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ABSTRACT

We characterize the streaming space complexity of every symmetric
norm / (a norm on R" invariant under sign-flips and coordinate-
permutations), by relating this space complexity to the measure-
concentration characteristics of I. Specifically, we provide nearly
matching upper and lower bounds on the space complexity of
calculating a (1 + €)-approximation to the norm of the stream,
for every 0 < € < 1/2. (The bounds match up to poly(e~! log n)
factors.) We further extend those bounds to any large approximation
ratio D > 1.1, showing that the decrease in space complexity is
proportional to D?, and that this factor the best possible. All of the
bounds depend on the median of I(x) when x is drawn uniformly
from the I3 unit sphere. The same median governs many phenomena
in high-dimensional spaces, such as large-deviation bounds and the
critical dimension in Dvoretzky’s Theorem.

The family of symmetric norms contains several well-studied
norms, such as all lp norms, and indeed we provide a new explana-
tion for the disparity in space complexity between p < 2 and p > 2.
In addition, we apply our general results to easily derive bounds
for several norms that were not studied before in the streaming
model, including the top-k norm and the k-support norm, which
was recently employed for machine learning tasks.

Overall, these results make progress on two outstanding prob-
lems in the area of sublinear algorithms (Problems 5 and 30 in http:
//sublinear.info).
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1 INTRODUCTION

The study of norms on data streams has a rich history, and in par-
ticular has driven much of the fantastic development of streaming
algorithms, see e.g. [AMS99, IW05, Ind06, Mut05]. A data stream
is a sequence of additive +1 updates that accumulate on the coor-
dinates of an n-dimensional vector v, and a streaming algorithm
reads the sequence of updates and computes some function of v.
This is known as the turnstile model, and for simplicity we assume
that |v;| < poly(n), for all i € [n]. Despite plenty of work, it is
still an open problem to design a generic streaming algorithm for
approximating norms. Although very challenging, it may not be
too much to ask for. In fact, several existing methods, including the
Indyk-Woodruff sketch [TW05, BOR15], yield so-called “universal
sketches” that can be used to approximate whole classes of stream-
ing problems at once. So we ask, is there a generic method that
can approximate any desired norm of a stream with near-optimal
space complexity? Second, is there a universal sketch whose single
evaluation on a vector (say on a stream) suffices to approximate ev-
ery norm in a wide class? While several powerful upper and lower
bound techniques have been developed, including embeddings,
heavy-hitters, and reductions from Communication Complexity, it
is not apparent how they can be applied to an entirely new norm,
see also Open Problems 5 (Sketchable Distances) and 30 (Universal
Sketching) in the list [sub06].

This is a real challenge for at least two reasons. First, we lack
a generic framework for embeddings. Even when it is possible to
embed into an easy-to-handle space, a new embedding must be
constructed and applied to the input stream for each norm. Second,
current techniques, heavy-hitters included, have been confined to
norms with additive structure. Nearly all of the norms considered
so far decompose, on some level, into a sum of independent quanti-
ties, and this fact is heavily exploited in the design of algorithms
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and lower bounds. Examples include /, norms (see references in
Section 1.3), the entropy norm [CDM06, CCM07, HNO08], and cas-
caded [, norms [JW09, Jay13]. Abandoning our reliance on additive
decomposability has been a major bottleneck en route to a broader
characterization of norms.

We overcome this barrier in the setting of symmetric norms, see
e.g. [Bha97, Chapter IV]. Anorm [ : R" — R is called symmetric
if, for all x € R™ and every n X n permutation matrix P, it satisfies
[(Px) = I(x) and also I(|x]) = I(x), where |x| is the coordinate-
wise absolute value of x. It is a partial answer to the question
above, as we design a generic algorithm for symmetric norms and
it is based on a universal sketch. Specifically, for every s > 0,
there is a single sketch of size s - poly(log(n)/¢), that yields a (1 +
€)-approximation! for every symmetric norm whose streaming
space complexity is at most s. In fact, we show that the streaming
space complexity of a symmetric norm is determined by the norm’s
measure-concentration characteristics. To be precise, let X € R”
be uniformly distributed on S n=1 the I, unit sphere. The median of
a symmetric norm [ is the (unique!) value M; such that Pr[I(X) >
M;] > 1/2 and Pr[I(X) < M;] > 1/2. Similarly, b; denotes the
maximum value of [(x) over x € S"~1. We call the ratio

mc(l) = bl/Ml
the modulus of concentration of the norm [. Our results show that
this modulus of concentration is crucial in determining the stream-
ing space complexity of any symmetric norm. This quantity gov-
erns many phenomena in high-dimensional spaces, for example,
it appears in large-deviation bounds and the critical dimension in
Dvoretzky’s Theorem is n/mc(l)?, see e.g. [MS86, KV07].

Symmetric norms clearly include the I, and entropy norms, and
we present fresh examples with heretofore unknown streaming
space complexity, like the top-k norm, Q norms, and Q’ norms, later
on. Although matrix norms are generally not symmetric, our results
immediately imply lower bounds for unitarily invariant matrix
norms, for example the Ky Fan norms, by restricting attention to
diagonal matrices.

One well-studied family of symmetric norms is that of [, norms
on R", defined as I,(x) = (X, |x; |PY1/P For 1 < p < 2, the
maximum value of [,(x) over x € sl blp = nl/P=1/2 and con-
centrates at Mlp = @(nl/ p-1/ 2, so the modulus of concentration is
mc(lp) = O(1). For p > 2, the maximum is b 1, =1 but again concen-
trates at M;, = O(n!/P~1/2), hence mc(lp) = O(n!/2-1/P). Recall
that the streaming space complexity for a (1 + 1/10)-approximation
of I, is ©(log n), when p < 2 [KNW10], and is @)(nl_z/f’ log n) when
p > 2 [LW13, Gan15] (the constant 1/10 here is arbitrary). Thus for
all values of p > 1, the space complexity of computing a (1 +1/10)-
approximation to [, is G)(mc(lp)2 log n). Our main result recovers
this fact up to a polylog n factor.

But, the modulus of concentration cannot be the whole story
for streaming algorithms. It expresses an average behavior of the
norm on R", and even if the norm is well-behaved on average, like
I; for example, it is possible that a more difficult norm is concealed

!We state the approximation ratio in one of two standard ways. A D-approximation,
D > 1,to I(v) is a value 1 such that I(v) < i< DI(v). When D is very close to one,
it is more convenient to consider a (1 + €)-approximation, 0 < € < 1/2, which is
defined as (1 — €)l(v) < i< (1 + €)l(v) and corresponds to a D-approximation for
D = lte

1-€-
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in a lower-dimensional subspace. One example of this is I(x) :=
max{le(x),l1(x)/y/n} on R", which has mc(l) = O(1). However,
when x has fewer than 4/n nonzero coordinates, [(x) = loo(x), which
is just a lower-dimensional copy of I and implies, by [AMS99], an
Q(+/n) space lower bound for [. In order for the modulus of concen-
tration to have any connection with streaming space complexity,
we have to close this gap.

Notice that, for every k < n, the norm [ induces a norm 1) on
RF by setting

1O (et xz, oy xp)) = UGy ., 0)).

Of course, because of the permutation symmetry we could have
chosen any set of n — k coordinates to be the zeros. As the examples

Xk 0,

above show, the modulus of concentration of I¢) may vary with

k. However, any streaming approximation algorithm for [ is also

trivially a streaming approximation algorithm for 16) We therefore

define the maximum modulus of concentration of the norm [ as
by

max .

k<n My

Our main result is that this quantity characterizes the streaming

space complexity of every symmetric norm /.

mmc(]) := max mc(l(k)) =
k<n

1.1 Our Results

Quite surprisingly, for every symmetric norm [ on R", the optimal
space complexity of a streaming algorithm that gives a (1 + €)-
approximation for [ is mmc(1)? - poly(log(n)/e). This characteriza-
tion tells us in particular whether a given symmetric norm admits a
polylogarithmic space approximation or requires polynomial space.

THEOREM 1.1 (MAIN THEOREM). Let ! be a symmetric norm on R™.
For every € > 0, there is a one-pass streaming algorithm that on an
input stream vector v € R™ computes, with probability at least 0.99,
a (1 + €)-approximation to l(v), and uses mmc(l)? - poly(log(n)/e)
bits of space.

THEOREM 1.2 (LOWER BOUND). Let [ be a symmetric norm on R"™.
Any turnstile streaming algorithm that outputs, with probability at
least 0.99, a (1 + 1/6)-approximation for I(-) must use Q(mmc(l)%)
bits of space in the worst case.

For the coarser D-approximation, where D > 1.1 and can grow
with n, in Theorem 1.3 we build upon the algorithm of Theorem 1.1
trading the larger approximation ratio for a 1/D? multiplicative
decrease in storage. It turns out that the quadratic dependence
on D is the best possible; we prove the matching lower bound in
Theorem 1.4.

THEOREM 1.3. Let ] be a symmetric norm on R™. For every 1.1 <
D < mmc(]) there is a one-pass streaming algorithm that on input
stream vector v € R™ computes, with probability at least 0.99, a
D-approximation to l(v) and uses (mmc(1)?/D?) - poly(log n) bits of
space.

THEOREM 1.4. Let | be a symmetric norm on R"™. Any turnstile
streaming algorithm that outputs, with probability at least 0.99, a
D-approximation for I(-) must use Q(mmc(1)?/D?) bits of space in
the worst case.

We prove the upper bound theorems in Sections 3 and 5, re-
spectively, with some details in the full version of this paper.). The
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lower bounds both appear in Section 4. To our knowledge, this is the
first application of measure concentration to streaming algorithms
(Chernoff and Hoeffding bounds aside). The geometric and analyt-
ical properties of high-dimensional normed spaces have become
well understood over decades of research. We hope that more tools
from that field can be brought to bear on these intriguing streaming
problems, see Section 7 for promising directions for further work.

Applications and Examples. Section 6 describes some applications
of our results. One application is to a class of norms called Q’
norms [Bha97], which includes the I, norms for 1 < p < 2, among
others. Q” norms are just the dual norms to Q norms (shorthand
for quadratic), which in turn are norms of the form I(x) = O(x2)1/2,
for some symmetric norm ®, where x% denotes coordinate-wise
squaring of x. We study these norms in Section 6.2. The upshot
is that every Q' norm I’ has mmc(!”) = O(log n), and thus can be
computed by a streaming algorithm using polylogarithmic space.
Several Q’ norms have been proposed as regularizers for sparse
recovery problems in Machine Learning. One such norm is the
k-support norm [AFS12], which is more conveniently described
via its unit ball C;. = conv{x € R" : |[supp(x)| < k and Ip(x) < 1}.
It is not readily apparent how to design a specialized streaming
algorithm for this norm, but we obtain such an explicit algorithm,
for every k, as a special case of Q’ norms. Another example is
the box-© norm [MPS14], where given 0 < a < b < ¢, we let
© := {0 € [a,b]" : [;(0) < c}, and define the box-® norm as

" 1/2
lo(x) = 1911618 ( ; x?/&i) , and its dual norm is
n 1/2
’ — X 2
lo(x) = {pngé)( ( ; 0ix; ) .

It’s easy to see that every box-© norm is a Q’ norm, and therefore
has polylogarithmic streaming space complexity. To the best of our
knowledge, there is no other technique that can approximate these
norms on a streaming vector.

Our results also apply to what we shall call the top-k norm. De-
noted as @y (x), it is defined as the sum of the k largest coordinates
of |x| [Bha97]. This norm is a special case of the Ky Fan k-norm and
is sometimes studied as a toy example to understand regulariza-
tion of the Ky Fan norms [WDST14]. We show in Section 6.1 that
mmc(Py) = (:3(\/n/_k), so when k is large, for example linear in n,
the top-k norm of a stream vector can be approximated in only poly-
logarithmic space. We are aware of no other streaming algorithms
that can approximate this norm, as ours does.

1.2 Overview of Techniques

Upper Bound. Our algorithm for Theorem 1.1 uses a linear sketch
in the style of Indyk and Woodruff’s sketch for large frequency
moments [IWO05], but the size of the sketch is calibrated by mmc(/).
The algorithm is presented in Section 3, with some details pre-
sented in the full version. This is a surprising application of the
Indyk-Woodruff sketching technique, as all previous applications of
this method are to computing functions with an additive structure
2, f(vi). In these settings, the Indyk-Woodruff algorithm can be
viewed as performing Importance Sampling of the summands of
the target function 3.7, f(v;). However, a symmetric norm [ need

J.
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not have an explicit mathematical formula, let alone be decompos-
able as a sum, and we thus need a different way to identify the
“important” coordinates, which informally means that zeroing these
coordinates would introduce too much error to I[(v). At a high level,
our analysis makes two major contributions. The first is to provide
an explicit criterion for importance, and the second is to reveal
that inside this importance criterion, the most crucial quantity is
the maximum modulus of concentration mmc(l). A more detailed
outline of the analysis follows, omitting constants and dependence
one.

First, we imagine rounding each coordinate of the streaming
vector v to a power of @ = 1 + 1/polylog(n), which can be seen to
have negligible effect using basic properties of symmetric norms.
Moreover, since the norm is symmetric, it suffices to know only the
number of coordinates, b;, at each “level” a!. By our choice of «,
there are only polylog(n) levels, so we can represent the rounded
vector succinctly. Recovering the rounded vector exactly would
require linear storage, so we use the Indyk-Woodruff sampling
technique to approximate the vector.

The Indyk-Woodruff procedure approximates each b; by sam-
pling each coordinate i of the vector v with probability polylog(n)/b;,
and then in the sampled vector (which is expected to have polylog(n)
coordinates of level i whenever b; # 0), the algorithm identifies
I3-heavy-hitters. If the coordinates of level i are l3-heavy-hitters in
the sampled vector (they are in the same level and thus have about
the same value), then we get a good estimate of b;; it’s not as simple
as counting them and scaling inversely to the sampling probability,
but that is the right idea. If the coordinates are not l>-heavy-hitters,
then we get no estimate for b;, and must assume it is 0. We show
that if we parameterize the sketch according to mmc(l)?, then we
get approximations to all the “important” levels, which is sufficient
to accurately recover [(v).

Lower Bound. The lower bound of Theorem 1.2 is proved using
a reduction from the Communication Complexity of multiparty
set-disjointness, and concentration of measure of the norm / again
plays a key role. In the disjointness setting, each of ¢ players is given
a subset of [n], and their task is to determine whether the sets are
mutually disjoint or are “uniquely” intersecting. Instead of the stan-
dard reduction, where each player places in the stream one update
to v; for every element i € [n] in the set he holds, in our reduction,
each player j € [t] adds to the stream a vector w(i)) € R whenever
element i is in his set. Each vector w(%/) is random but the entire col-
lection of vectors is designed so that the resulting stream vector is,
roughly, a uniformly random vector on a “disjoint” instance, and a
vector maximizing the norm on an “intersecting” instance. For these
two cases to be well-separated, we must choose the number of play-
ers t to be large enough. By applying concentration of measure, we
show that t = O(+y/n/mmc(1)) players suffice, and, by known com-
munication bounds for disjointness [CKS03, BJKS04, Gro09], this
leads to an Q(n/t?) = Q(mmc(l)?) storage lower bound for every
algorithm approximating the norm [ to within 1+ 1/6 (the constant
1/6 is arbitrary). Extending the lower bound to a D-approximation,
for D bounded away from 1, can be accomplished with the same
reduction using t = O(D+/n/mmc(l)) players instead, which yields
Theorem 1.4. The proofs of both lower bound theorems can be
found in Section 4.
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Optimal Tradeoff. For the D-approximation algorithm, Theo-
rem 1.3, the idea is to define, given a norm I, a new symmetric
function [p) : R" — Ry such that I(x) < [p)(x) < DI(x). Even
though [p) is not a norm, we can still define mmc(/(p)), which
is bounded as O(mmc({)/D). The approximation comes by using
our main algorithm to get a 1.1-approximation to [ p)(v), which
translates into a 2D-approximation of /(v). The definition of [ p)
and its analysis are presented in Section 5.

1.3 Related Work

There has been extensive work on computing norms, and related
functions, in the sketching and streaming models. Most recently,
Andoni, Krauthgamer, and Razenshteyn [AKR15] have shown that
a normed space (R",[) embeds linearly into [y 99 with distortion
D > 1 if and only if this normed space admits distance estima-
tion sketching with approximation ©(D) and sketch size O(1) bits.
Thus, they characterize sketching of a general norm by its em-
beddability. In comparison, our characterization applies only to
symmetric norms, but we consider streaming (not sketching) algo-
rithms, which in Theorem 1.1 means a stronger consequence, and
in Theorem 1.2 means a stronger assumption. And perhaps more
importantly, our results achieve (1 + €)-approximation, while their
algorithm achieves approximation proportional to D (though their
lower bound shows a linear tradeoff with sketch size).

Another important tool that may seem relevant is that every
turnstile streaming algorithm can be replaced by a linear sketch,
as shown by Li, Nguyen, and Woodruff [LNW14]. However, this
transformation does not make it easy to determine the streaming
complexity of a given symmetric norm /, because it is not easy to
design a linear sketch for [.

There are other generic streaming algorithms that provide ap-
proximation guarantees for an entire class of functions of the form
>, f(vi), where f is some nonnegative function [BO10, BO13a].
If one has a so-called f-heavy-hitters algorithm that identifies ev-
ery coordinate i accounting for half of the total sum, i.e., f(v;) >
2.j#i f(vj) and moreover approximates this f(v;), then one can also
approximate the sum },"; f(v;), incurring only an O(log n) factor
overhead on top of the f-heavy-hitters algorithm’s storage. For a
large class of functions f, including monotone functions, comput-
ing f-heavy-hitters can be reduced to computing l-heavy-hitters
in several random sub-streams [BOR15, BCWY16] or even just ran-
dom sampling [BC15]. Universality falls out as a side-effect of the
design of the algorithm — the only dependence on f is through the
number of sub-streams, which determines the sketch size, up to
a polylog(n) factor. Therefore, any two functions that lead to the
same sketch size, in fact, use the exact same sketch.

Finally, we should mention there is a very long line of results
on estimating [, norms (also called frequency moments) in a data
stream, including designing small-space algorithms [AMS99, ITW05,
Ind06, GC07,Li08, KNW10, AKO11,BO13a, BO13b, BKSV14, Gan15]
and proving space lower bounds [SS02, CKS03, BJKS04, Gro09,
ANPW13, LW13]. This list omits improvements of the runtime
of update and output procedures, and devising extensions like [,
sampling.
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2 PRELIMINARIES

An important unit vector for us is f(”/) = \/Lnf/(l, 1,1,...1,0,...,0) €
R™, for any n’ < n, which has n’ nonzero coordinates. We abuse
the notation to write £ € R by removing zero coordinates, and
vice-versa by appending zeros. Let us record some basic facts about
symmetric norms.

LEMMA 2.1 (MONOTONICITY OF SYMMETRIC NORMS, SEE E.G. PROPO-
SITION IV.1.1 IN [BHA97]). IfI(-) is a symmetric norm and x,y € R"
satisfy that for all i, |x;| < |y;|, then I(x) < I(y).

Without loss of generality, we assume that our norms are nor-
malized on the standard basis, i.e., [(e;) = 1. Recall that the dual
ofanorm/ : R™ — R is the norm I’ : R" — R given by I’(x) =
sup{ eyl y # 0}. For the following facts see, e.g., [MS86, Sec-

I(y)
tions 3.1.2 and 4.5].

Facrt 2.2. Forallx € R, l(x) < I(x) < Li(x).

FACT 2.3. Let a,b > 0 be such that, for all x € R", a ! I(x) <
I(x) < bly(x). Then, forall x € R™, b1 Io(x) < I'(x) < aly(x).

FacTt 2.4. Ml Ml’ > 1.

We restrict attention to vectors v whose coordinates are in the
range {-m,...,m}, for m = poly(n), so logm = O(logn). Our
results still apply when m is larger but one must replace logn
factors with log m factors.

Last, we must be precise about the model of computation, because
we do not have a mathematical formula for the norm. Our algorithm
will rely on evaluating the norm on a vector that is derived from
a sketch of the stream. Every coordinate of this vector should be
easy to recover from the sketch, but the vector need not be written
explicitly, to avoid Q(n) storage. To accomodate this, we make
the assumption that our algorithm has access to an oracle NORM
that computes [(v) using queries to the coordinates of v, i.e., our
algorithm must provide query access to any coordinate v;.

3 AN ALGORITHM FOR SYMMETRIC NORMS

In this section we prove Theorem 1.1, which shows that a symmetric
norm can be approximated in the turnstile streaming model using
one pass and O(mmc(l)? poly(1/e - logn)) bits of memory. The
Algorithm 1, uses a subroutine called Level1, whose full description
appears in the full version. The rest of this section considers a given
symmetric norm [ on R" and a desired accuracy parameter 0 < € <
1. Let the two parameters « > 1 and 0 < < 1 be determined later,
possibly depending on n, € and mmc(l). We assume mmc(l) < y+/n,
for some sufficiently small constant 0 < y < 1/2, since otherwise
the lower bound given in Theorem 1.2 implies that linear memory
is necessary to approximate this norm with a streaming algorithm.

3.1 Level Vectors and Important Levels
Definition 3.1 (Important Levels). For v € R", define level i as
Bi={je[n]:at < |vj| < a'}, and denote its size by b; := |B;].
We say that level i is f-important if
bi>p Y by and bid® > B bja¥.
j>i j<i
Recall from Section 2 that we restrict attention to vectors v
whose coordinates are in the range {—m, ..., m}, for m = poly(n).
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This assumption implies that the number of non-zero b;’s is at
most t = O(log,, n). And if we normalize v to a unit vector in -
norm, then every non-zero coordinate has absolute value at least
1/poly(n).

We will rely on the next theorem, which shows a streaming
algorithm recovers all the important b;’s. Its proof appears in the
full version.

THEOREM 3.2. For every ¢ > 0, there is a one-pass streaming
algorithm Levell that given an input stream and parameters o’ =
14+y>1and0 < f <1, outputs {l;i}for base « = 1+ O(y), such
that with probability 1 — O(1/poly(n)), for all i,

° I;i < bj; and
o ifleveli is f-important, then bi > (1 - e)b;.
This algorithm uses O(y ~>e =2 log'? n) bits of space.

To state and analyze our algorithm for approximating [(v), we
introduce the following notation. Later, we shall omit (v) from the
notation, as it is clear from the context.

Definition 3.3 (Level Vectors and Buckets). Define the level vector
for v € R™ with integer coordinates to be

V) = (a',...,a,d?, ...,a% . ...ab, ... ab0,...,0) e R
| — | —
b, times b, times b, times
and define the i-th bucket of V(v) to be
Vi(v) = ( 0,...,0 ,al, ..., al, 0,...,0 ,
——— —_——— ~———

bi+by+...+b;_; times  b; times  b; 1+b;o...b, times

0,...,0) e R".
Let V(v) and V;(v) be defined similarly for the approximated values
{I;i}. We denote V(v)\V;j(v) as the vector with the i-th bucket re-
placed by 0; and denote V(v)\V;(v)UV; () as the vector by replacing
the whole i-th bucket with V;(v), i.e.,
V\Vi(@)UVi@) = (' ....a,....d ... L dd, . al,

— — —
by times b; times b; times
0,...,0) e R".

3.2 Approximated Levels Provide a Good
Approximation

We first show the level vector V' can be used to approximate [(v), if
we choose a base @ := 1 + O(e).

PROPOSITION 3.4. Forallv € R™, [(V(v))/a < I(v) < I(V(v)).

Proor. Follows directly from the monotonicity of symmetric
norms (Lemma 2.1). )

The next key lemma shows that (V) is a good approximation to
().

LEMMA 3.5 (BUCKET APPROXIMATION). For every level i, if| l;i < b;,
then I(V\V; UV;) < I(V); and if b; > (1 — €)b;, then [(V\V; UV;) >
(1-e)l(V).

Proor. The upper bound follows immediately from the mono-
tonicity of norms. We will prove the lower bound as follows. Let us
take the vector

Vi=( 0,0,...0, a,...
—_—
bi+by+...+b;_; times I;i times

J.
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Let us also define W := V — V;. Note that W + V; is a permutation
of a vector V\V; U V;. We will prove that, under assumptions of the
lemma, I(W + V;) > (b /bi)I(V).

For avector v € R" and a permultation 7 € X, we denote 7(v) a
vector in R” such that 7(v); := vy(;). Since the norm [ is symmetric,
we have that [(v) = [(7z(v)). Consider a set of permultations S,
consisting of all permutations that are cyclic shifts over the non-
zero coordinates of V;, and do not move any other coordinates. That
is, there is exactly b; permultations in S, and for every 7 € S, we
have (W) = W. By the construction of the set S, we have,

Z (Vi) = biV;

TES
and therefore ) ;¢ (W + \7i) = I;iV,- + b;W. As vectors V; and W
have disjoint support, by monotonicity of the norm [ with respect
to each coordinates we can deduce l(l;,-V,- +biW) > l(l;i(Vi + W)).
By plugging those together,

bil(Vi + W) < 1(b;V; + b;W) =1 Z (Vi + W)
TES
<> z(n(Vi + W)) = bil(V; + W) (1)

meS
where the last equality follows from the fact that [ is symmetric and

|S| = b;. Hence, I(V; + W) > %I(V) > (1—-e)l(V), as desired. O

3.3 Contributing Levels and Important Levels

Definition 3.6 (Contributing Levels). Leveliis called f-contributing
if (Vi) = pLV).

LEMMA 3.7. Let V' be the vector obtained from V by removing
all levels that are not f-contributing. Then (1 — O(log, n) - PI(V) <
v’y <I(v).

PrOOF. Letiy,...,i be the levels that are not f-contributing.
Then by the triangle inequality,
IV)>I(V)=1(Vi,)—...= (Vi) =2 (1= kP)LV).
The proof follows by bounding k by ¢ = O(log,, n), which is the
total number of non-zero b;’s. ]

The following lemma and Lemma 3.15 show together that that
every f3-contributing level is also f’-important for a suitable ’ that
depends on mmc([).

LEMMA 3.8. If level i is f-contributing, then b; > Y
o ’ b= mmce(l)? log? n

- Xj>i bj for some absolute constant A > 0.

We present the following concentration of measure results for
the proof of this lemma,

LEMMA 3.9. For every norm [ on R", if x € S"1 is drawn uni-
formly at random according to Haar measure on the sphere, then

20
Pr(l(x) - M, | > 2oLy < %

\n
LEMMA 3.10. For every n > 0, there is a vector x € S~ ! satisfying
(1) lleo(x) = My | < 2/,

(2) 11(x) =My | <2 bymy/vn, and
3) I{i: x| > ﬁ}l > & for some universal constant K.
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We prove these lemmas using Levy’s isoperimetric inequality,
see e.g. [MS86, Section 2.3].

THEOREM 3.11 (LEVY’S ISOPERIMETRIC INEQUALITY). For a con-
tinuous function f : S — R, let My be the median of f, ie.,
p{x: f(x) < Mf}) > 1/2 and p({x : f(x) > Mf}) > 1/2, where
u(-) is the Haar probability measure on the unit sphere S*~1. Then
p({x: f(x) =Mrle) 21— \/71'_/29_52"/2, where for a set A c S*7!
we denote A¢ = {x : Io(x, A) < €} and Ix(x, A) = infyeq [|x - yll2.

Proor oF LEMMA 3.9. By applying Theorem 3.11, for random x
distributed according to the Haar measure on the l-sphere, with
probability at least 1 — \/Jr_/Ze_z > % there is some y € S"71,
such that ||x — y|lz < \/Lﬁ and [(y) =

|2, and as such

M;. We know that norm [ is
b;-Lipschitz with respect to || -

[1(x) =My | = [I(x) = l(y)| < l(x —y) < by [Ix -yl < o

2by
\/—
Proor oF LEMMA 3.10. Consider x drawn uniformly at random
from a unit sphere. According to Lemma 3.9, we have Pr(|loo(x) -

My | > 2/y/n) < § and Pr(|I(x) = M; | > 20b;/v/n) < %

Let us define r(x t) == |{i: |xi| < t}|. We need to show that for
some universal constant K, with probability larger than % over a
choice of x, we have 7(x, ﬁﬁ) < %

Indeed, consider random vector z € R", such that all coordi-
nates z; are independent standard normal random variables. It is
well known, that % is distributed uniformly over a sphere, and

therefore has the same distribution as x. There is a universal con-
stant K7 such that Pr(||z|]z > K1v/n) < l and similarly, there is a
constant Ky, such that Pr(|z;| < Klz) < 13- Therefore, by Markov
bound we have Pr(z(z, K%) > %)< g. Usmg union bound, with
probability larger than % it holds simultanously that ||z||; < K;vn

L1y ny i _1 ycn

and 7(z, Kz) < 75, in which case 7(z/||zl|2, KIKZ\/E) <3
Finally, by union bound, a random vector x satisfies all of the

conditions in the statement of the lemma with positive probability.
m]

We now prove that the norm [ of the (normalized) all-ones vector
£ () i closely related to the median of the norm. This all-ones vector
is useful because it can be easily related to a single level of V.

LEMMA 3.12 (FLAT MEDIAN LEMMA). Letl : R"™ — R be a sym-
metric norm. Then

A M/ logn < 1(E™) < A, My,

where Ay, Ay > 0 are absolute constants.

Note that the first inequality is tight for ls. To prove this lemma,
we will need the following well-known fact, see e.g. [MS86].

FAcT 3.13. There are absolute constants 0 < y1 < yo such that for
every integern > 1,

y1vlog(n)/n < Mlﬁo”) < y2+/log(n)/n.
Proor oF LEMMA 3.12. Using Lemma 3.10, there is a constant
A > 0 and a vector x € S"~! such that (i) |le(x) — M | < Ay1/n,
(i) |I(x) = My | < Ab;/+/n and (iii) |{i : |x;| > ﬁrz}' > 2 By Fact

3.13, My, = O(ylog(n)/n). On the other hand, mmc(l) < y+/n,
for sufficiently small y, thus Ab;/+/n < M;. We can therefore
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get constants y1,y2 > 0 such that yy M; < I(x) < y2M; and

y1ylog(n)/n < leo(x) < y24/log(n)/n. Therefore |x| < y2+/log ng(”)

coordinate-wise, and by monotonicity of symmetric norms,

Y1 My < I(x) < y2iflogn 1(E™). )

For the second part of the lemma, let J = {i : |x;| > ﬁm} As
|7l > %, there is a permutation 7z such that [n] — J C 7(J). Let

|x| be a vector obtained from x by taking an absolute value of

every coordinate, and let 7z(x) denote applying permutation 7 to

(n)
coordinates of vector x. We have |x|+7(]|x]) > ET coordinate-wise,

and therefore by monotonicity of symmetric norms, we have
1
El(f(")) < Ul +z(|x]) < L(x)+1(x(x]) = 2U(x) < 2y2M; . O
Next, we show that the median is roughly monotone (in n), which
is crucial for the norm to be approximated.

LEMMA 3.14 (MONOTONICITY OF MEDIAN). Letl: R"™ - R bea
symmetric norm. Foralln’ < n” < n,
M;y < Ammc(l)y/log n” My,
where A > 0 is an absolute constant.
Proor. By Lemma 3.12 and the fact that §'("') is also a vector in
Sn"fl’

AMe [Alogn’ < 1I(E™)) < by < mme() My . O

We are now ready to prove the Lemma 3.8.

Proor or LEMMA 3.8. Fix a f-contributing level i, and let U be
the vector V after removing buckets j = 0, ..., i. By Lemma 3.12,
there is an absolute constant A; > 0 such that

1(Vi) = a'b; 1(E7) < el \bi My,

and similarly
Z bj My -
Jj>i

We now relate these two 1nequaht1es as follows. First, I(V;) >
BIUV) = BIU). Second, we may assume b; < };; bj, as oth-
erwise the lemma holds, and then by monotonicity of the median
(Lemma 3.14) M;@»;) < A3 mmc(l)4/logn M55 i) for some abso-
lute constant /13 > 0. Putting these together, we get

b < Aiaiv/b; - A3 mme(l)y/logn
g 5 Vg

Jj>i
and the lemma follows.

Aga

(U) >

O

LEmMmA 3.15. If level i is f-contributing, then there is an absolute
constant A > 0 such that
2, b

2i
J<i

b; >
mmc(l)z(loga n)log?n
Proor or LEMMA 3.15. Fix a ff-contributing level i, and let h :=
argmax; \/b_jaj . We proceed by separating into two cases. First,
if b; > by, then the lemma follows easily by
Z bjaZj < tbhaZh < O(log,, n)b;a’
j<i
The second case is when b; < by,. Using the definition of a con-
tributing level and Lemma 3.12,

MaiNbi My, > 1(V;) > BIV) > AaBa”\by /log n M),
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for some absolute constants 41,4, > 0. Plugging in M, <
A3 mme(l)/log n My, which follows from monotonicity of the
median (Lemma 3.14), for some absolute constant A3 > 0, we get

, A2 pfba® M,

AN My > 2B/ . ) ,
ylogn Az mme(l)4/logn
‘ Jopbpalt

Jhat > 22PN

T 1A mme(l) logn”

Squaring the above and observing that by, a" > Wan) 2j<i bjazj,
the proof'is complete. O

3.4 Putting It Together

ProoF oF THEOREM 1.1. Recall from Section 2 that we assume
our algorithm has access to an oracle NORM that computes [(v) using
queries to the coordinates of v, i.e., our algorithm must provide
query access to any coordinate v;. We assume without loss of
generality that € > 1/poly(n), because an exact algorithm using
space O(nlogn) is trivial.

Our algorithm maintains a data structure that eventually pro-
duces a vector V. We will show that with high probability, I(V)
approximates I(v) and we will also bound the space required for
the data structure. The algorithm is presented in Algorithm 1. The
idea is to run the Level1l algorithm with appropriate parameters.
Specifically, to achieve (1 + ¢)-approximation to [(v), we set the

2
approximation guarantee of the buckets to be ¢’ := O (loeﬂ) and

- ’_ e’ )
the importance guarantee to be ' := O (—mmc o n )

Algorithm 1 OnePassSymmetricNorm(S, n)

1: Input: stream S of from domain [n], and € > 0
2: Output: X

3: (a,};l,ﬁz,...,l;t) «— Levell(S,n,a’ =
2

€ ’ _ e’ _ 0.01€.
O(k’g”)’ﬁ _O(mmc(l)zlogsn)’a_ n ):
by

. Invoke NORM, answer each query for v; by V;;
. X « output of NORM.
: Return X.

1+ O(e), e’ =

. Construct V using « and 131, l;z, ..

P - NS, BTN

Let v be the streaming vector. It is approximated by its level
vector V with base & = 1+0(e), namely, (1-O(¢e))l(v) < (V) < I(v)
by Proposition 3.4. Observe that t = O(log,, n) = O(log(n)/¢), and
assume that algorithm Levell succeeds, i.e., the high-probability
event in Theorem 3.2 indeed occured. Denote by V the output of
Levell, and by V’ the vector V after removing all buckets that
are not f-contributing, and define V’ similarly to V, where we set
B = e/t = O(e? /log n). Every f-contributing level is necessarily
p’-important by Lemmas 3.8 and 3.15 and therefore satisfies bi >
(1 — €’)b;. We bound the error from removing non-contributing
levels by Lemma 3.7, namely,

(1-0(e)) (V) < (1= O(log, n)- B I(V) < I(V') < L(V).
By monotonicity (Lemma 2.1) and by Lemma 3.5,
(V) = IV') = I(V'\Vi, Us,) .. \Vi U Vi)

>(1-eN V)= (1 -0@E)(V).

J. Bfasiok, V. Braverman, S. R. Chestnut, R. Krauthgamer, L. F. Yang

Altogether, (1 — O(¢))l(v) < I(V') < I(v), which bounds the error
of (V) as required.
The space requirement of the algorithm is dominated by that of

12 2 19
subroutine Level1, namely, O log ) =0 Mw bits.
y ﬁ/el 65 €

Storing the data structure, i.e., b;’s, requires only
2
O(log, n)logn =0 (IOg?n) bits. O

4 LOWER BOUND

The overall plan is to use the multiparty disjointness communica-
tion complexity problem to prove an Q(mmc(l)?) bits storage lower
bound on any turnstile streaming algorithm outputs a (1 + 1/6)-
approximation, or better, to the norm of the frequency vector. The
bound is otherwise independent of the norm or n.

Multiparty disjointness is a communication problem where there
are ¢ players who each recieve a subset of [n], and their goal is to
determine whether their sets are intersecting or not. The problem
was introducted by Alon, Matias, and Szegedy [AMS99] to prove
storage lower bounds for the frequency moments problem. After
several improvements [CKS03, BJKS04], the communication com-
plexity of multiparty disjointness was settled at an asymptotically
optimal Q(n/t) bits of communication by Gronemeier [Gro09].

4.1 John’s Theorem for Symmetric Norms

We will start by proving the following specialization of John’s
Theorem [Joh48] to the case of symmetric norms.

THEOREM 4.1 (JoHN’s THEOREM FOR SYMMETRIC Norwms). IfI(-)
is a symmetric norm on R", then there exist 0 < a < b such that

b/a < +/n and, for all x € R", aly(x) < I(x) < bly(x).

Proor. By John’s Theorem [Joh48] there exists a unique ellip-
soid E of maximum volume contained in B = {x € R" | I(x) < 1}
and, furthermore, B C +/nE. E is permutation and sign symmetric
because B is, so it follows from Lemma 4.2 that E is a sphere. There-
fore, there exist 0 < a < b such that aly(x) < I(x) < bly(x), for all
x € R", and, furthermore, b/a < /n. o

LEMMA 4.2. Ifan ellipsoid E is symmetric under every permutation
or change of signs to its coordinates then E is a sphere.

ProOF. Let A be a positive semidefinite matrix such that E =
{x e R" | xT Ax = 1}. Since A is a real positive semidefinite matrix,
it can be decomposed as A = SDST, where S is orthonormal and
D is a diagonal matrix with D1q > Dgp > ---Dpp > 0. We will
show that all of the diagonal entries in D are the same, from which
it follows that A = D and E is a sphere. Let s;, for i € [n], be the
columns of S. Let i # 1, choose a permutation P; so that P;s; has
its coordinates in decreasing order by magnitude, and choose a
permutation P; so that P;s; has the same. Now choose a diagonal
matrix D that has Dj; = 1if (Pys1); has the same sign as (P;s;);, and
Djj = -1 if the signs are different, zeros may be treated arbitrarily.
LetP = PIT DP;; since P is the product of permutation matrics and
a sign change matrix we have E = {x | xTPAPTx < 1} by the
symmetry assumption.

We have D1 = slTAsl, since s is a unit vector orthogonal to
si,i > 1. Let A = STPTs,. By construction we have Zj /1]2. =1
and A; > 0. If we suppose that D;; < D1, then we arrive at the
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following contradiction

n
Dq1 = s51As1 = 51PAPT51 = ZA?DJ']‘ < Dq1.
Jj=1
Therefore, D11 = Dj;, for all i, and E is sphere.

4.2 Concentration of a Symmetric Norm

Let us begin by discussing a concentration inequality for symmetric
norms. We will need concentration of I(Z) around v/n M;, where Z
is distributed according to the canonical Gaussian disribution on n
dimensions. To get it, we will use the following two concentration
theorems for Lipschitz functions. The diffrence between them is
the underlying distribution, whether it is uniform on $*~! or mul-
tivariate Gaussian. Comparing [(Z) against its own median is just
a direct application of Theorem 4.4. There is a little bit more work
to do because we wish to compare I(Z) to the median of I(-) over
$™~1 which is also the median of I(Z)/I5(Z). Note that the M in
Theorem 4.3 is not the same as the M in Theorem 4.4 because the
probability distributions are different.

THEOREM 4.3 ([MS86]). Let f : S""! — R be 1-Lipschitz, let
Z € S™! be chosen uniformly at random, and let M be the median
of f(Z). Then, forall t > 0, Pr(|f(Z) — M| > t) < 2¢~11"/2,

THEOREM 4.4 ([LT13]). Let f : R® — R be 1-Lipschitz, let
21,22, ..., Zn iid N(0,1), and let M be the median of f(Z). Then,
forallt > 0,Pr(|f(Z)-M| =1t) < et/2,

It will also be helpful to have the following fact about y? random
variables.

LEMMA 4.5. ([LM00]) Let X ~ x2. Forall x > 0,
Pr(X >n+2vVnx+x)<e ™ and Pr(X <n-2vnx)<e ™.

LEMMA 4.6. Letn > 2 and let Z € R"™ be a random vector with
coordinates Z1,Z, ..., Zn iid N(0,1). Let M; be the median of I(-) on
™1 wherel(-) is a symmetric norm on R™. Then, for allt > 0,

Pr(|l(Z) — VaM; | > tVn M;) < 7e~1*/200,

Proor. We first establish an inequality that does not have the
correct dependence on ¢, it is (4), and then use it to bound the median
of I(Z) in terms of v/n M;. That will allow us to apply Theorem 4.4
and get the bound above.

By Theorem 4.1, there exist 0 < a; < b; such that b;/a; < \n
and, for all x € R", ajla(x) < I(x) < bjla(x). This implies I(-) is
bj-Lipschitz on R". By scaling the norm (and, as a consequence,
M;), we may assume a; = 1 without loss of generality.

It is easy to see that

Pr(I(Z) — VAM; > VA M))

=Pr (I(Z) - L(Z) M; +L(Z) M; —Vn M; > tvVnM;)

<Pr(2) - bZ)M; = VM, é) +Pr((2) - Va2 «/ﬁé) .
(3

For the second term, notice that I;(Z)? is a )(,21 random variable.
Using Lemma 4.5, we have

Pr (lz(Z) -Vnz \/ﬁé) =Pr (12(2)2 > n(1+ 2)2)
= Pr (L(2)F 2 n+ 2VA(VD) + (Vg)) < e
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For the first term in (3), we have

e (J12) - LZ)M| 2 VaM; 5 )

<Pr (‘l(lg(Z_Z)) Ml =M ?i) +Pr(lx(2) > 2v0).

The scaled norm [(-)/b; is 1-Lipschitz and Z/I3(Z) is distributed
according to the Haar distribution, so by Theorem 4.3 and our
previous y? bound we have

t HM? tz
Pr (1(2) ~L(Z)M; = VA M, 5) < 2ep(-—L;
1

Y+e™ ™

t2 n
<2 exp{—3—2} +e

where the final inequality follows because M;/b; > a;/b; > 1/+/n.
So far, we have established, V ¢t > 0,
Pr(l(Z) — VanM; = tynM;) < 2e 1132 4 g 4 gnt/4 (4)
It is almost the bound that we want, except for the e™" term. Substi-
tutingin t = 8and n > 2 we find Pr(/(Z) > 9vn M) < . Therefore
the median of I(Z) is at no larger than 94/n My, so Theorem 4.4 im-
plies,Vt > 0andn > 2,

Pr(I(Z) — 9V M; > t\nM;) < e MI/28 < 12 (s
The last step is to combine these two bounds by using (4) to bound,
Vt <10and n > 2, Pr(i(Z) > tVn M;) < 3¢~ /32 1 < 7¢71°/32
and using (5) to establish, V¢ > 10 and n > 2,
Pr(l(Z) > t\n My) = Pr(I(Z) — 9vnM; > (t — 9)VnM))

t
<Pr((Z2) - 9vnM; > EWMZ) < ot?/200,

which proves the theorem. O

4.3 The Norm of a Randomized Vector

The multiparty disjointness reduction used to prove Theorem 1.2
uses a randomized vector. Given a vector v € R”, we randomize it
by replacing the coordinates by independent Normally distributed
random variables V; ~ N(0, vl?), for each i € [n].

The next lemma allows us to compare the distribution of the
norm of two different randomized vectors. Recall that a random
variable Y is said to stochastically dominate a random variable X
if Pr(Y > t) > Pr(X > t) for all t € R, or, equivalently, their cdf’s
satisfy Fx > Fy.

Lemma 4.7. Let 0,7 € RY satisfy o < © coordinate-wise. Let
X; ~ N(0, aiz), independently fori = 1,...,n, and Y; ~ N(0, Tiz),
independently fori = 1,...,n. Then [(Y) stochastically dominates
I(X), in particular, for allt € R,

Pr(I(X) = t) < Pr(I(Y) = ¢).

Proor. It is well known that, for any random variables Y’ and
X', Y’ stochastically dominates X” if and only if there is a coupling
of X” and Y’ so that X" < Y’. Since 7; > o; we have that |Y;|
stochastically dominates | X;|, for all i. Therefore, there is a coupling
of the vectors |X| and |Y| so that |X| < |Y| coordinate-wise at
every sample point. This is also a coupling of /(X) and I(Y), and by
applying Lemma 2.1 proves that I(X) < I(Y) at every sample point.
Thus, [(Y) stochastically dominates [(X). O

The main technical lemma we use to prove Theorem 1.2 is the
following.
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LEMMA 4.8. Ifv € "7 hasl(v) = b; and V € R™ is a random

vector with coordinates distributed V; id N(0, v?), then Pr(l(V) >
b;/4) = 1/10.

In order to prove Lemma 4.8 we will first need to bound E [(V).

LEMMA 4.9. Ifv € S*7! hasl(v) = b; and V is a random vector

with coordinates distributed V; id N(o, v?), then EI(V) > 0.49D;.

Proor. Ifonevery outcome it happened that |V| > |v| coordinate-
wise then Lemma 2.1 would imply the desired result. Of course, it
is very likely that for some coordinates |V;| < |v;|. The idea of the
proof is to “patch up” those coordinates with another vector that
has small norm and then apply the reverse triangle inequality. Let
U = max{|v| — |V|, 0}, where the maximum is taken coordinate-
wise. U was chosen so that |[V| + U > |v], hence by Lemma 2.1
I(|V] + U) = l(v) = by, and by the reverse triangle inequality
(V) = I(v) = L(U).

It remains to bound E [(U). We will begin by bounding E I,(U)
and use this value to bound E [(U). Let Z ~ N(0, 1) and let 14 be the
indicator function of the set A. Direct calculation with the Normal
c.d.f. shows that

n
ElL(U)? = Z 202E (1[0,1)(2)(1 - Z)z) < 0.262v§ =0.26,
i=1
Therefore, El»(U) < (E lz(U)z)l/2 < 0.51, where the first inequal-
ity is Jensen’s. Finally, we can conclude EI(U) < b; EL(U) <
0.510; and EI(V) > I(v) —EI(U) > 0.49D;. |

ProoFr oF LEMMA 4.8. For a random variable X and event A, let
E(X;A) = EX14(X) = [, XdP. We begin with the trivial bound,
forany 0 < a < f3,

EI(V) = E((V); (0, a]) + EAU(V); (, 1) + E(L(V); (B, 00))
< a+ BPr(l(V) € (a, B]) + EU(V); (B, 00)). (6)
We shall use I5(V) to bound the last term above. Observe that

EL(V)? = 1 and, letting Z1, . .., Zn S N(0, 1),

Var(ly(V)?) = Var (Z ’U?Zl-z

1

= Zv? Var(Z%) =2 Z vf < 2b(v)* =2,
i i
because v € S""! has unit length. For k > 0, we have by Cheby-
shev’s Inequality that
1
Pr(lz(V)? > V2k + 1) < =

and, by a change of variables,

x2-1\"? 2
Pr(lo(V) > x) < ( ) = ( < 4/x%, for x > V2,

i) Ty
and it extends trivially to all x > 0. This implies Pr(I(V) > b; x) <
4/x*, hence Pr(I(V) = x) < 4(b;/x)*. Thus,

4b7

oo And
E((V): (B, ) < /ﬁ x= it

Now we return to (6) and substitute @ = 0.490;/4 and f = 2.440;.
Together with Lemma 4.9 we get
0.490;

i
x4

40y
3(2.44)3°

0.49b; < BI(V) < +2.320; Pr(I(V) > b;/4) +
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Upon rearranging the inequality we find Pr(I(V) > b;/4) > 1/10,
as desired. O

4.4 Multiparty Disjointness and the Norm on a

Stream

We will show an Q(mc(!)?) bits bound on the storage needed by a
streaming algorithm for the norm [.

LEMMA 4.10. Let I(-) be a symmetric norm on R™. A turnstile
streaming algorithm that outputs a (1 + %)—approximation forl(-),
with probability at least 0.99, uses Q(mc(1)?) bits in the worst case.

Let recall that every symmetric norm [(-) on R” induces the
norm I(-)%) on R¥, for k < n, by setting any n — k coordinates to
0. The induced norm may have a different ratio of b;/M;. Since a
streaming algorithm that approximates I(-) must also approximate
1()%%), Lemma 4.10 in fact implies Theorem 1.2.

ProoF oF LEMMA 4.10. We begin with an instance of the multi-
party disjointness promise problem on domain [n] with t = [240v/n
-M;/b;] players. By Lemma 4.1, t > 240+/n M;/b; > 240. The play-
ers are given sets P, Py, ..., P; C [n] with the promise that either
they are pairwise disjoint or exactly one element is contained in
every set but they are otherwise disjoint. The players are allowed,
in any order, to communicate bits with each other by writing them
to a shared blackboard, and they are given shared access to a string
of random bits. The players’ goal is for at least one among them to
determine whether the sets Py, . . ., P; are disjoint or intersecting. If
the players correctly determine the type of instance with probability
at least 0.55, then their communication scheme is called a “correct
protocol”. It is known that for any correct protocol, the players must
write Q(n/t) bits to the blackboard in the worst case [CKS03]. In
this reduction, each of the t players will transmit the memory of the
streaming algorithm once, which leads to an Q(n/t?) = Q(b? /M?)
bits lower bound on the memory used by the algorithm.

Next, we describe the protocol under the assumption that the
players can perform computations with real numbers. After describ-
ing the protocol we explain that this assumption can be removed
by rounding the real values to a sufficiently high precision.

The players have shared access n? i.id. N(0, 1) random variables
Zi,j, for i,j € [n], and additional independent randomness for the
approximation algorithm.

Let v € argmax, cgn-1 [(x), so that [(v) = b;. We define ann X n
matrix V with coordinates

Vi,j = Zi,jvi+j mod n-
Since v is fixed, all of the players can compute the matrix using
the shared randomness. Let V; denote the jth column of V; it is a
vector with independent Normally distributed entries. The vector
of standard deviations of V; is a copy of v that has been cyclically
shifted down by j entries, in particular the standard deviation of
Vi n is vj.

Here is the stream that the players create, they jointly run an
approximation algorithm for the norm on this stream. For each
player i and item j € P; the ith player adds a copy of V; to the stream.
More precisely, for each j € P; player i adds 1 with frequency V1_j,
2 with frequency V5 ;, etc. The players repeat this protocol 10 times
independently.
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Now we analyze the possible outcomes of one of the ten trials.
Let N C UlePi be the set of elements that appear in exactly one
set P;, and let X = };¢c n Vj. If there is no intersection between the
P;’s, then the stream’s frequency vector is X. If they all intersect at
Jj*, then the frequency vectoris Y = V- + X.

It remains to compare [(X) and [(Y). The coordinates of X are
independent and normally distributed with zero mean and variance

n
EXLZ = ZEVEJ = Z Ul?+jmodn < ZUJZ =1
j=1

jeN jeN
Let Z be a random vector with coordinates Z; i N(0,1), for i =
1,...,n. By Lemma 4.7 Z stochastically dominates X, and using
Lemma 4.6 we have Pr(\/LHl(X) > 40M;) < Pr(\/LHl(Z) >40M;) <
0.005. On the other hand, Y stochastically dominates tVj+ and
Lemma 4.8 additionally implies
Pr(I(tV + X) > 60 My Vn) > Pr(tl(Vj+) > 60 M; V)
> Pr(l(Vj<) > b;/4) > 1/10.

The final player checks whether the maximum approximation
returned among the 10 trials is larger or smaller than 50 M; v/n and
declares “intersecting” or “disjoint” accordingly.

The output of the protocol is correct on an intersecting instance if
at least one of the 10 stream vectors has norm larger than 60 M; v/n
and the algorithm always returns a (1 + 1/6)-approximation. It is
correct on a disjoint instance if all of the stream vectors have norm
smaller than 40 M; y/n and the algorithm always returns a (1+1/6)-
approximation. If the instance is an intersecting one, then with
probability at least 0.1 the magnitude of I(tV}« + X) is large enough.
At least one of the ten trials will have this property with probability
atleast 1-0.91 > 0.65, because the trials use independent random
matrices. Since the algorithm correctly approximates the norm with
probability at least 0.99, it follows that the protocol is correct for an
intersecting instance with probability at least 0.65—-10-0.01 = 0.55.

On a disjoint instance, one trial of the protocol is successful with
probability at least 0.992 > 0.98 where one factor comes from the
success of the approximation algorithm and the other from our
earlier application of the concentration bound. Thus, the output of
the protocol correctly identifies a disjoint instance with probability
at least 1 — 10 - 0.02 = 0.8, by a union bound over the ten trials.
Therefore, this protocol is a correct protocol.

It remains to describe the rounding of the real values. It suffices to
represent each value with a sufficiently high precision. We replace
each variable as Z; ; with a discrete random variable Z; ; = ZAL i+
di,j where Zi,j are distributed ii.d. N(0,1) and &; j is difference
between Zi,j and its closest point in {# |j=-n...,n°=1,n°}.
In particular, with very high probability, |5; j| < 1/2n* for all
pairs i, j. We also replace v by a vector v = 0 + §, where 0 €
argmax, cgn-1 [(x), so that [(0) = b;, and where 6, is a vector
containing the difference between each entry of 9; and the nearest
integer multiple of n™* to it.

Each frequency in the stream is the sum of at most ¢ variables.
Performing these replacements changes each frequency in the
stream by no more than 2¢tn=*. Let A € R” denote this change, then
I(A) < b;Ip(A) < 20 tn” 712 = O(M; /n). Applying the triangle
and reverse triangle inequalities shows that the change negligible.
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Therefore, the discretized protocol is correct also, which completes
the proof. O

Suppose there is an algorithm with the weaker, D-approximation
guarantee. Namely, D > 1 and with probability at least 0.99, the
algorithm returns a value i satisfying [(V) < [ < DI(V), where V is
the stream vector. The main lower bound, Theorem 1.2, can be easily
adapted this setting, where we get a lower bound of Q(mmc(l)?/D?)
bits instead, with a small modification to the proof of Lemma 4.10.

THEOREM 1.4. Let | be a symmetric norm on R"™. Any turnstile
streaming algorithm that outputs, with probability at least 0.99, a
D-approximation for I(-) must use Q(mmc(1)?/D?) bits of space in
the worst case.

Indeed, the proof goes as above, except that the number of players
should be increased to t = [240D+/n M;/b;]. The disjoint instances
do not change, but the norm is D times larger on an intersecting
instance. Thus, the D-approximation algorithm can distinguish the
two and we get the bound Q(mc(l)?/D?), which is easily boosted
to Q(mmc(1)?/D?) bits, as before. When I = I, this matches the
trade-off proved by Saks and Sun [SS02].

5 OPTIMAL SPACE-APPROXIMATION
TRADEOFF

In this section we obtain a nearly tight space-approximation trade-
off for computing any symmetric norm in the data-stream model.
Specifically, we show below how our earlier streaming algorithm
can be adapted to match the lower bound in Theorem 1.4, up to a
polylog(n) factor. The adapted algorithm achieves, for any D > 1.1
and symmetric norm /, a D-approximation within O(mmc(l)%/D?)
bits of storage. The key part of the analysis is to define, a new
symmetric function [ py on R" such that I(x) < [p)(x) < DI(x), for
all x € R", and such that our earlier algorithm can find a (1 + 1/2)-
approximation to I’(x) using polylog(n) - mmc(I)?/D? bits of space.

We start in Section 5.1 with an algorithm for Q-norms (formaly
defined in Section 6.2), a special case that is easier to prove. We
then leverage ideas from this simpler case to design in Section 5.2
an algorithm for general symmetric norm.

5.1 D-Approximation for Q-norms

THEOREM 5.1. Let [ : RN — R be a Q-norm. Then for every
1.1 < D < mmc(]) there is a randomized streaming algorithm that
D-approximates | and uses O(mmc(1)%/D?) bits of space.

Proor. Fixa Q-norm/and 1 < D < mmc(l). We first show that
for all x € RN,
DM, lz(x)’ l(x))

logn
is an O(D)-approximation to I(x). Since [ is a Q-norm, we have
by Lemma 6.9 that §(") is roughly a minimizer of I(x) over SN~
namely,

l(D)(x) = maX(

vx e RN7L 1(8M) I(x) < 64/logn I(x).
Recalling from Lemma 3.12 that, for some absolute constants A1, A >
0, A1 M;/ylogn < l(§(")) < A2 M;, we have that 11 M la(x) <
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6(logn) - I(x). Altogether we obtain (assuming, without loss of gen-
erality, that A1 < 1)

Vx e RN7L, I(x) < [py(x) < %l(x). (7

Our algorithm for [ simply applies Theorem 1.1 to compute an
O(1)-approximation to [(p)(x), using mmc(l(D))2 - polylog(n) bits
of space. This is indeed possible because [ p) is clearly a symmetric
norm on R", and yields an O(D)-approximation for /, which implies
D-approximation by scaling D appropriately.

It remains to bound mmc(/ p)) and show it is smaller than mmc(!)
by factor D roughly. By Lemma 6.8, there is an absolute constant A >
0 such that M;/) > My /(A4/logn) for all n” < n. Let n* < n be
such that mme(l) = by, /Mynr), thus mme(l) < Ay/logn me(I(M).
Since D < mmc(l), we have

DM; < Alog nme(I™)M; < Alogn - b,
= b, () < max ()Ibl/\llog n, bl) .
D

.. , M, M;
By definition of Ip, MI;J" ) = max ( Togn /1 log n) Thus,
Al
mme(lp)) < ogn me(I™) S —_— mmc(l(")).

We conclude that there exists a streaming algorithm computes an
O(D)-approximation for I using O(mmc(Ip)?) = O(mmc(1)?/D?)
bits of space. O

5.2 D-Approximation for General Symmetric
Norms

THEOREM 1.3. Let I be a symmetric norm on R"™. For every 1.1 <
D < mmc(]) there is a one-pass streaming algorithm that on input
stream vector v € R™ computes, with probability at least 0.99, a
D-approximation to l(v) and uses (mmc(I)?/D?) - poly(log n) bits of
space.

PrOOF. Let @ > 1 be a constant. Given a vector v € R" with
integer coordinates, analogously to Defintion 3.3, define V¥ =
VE+ V¥ +...+ V¥, where V7 is the level i vector of v with base «,
and appropriate t = O(log n). For each i € [t], we define similarly
bga) as the number of coordinates falling into level i. Define for
each integer 1 < n’ < n, h(£")) := min{DI((")), by}, and

h(V®) = hEE (V) = min{DI(VE), by L(VE)).  and
A9 (v) = Z h(VE).
i€(t]
We will omit the superscript « if it is clear from the context. We
first claim that h(v) is an O(D)-approximation to [(v). Indeed

@) <o ) Vi) <a ) min{DI(Vi). b L(Vi)} = ah(o).
i€lt] i€[t]
®)

and by monotonicity and homogeneity of norm [
h(v) = Z h(V;) < Z DI(V;) < Dt max 1(V;) < (ADlog n)l(v),
i€[t] i€[t]

where A > 0 is a constant. Thus A(v) is an O(D)-approximation to

I(v).

J. Bfasiok, V. Braverman, S. R. Chestnut, R. Krauthgamer, L. F. Yang

It remains to prove that h(v) can be O(1)-approximated using

O(mmc(l)?/D?) bits of space. Let f = O(1/logn) and
DZ 2
& (1 vl ) '
og” nmmc(l)

Let v € R™ be the streaming vector. We run algorithm Levell with
importance parameter f’, base parameter & and constant error
parameter € € (0,1/2). By Theorem 3.2, Levell is guaranteed to
output a vector V¥ with base a’ = ©(1) and with the following

guarantees. Let t” = O(log n/log a’), then for every i € [¢'], I;Ea,) <

bga,) and if \A/i“’ is f’-important, then also (1— e)bga,) < lgga,). Thus,
D, W) = 37 min{DIVE).b ;) (7))
i€[t’] i€[t’]
< > min{DIVE )b, LV )} = H(VE). (9)
i€[t’]
We prove in Lemma 5.3 below that a ff-contributing level of h(v)
(defined as h(Vi‘xl) > Bh(V¥))is a f’-important level. Let U C [t’]
be the set of contributing levels. Then,
W) 2 AT ) = Y min{DIT 10 (5, (V)
ieU ieU
1-¢€
( ) Z min{DI(V),b ) (V).
ieU
where the second inequality follows from Lemma 3.5 and that

blz;- > by, /2. Indeed, let v* € R, then we cut v* into two

pieces with roughly equal number of non-zeros v* = v} + v, then
I(v*) < 1)) + (vy) < 2bl . On the other hand, Zng h(V;) <
tph(V) < A h(V), for some Constant A1 > 0 that can be chosen arbi-
trarily small. Thus RV) > (1 - €)1 - A)h@)(v)/2 is a constant-

factor approximation to h(V). Last, by Theorem 3.2, Levell uses
O(1/p") = O(mmc(1)? /D?) bits of space. O

LEMMA 5.2. For every integers0 < n; < ng < n,
h(%’(”l)) < Mk(g(m)),
for some absoute constant A > 0. P
PrOOF. Since (&™) = min (Dl(g("l)),bl(nl)) and h(£™)) =
min (DI(E"2), by ), then

h(EM))/h(E"2)
min (DIE™), by ) min (DIE). by )
= max 5
Dl(é—’(nz)) bl(nz)

ADMjn;) DByn
< max (M/log nmin (mmc(l), mmc(l)) ,min (ﬁ, 1) ))
D Dyny)  Dyiny)
- Ay/log n mmc(])

where the second inequality follows from Lemma 3.12 and Lemma
3.14. The last inequality uses b;(n;) < bj(ny) and A > 0 is an absolute
constant. a

(10)

LEmMA 5.3. If a level i is f-contributing, i.e., h(V;) > Bh(V), then
AD?
(1) by L Ssiby;

L= log nmmc([)?
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20 ADYB?
(@) bia™ = log? n mmc(1)2

for some constant A > 0.

)
Yj<ibja?,

Proor. The proof is similar to that of Lemma 3.8 and that of
Lemma 3.15. Since level i is f-contributing, we have
hVi) = B ) h(V)).
Jelt]
Let j* = argmax; ; bj. We can assume b; < bj- since otherwise
bi > ¥ ;5 bi/t. Thus, by Lemma 5.2

Dp [
th > Bh(V;« bi_— by
( )>,B(J):>\/_>‘//Tognmmc(l) !

DZﬁZ
= bi A’tlognmmc(l)zz "

Jj>i
where A’ > 0 is an absolute constant. )

For the second inequality, let j* = argmax; .; \/b_jaj.We proceed
by separating into two cases. First, if b; > by then the lemma
follows easily by

5 < bja®
)y <
S

b,-aZi > bj/azj ;
= pa’ by h(#D)).

hel) DBbral
a/_>,8a1, (f)_ Pbj ’
h(£?) A" log n mmc(l)
where A’ > 0 is an absolute constant. Squaring the above and
DZﬁZ
At log n mmc(1)? Z]<1

The second case is when b; < by,

@i \bih(ED) = h(V;) = Bh(V) = Bh(Vy)
By Lemma 5.2, we get

>

observing that b;a%! , the proof is

O

b ja
complete.

6 APPLICATIONS & EXAMPLES
6.1 The Top-k Norm @1,

The top-k norm on R" is simply the sum of the k largest coordinates
in absolute value, formally, ®()(x) = Z{le |x|;], where |x|j1) >

. 2 |x|[p] are the coordinates ordered by non-increasing absolute
value. It is known (see e.g. [Bha97, Exer. IV.1.18]) that the dual norm
of @y is &/ )(x) = max{le(x), [1(x)/k}. We can understand the
streaming space complexity of such a norm [/ by comparing the
maximum and the median of such a norm over S !, which is an
easy calculation, and then applying Theorems 1.1 and 1.2.

THEOREM 6.1. There are absolute constants A1, Ay > 0 such that
forallk =1,...,n,

n n
A ,klogn < mmc(cb(k)) < Az”z,
M| —F < (@,.) < A,Vk
"iogl +1 = M k) = 22N

The above inequalities are existentially tight, by considering the
cases k = 1 and k = n. To prove this theorem, we will need the next
two lemmas. They both assume 1 < k < n.

and

LEMMA 6.2. Forall x € R", \/g l2(x) < @1y (x) < Vk I(x).

We remark that the second inequality above is tight for x = ¢ k),
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Proor. Fix x € R™. We use Cauchy-Schwarz

k k 172 n 1/2
Z |x|m < Vk (Z |x|[2i]) < ‘/E(Z x[Zi]) .
i=1 i=1 i=1
For the second inequality, we use monotonicity of [,,-norms

k k 1/2 P 1/2

2 2
_Zl|x|mz -Zlm“]) 2(;2"%)
1= i= i=

Azk\/logn

Ak
n

LEMMA 6.3.
A1, A2 > 0.

< Mg, < for some absolute constants

ll(x).
% My = A1k /+/n for some absolute constant
< klw(x), and thus

ProoF. For the first inequality, @) (x) > k w2y lxla
Therefore, Mg, =
A1 > 0. For the second inequality, ®(1)(x)

Ask+/logn
M@(k) < lew < Ve [m}

for some absolute constant A5 > 0.
ProoF oF THEOREM 6.1. To bound mme(®y,)), consider first n” >

k, then by a direct calculation,
b (n)

‘/E (I)(k) \/E
(hakflogn’/N') ~— My ™ (hake/ V).

For n” < k, we have ®)(x) = l(x) for all x € R", and we know
that mmc(/;) is a constant. The first part of the theorem follows.

To bound mmc(CID(’k)), consider first the case n’ > k. For all
x € R" we have (4 (x) 2 Li(x)/k, thus Mq),(,,) = Q(Wn’/k). In
addition, bq>,(n/) < max{1, Vn’/k}, and thus b¢/<"'>/M¢r("’) < Vk.

(k) (k)
Consider now the case n’ < k. For all x € R, we have fD(k)(x) =

loo(x), and thus, bCD/EZ;)/MCD'EZ;) = O(4/n’/log n’). We conclude that

mmc(cbgk)) = Q(y/k/(logk + 1)).

6.2 (Q-Norms and Q’-Norms

Anorm [ : R" — Ris called a Q-norm if there exists a symmetric
norm ® : R” — R such that

VxeR",  I(x) = o(x)!?,
where x? = (x{J , xg .....xh) denotes coordinate-wise p-th power.

Anorm [’ : R"™ — R is called a Q"-norm if its dual norm, which is
(xxy)
I'(y)

We can show that every Q’-norm can be approximated using
polylogarithmic space, by bounding by /M and then applying
Theorem 1.1, as follows.

[m]

given by I(x) = sup{ 1y # 0}, is a Q-norm.

THEOREM 6.4. For every Q"-norm I’ : R" — R, mmc(l’) =

O(logn).

COROLLARY 6.5 (STREAMING COMPLEXITY OF Q’-NORMS). Every
Q’-norm I’ : R™ — R can be (1 + ¢)-approximated by a one-pass
streaming algorithm that uses poly(log(n)/e) space.

The proof of Theorem 6.4 will follow by establishing the four
lemmas below. It builds on the machinery developed in Section 3 to
compare the median of [ to [(¢ (")), where §("/) is the l;-normalized
all-ones vector of dimension n’.
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LEMMA 6.6. Let! :
Then [(£)) > 1(M) /2.

ProoF. Write n = gn’ + r, where r < n’ is the remainder. Then

g = \/’(gn) ey, \/}(r)_

q times

By monotonicity of symmetric norms and the triangle inequality,

1) < 1| FE. ) 1 (7e0)

q times

<2l e, &)

q times

We can write I(x) = ®(x2)!/2 for some symmetric norm . Thus,
by the triangle inequality,

iNE €, 8 SNER (L

q times

@)

<2 (goaem) " < 1)

[}

LEMMA 6.7. Let! :
I(x) < I(x).

ProoF. Let I(x) = ®(x?)!/2 for some symmetric norm ®. By

R™ — R be a Q-norm, and let0 < n’ < n.

R™ — R be a Q-norm, then for all x € R",

J.

Lemma 2.2, ®(x) < I;(x) and therefore I(x) = (®(x?))}/2 < [ (x¥)1/2 =

I ().

The next lemma can be viewed as a complement of Lemma 3.14
(monotonicity of the median) for the special case of Q-norms.

O

LEMMA 6.8. Letl : R"™ — R be a Q-norm, and let 0 < n’ < n be

an integer. Then
Ml(n) < ).\/log an(n/)

for some absolute constant A > 0.

Proor. By Lemmas 3.12 and 6.6, we can find absolute constant
A1, A2 > 0 such that
M1 My [Nflogn < 1(E™) < 21(E™)) < 220 My, -

Now we show that a Q-norm achieves roughly the minimum at

&),

O

LEMMA 6.9 (FLAT MINIMUM). Let ] : R™ — R be a Q-norm. Then
Vx € S™7L, I(£™) < 64/logn I(x).

PROOF. Set a := 1/2 and fix a vector x € S"~1. We permute its
coordinates and write |x| = (Vi; Va;...; Vi V'), where V; = {|x;] :
al < lxj] < a/ VY fori=1,....t =logn,and V’ = {lxjl = |xj] <
1/n}. Let b; = |V;|. Since lr(x) = 1,

¢
1=D(x)? < Z bio? Y 4 1/n.
i=1

728

Btasiok, V. Braverman, S. R. Chestnut, R. Krauthgamer, L. F. Yang

Thus, there exists i < t for which |V,~|a2(i_l) > % and together
with Lemma 6.6,

1) = 1) = Vorad 1E®0) > [ 1E00) = [ 1E™) 2.

Proor oF THEOREM 6.4. Let [ be the Q-norm which is dual to
I. By Lemma 6.9, Vx € R, Ir(x) < 6+/logn/I(E™) - I(x), which
implies, using Fact 2.3, that by < 6\/@/1@(”)). By Fact 2.4 and
Lemma 3.12, we know that 1/My < M; < [(£™)y/logn/A;. The
theorem follows by putting the two bounds together. O

7 CONCLUDING REMARKS

There is obviously a poly(% log n) gap between our upper and lower
bounds. For the lp norms, p > 2, our lower bound is Q(nl_z/p),
matching the true space complexity to within a ©(log n) factor [LW13,
Gan15]. Despite the gap, we do partially answer Open Problem 30
(Universal Sketching) in [sub06], by showing that the class of sym-
metric norms admits universal sketches, and also Open Problem 5
(Sketchable Distances) in [sub06], by showing that every symmetric
norm [ admits streaming algorithms and is thus sketchable with
space mmc(l)? - poly(% log n).

Both our algorithm and our lower bound rely on the symme-
try of the norm. It would be very interesting to see whether the
modulus of concentration is a key factor in the space complexity
also for general norms. Our results do extend a little towards more
general norms. Notice that, given any symmetric norm / on R"”
and invertible linear transformation A : R®” — R, our results
also apply to the streaming complexity of [4 = I(A(-)), which is
always a norm but is generally not symmetric. For example, I2(A(-))
is the norm induced by the inner product (x,y)4 = yT AT Ax, and
it is not symmetric unless all singular values of A are the same. To
compute [4(v) one applies A to the incoming stream vector v and
then runs an algorithm for [/ (we do not count the storage for A).
Therefore, the space complexity of I4 is no worse than that of /,
and, as the same argument applies to [ = I4(A~1(+)), the two must
have the same streaming complexity (we assume that O(log n) bits
suffice to represent any entry of A or A™! to sufficient precision).
More generally, norms that can be related to each other by com-
position with an invertible linear transformation, as above, must
have the same space complexity. On the other hand, this opera-
tion does not preserve mc(l) or mmc(/). Perhaps a norm should
be put into a “canonical form” that is more amenable to deter-
mining its space complexity. For example, the distorted Euclidean
norm I(v) = (vT AT Av)!/2, mentioned above, may have mmc(/)
on the order of min{+/n, 61(A)/c,(A)}, but it can be seen immedi-
ately to have space complexity poly(% log n) - mmc(l3)? bits (in fact
O(é log n) bits), from the AMS algorithm [AMS99] and by recog-
nizing [(v) = I(Av) (again assuming O(log n) bits represents any
entry of A to sufficient precision). Can we use mmc(-) to determine
the space complexity of every norm?

It would be very interesting also to design a small sketch that
is oblivious to the linear transformation. For instance, let M be a
family of linear transformations where 4 # Ip for all A,B € M.
Is there a linear sketch that approximates the norm l4(v) for any
streamed vector v € R™ and linear transformation A € M? Observe
that no small sketch can be oblivious to all linear transformations,
since that would allow recovery of every coordinate of v.
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Our Theorem 1.3 shows a quadratic space-approximation trade-
off for every symmetric norm. Previously, this was only known
for the I norm due to Saks and Sun [SS02]. Investigating space-
approxmation tradeoff is an interesting direction because such
tradeoffs appear in the sketching lower bounds of [AKR15], how-
ever no matching algorithms are known for other specific norms
of interests, such as the Earth Mover Distance and the trace norm
(of matrices).
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