rescaled coordinate system z?c‘, with c � 3:7. Deviations from the theo-

retical prediction in the limit as k ! 1 are to be expected since k � 2 for the data set considered.

The ability to estimate canopy layer permeability based solely on geometrical features of the stem arrange-

ment would allow one to predict flow response from geometric information of vegetation acquired, e.g.,

from remote sensing devises. There are multiple formulas to independently estimate permeability of a

porous medium from its geometric features [Sobera and Kleijn, 2006, and references therein]. Yet, they are

Figure 5. (a) Rescaled velocity data u?s‘ :5ðû2ÛÞ=ûs versus z5ẑ=H for runs B, C, H, I,

and J. The data in the surface layer collapse onto the theoretical prediction, u?s‘5j21 ln z

(solid line); (b) Rescaled velocity data u?c‘ :5ðû2ÛdÞ=ðÛ2ÛdÞ versus z?c‘ :5ðẑ2HÞ=d̂e .

The rescaled data follow the theoretical scaling u?c‘ � expðcz?c‘Þ, with c � 3:7 (solid line),

yet they deviate from the theoretical prediction u?c‘ � exp ðln10z?c‘Þ valid in the limit k

! 11 (dashed line). This is to be expected since all the runs are characterized by

k � 2.
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generally empirical formulas and

contain a number of fitting parame-

ters. As such, their applicability is

limited to the physical conditions

under which they have been

derived and they are less accurate

than the use of actual velocity data.

Much fewer semianalytical approxi-

mate formulations are available,

except for highly idealized systems.

Here, we compare the permeability

values as obtained by one-point fit-

ting of velocity data with the analy-

sis proposed by [Happel, 1959],

which describes the laminar viscous

flow through a regular array of infi-

nite cylinders of radius R0 and half-

distance between cylinders R1
aligned orthogonally to the mean

flow direction. The permeability of

such an array is given as [Happel,

1959, equation (19)]

K5R21f ð/Þ (35a)

where

f ð/Þ5 1

8
2ln ð12/Þ2 ð12/Þ22

21

ð12/Þ22
11

" #

(35b)

and /512R20=R
2
1 is the forest porosity. Assuming the stems are arranged in regular arrays, then R1 can be

approximated as R151=ð2aÞ, where a52nR0 and n is the canopy stem density (i.e. number of stems per

unit area). While for the experimental runs used in this study, the mean leaf area index (LAI) is not provided,

the latter can be related to a through, e.g., LAI � aH [Katul et al., 2011]. For the four configurations corre-

sponding to values of a5 {2.5, 3.4, 4, 8} m– 1, we plot the ratio between the fitted and predicted permeabil-

ity value (see Figure 6). Despite permeability values can span up to 20 orders of magnitude depending on

the system under consideration (from 10219m2 in ‘‘impervious’’ rocks to 1022m2 for highly permeable

layers), Figure 6 shows that (35) can predict the correct order of magnitude of the canopy permeability

without any fitting parameter, given the canopy density a (or LAI) and the canopy layer porosity / are pro-

vided. The discrepancy between the predicted and fitted permeability values is to be expected due to devi-

ations of the experiment from the model approximations and/or highly idealized conditions, which include,

e.g., flow steadiness and one-dimensionality, and regular arrangement of stems. Yet, the approach shows

promise in its ability to directly link canopy geometry (obtained, e.g., from lidar data) to flow response.

Development of more accurate relationships between geometrical features and canopy permeability, to

include, e.g. finite height and bending effects in (35), is subject of current research.

4. Conclusions

Turbulent flows above submerged vegetation are ubiquitous in natural systems and their accurate model-

ling is crucial in determining nutrients dynamics and the hydrodynamic response of wetlands and vege-

tated channels. We propose a single fitting-parameter model to describe turbulent flow in a densely

vegetated open channel. The model couples the Darcy-Brinkman equation with the log law for the flow

within and above the canopy layer, and employs a first-order closure scheme of the Reynolds equation to

provide a self-consistent estimate of the turbulent viscosity at the interface between the canopy and free

flow. Further, we model the drag force as a Darcy-type resistance with a modified effective viscosity which

Figure 6. Ratio between the fitted and predicted permeability values for the experi-

mental canopy configurations corresponding to a5 {2.5, 3.4, 4, 8} m– 1. Equation (35)

is able to capture the correct order of magnitude of the canopy layer permeability

solely from geometric information of the canopy structure, i.e. porosity / and canopy

density a.

Water Resources Research 10.1002/2013WR015065

BATTIATO AND RUBOL VC 2014. American Geophysical Union. All Rights Reserved. 10



accounts for turbulence at the canopy scale, without relying on a more common parametrization through a

(unknown) drag coefficient. The model, amenable of analytical solution for the mean velocity, allows one to

determine closed-form expressions for a number of relevant physical quantities, including volumetric dis-

charge, bulk velocity, penetration length, drag length scale, and canopy shear layer parameter (CSL), with-

out relying on additional parametrization. The model results show that the parameters governing the

dynamical response of appropriately dimensionless quantities are purely geometric, i.e. a dimensionless can-

opy layer permeability k and height d. This information can directly guide the design of laboratory-scale mod-

els which are dynamically similar to their corresponding prototypes in natural environments (i.e., at the field-

scale). According to the proposed model, dynamic similarity is achieved when k and d are kept constant

between the model and the prototype. The model suggests that appropriately rescaled velocities in the can-

opy and surface layers exhibit different scalings laws. The scaling laws show that the space of dimensionless

parameters can be further reduced when permeability is very small, i.e. k ! 11, and the dynamical response

of vegetated layers becomes universal. It is worth noticing that the proposed approach, consistent by con-

struction with the framework proposed by Papke and Battiato [2013], satisfies also the universal scaling laws

experimentally observed by Ghisalberti [2009], under appropriate conditions. The model predictions and the

proposed scalings compare well with experimental data collected by Ghisalberti and Nepf [2004], Poggi et al.

[2004] and Nepf et al. [2007].

While the proposed framework is applicable to rigid and moderately flexible canopies, generalizations to

more realistic configurations, e.g. highly flexible and heterogeneous (i.e. with spatially variable permeability)

canopy layers, necessitate the coupling of canopy bending and flow field dynamics. This is subject of cur-

rent investigations together with the application of the proposed model to transport of passive and reactive

solutes in vegetated aquatic flows.
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