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ABSTRACT
The task of finding heavy hitters is one of the best known
and well studied problems in the area of data streams. One is
given a list i1, i2, . . . , im ∈ [n] and the goal is to identify the
items among [n] that appear frequently in the list. In sub-
polynomial space, the strongest guarantee available is the
`2 guarantee, which requires finding all items that occur at
least ε‖f‖2 times in the stream, where the vector f ∈ Rn is
the count histogram of the stream with ith coordinate equal
to the number of times i appears fi := #{j ∈ [m] : ij = i}.
The first algorithm to achieve the `2 guarantee was the
CountSketch of [11], which requires O(ε−2 logn) words of
memory and O(logn) update time and is known to be space-
optimal if the stream allows for deletions. The recent work
of [7] gave an improved algorithm for insertion-only streams,
using only O(ε−2 log ε−1 log log n) words of memory. In this
work, we give an algorithm BPTree for `2 heavy hitters in
insertion-only streams that achieves O(ε−2 log ε−1) words
of memory and O(log ε−1) update time, which is the op-
timal dependence on n and m. In addition, we describe
an algorithm for tracking ‖f‖2 at all times with O(ε−2)
memory and update time. Our analyses rely on bound-
ing the expected supremum of a Bernoulli process involving
Rademachers with limited independence, which we accom-
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plish via a Dudley-like chaining argument that may have
applications elsewhere.

1. INTRODUCTION
The streaming model of computation is well-established

as one important model for processing massive datasets. A
sequence of data is seen which could be, for example, desti-
nation IP addresses of TCP/IP packets or query terms sub-
mitted to a search engine, and which is modeled as a list of
integers i1, i2, . . . , im ∈ [n]. Each item i ∈ [n] has a frequency
in the stream that is the number of times it appears and is
denoted fi := #{j ∈ [m] : ij = i}. The challenge is to define
a system to answer some pre-defined types of queries about
the data, such as distinct element counts, quantiles, frequent
items, or other statistics of the vector f , to name a few. The
system is allowed to read the stream only once, in the order
it is given, and it is typically assumed that the stream being
processed is so large that explicitly storing it is undesirable
or even impossible. Ideally, streaming algorithms should use
space sublinear, or even exponentially smaller than, the size
of the data to allow the algorithm’s memory footprint to fit
in cache for fast stream processing. The reader is encour-
aged to read [2, 29] for further background on the streaming
model of computation.

Within the study of streaming algorithms, the problem
of finding frequent items is one of the most well-studied
and core problems, with work on the problem beginning in
1981 [5, 6]. Aside from being an interesting problem in its
own right, algorithms for finding frequent items are used as
subroutines to solve many other streaming problems, such
as moment estimation [21], entropy estimation [10, 18], `p-
sampling [28], finding duplicates [15], and several others.

Stated simply, the goal is to report a list of items that
appear least τ times, for a given threshold τ . Naturally, the
threshold τ should be chosen to depend on some measure of
the size of the stream. The point of a frequent items algo-
rithm is to highlight a small set of items that are frequency
outliers. A choice of τ that is independent of f misses the
point; it might be that all frequencies are larger than τ .

With this in mind, previous work has parameterized τ
in terms of different norms of f with MisraGries [27] and
CountSketch [11] being two of the most influential examples.
A value ε > 0 is chosen, typically ε is a small constant in-
dependent of n or m, and τ is set to be ε‖f‖1 = εm or
ε‖f‖2. These are called the `1 and `2 guarantees, respec-
tively. Choosing the threshold τ in this manner immediately
limits the focus to outliers since no more than 1/ε items can
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have frequency larger than ε‖f‖1 and no more than 1/ε2

can have frequency ε‖f‖2 or larger.
A moments thought will lead one to conclude that the

`2 guarantee is stronger, i.e. harder to achieve, than the `1
guarantee because ‖x‖1 ≥ ‖x‖2, for all x ∈ Rn. Indeed, the
`2 guarantee is much stronger. Consider a stream with all
frequencies equal to 1 except one which is equal j. With
ε = 1/3, achieving the `1 guarantee only requires finding an
item with frequency j = n/2, which means that it occupies
more than one-third of the positions in the stream, whereas
achieving the `2 guarantee would require finding an item
with frequency j =

√
n, such an item is a negligible fraction

of the stream!
As we discuss in Section 1.1, the algorithms achieving `2

guarantee, like CountSketch [11], achieve essentially the best
space-to-τ trade-off. But, since the discovery of CountS-
ketch, which uses O(ε−2 logn) words of memory1, it has
been an open problem to determine the smallest space pos-
sible for achieving the `2 guarantee. Since the output is a
list of up to ε−2 integers in [n], Ω(ε−2) words of memory
are necessary. The recent algorithm CountSieve shrunk the
storage to O(ε−2 log ε−1 log logn) words [7]. Our main con-
tribution is to describe an algorithm BPTree that uses only
O(ε−2 log ε−1) words—independent of n and m!—and obvi-
ously optimal in the important setting where ε is a constant.

1.1 Previous work
Work on the heavy hitters problem began in 1981 with

the MJRTY algorithm of [5, 6], which is an algorithm using
only two machine words of memory that could identify an
item whose frequency was strictly more than half the stream.
This result was generalized by the MisraGries algorithm in
[27], which, for any 0 < ε ≤ 1/2, uses 2(d1/εe − 1) counters
to identify every item that occurs strictly more than an εm
times in the stream. This data structure was rediscovered
at least two times afterward [13, 23] and became also known
as the Frequent algorithm. It has implementations that use
O(1/ε) words of memory, O(1) expected update time to pro-
cess a stream item (using hashing), and O(1/ε) query time
to report all the frequent items. Similar space requirements
and running times for finding ε-frequent items were later
achieved by the SpaceSaving [26] and LossyCounting [25] al-
gorithms.

A later analysis of these algorithms in [3] showed that they
not only identify the heavy hitters, but they also provided
estimates of the frequencies of the heavy hitters. Specif-
ically, when using O(k/ε) counters they provide, for each

heavy hitter i ∈ [n], an estimate f̃i of the frequency fi such

that |f̃i − fi| ≤ (ε/k) · ‖ftail(k)‖1 ≤ (ε/k)‖f‖1. Here ftail(k)

is the vector f but in which the largest k entries have been
replaced by zeros (and thus the norm of ftail(k) can never be
larger than that of f). We call this the ((ε/k), k)-tail guar-
antee. A recent work of [4] shows that for 0 < α < ε ≤ 1/2,
all ε-heavy hitters can be found together with approximate
for them f̃i such that |f̃i − fi| ≤ α‖f‖1, and the space com-
plexity is O(α−1 log(1/ε) + ε−1 logn+ log log ‖f‖1) bits.

All of the algorithms in the previous paragraph work in
one pass over the data in the insertion-only model, also
known as the cash-register model [29], where deletions from

1Unless explicitly stated otherwise, space is always measured
in machine words. It is assumed a machine word has at least
log2 max{n,m} bits, to store any ID in the stream and the
length of the stream.

the stream are not allowed. Subsequently, many algorithms
have been discovered that work in more general models such
as the strict turnstile and general turnstile models. In the
turnstile model, the vector f ∈ Rn receives updates of the
form (i,∆), which triggers the change fi ← fi+∆; note that
we recover the insertion-only model by setting ∆ = 1 for ev-
ery update. The value ∆ is assumed to be some bounded
precision integer fitting in a machine word, which can be
either positive or negative. In the strict turnstile model we
are given the promise that fi ≥ 0 at all times in the stream.
That is, items cannot be deleted if they were never inserted
in the first place. In the general turnstile model no such
restriction is promised (i.e. entries in f are allowed to be
negative). This can be useful when tracking differences or
changes across streams. For example, if f1 is the query
stream vector with f1

i being the number of times word i was
queried to a search engine yesterday, and f2 is the similar
vector corresponding to today, then finding heavy coordi-
nates in the vector f = f1 − f2, which corresponds to a
sequence of updates with ∆ = +1 (from yesterday) followed
by updates with ∆ = −1 (from today), can be used to track
changes in the queries over the past day.

In the general turnstile model, an ε-heavy hitter in the `p
norm is defined as an index i ∈ [n] such that |fi| ≥ ε‖f‖p.
Recall ‖f‖p is defined as (

∑n
i=1 |fi|

p)1/p. The CountMin
sketch treats the case of p = 1 and uses O(ε−1 logn) memory
to find all ε-heavy hitters and achieve the (ε, 1/ε)-tail guar-
antee [12]. The CountSketch treats the case of p = 2 and uses
O(ε−2 logn) memory, achieving the (ε, 1/ε2)-tail guarantee.
It was later showed in [22] that the CountSketch actually
solves `p-heavy hitters for all 0 < p ≤ 2 using O(ε−p logn)
memory and achieving the (ε, 1/εp)-tail guarantee. In fact
they showed something stronger: that any `2 heavy hitters
algorithm with error parameter εp/2 achieving the tail guar-
antee automatically solves the `p heavy hitters problem with
error parameter ε for any p ∈ (0, 2]. In this sense, solving
the heavy hitters for p = 2 with tail error, as CountSketch
does, provides the strongest guarantee among all p ∈ (0, 2].

Identifying `2 heavy hitters is optimal in another sense,
too. When p > 2 by Hölder’s Inequality ε‖f‖p ≥ ε

n1/2−1/p ‖f‖2.
Hence, one can use an `2 heavy hitters algorithm to identify
items with frequency at least ε‖f‖p, for p > 2, by setting

the heaviness parameter of the `2 algorithm to ε/n1/2−1/p.
The space needed to find `p heavy hitters with a CountS-
ketch is therefore O(ε−2n1−2/p logn) which is known to be
optimal [24]. We conclude that the `2 guarantee leads to the
best space-to-frequency-threshold ratio among all p > 0.

It is worth pointing out that both the CountMin sketch
and CountSketch are randomized algorithms, and with small
probability 1/nc (for a user specified constant c > 0), they
can fail to achieve their stated guarantees. The work [22]
also showed that the CountSketch algorithm is optimal: they
showed that any algorithm, even in the strict turnstile model,
solving `p heavy hitters even with 1/3 failure probability
must use Ω(ε−p logn) memory.

The reader may also recall the Pick-and-Drop algorithm
of [8] for finding `p heavy hitters, p ≥ 3, in insertion-only

streams. Pick-and-Drop uses O(n1−2/p) words, so it’s nat-
ural to wonder whether the same approach would work for
`2 heavy hitters in O(1) memory. However, Pick-and-Drop
breaks down in multiple, fundamental ways that seem to pre-
vent any attempt to repair it, as we describe in Appendix A.
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In particular, for certain streams it has only polynomially
small probability to correctly identify an `2 heavy hitter.

Of note is that the MisraGries and other algorithms in the
insertion-only model solve `1 heavy hitters using (optimal)
O(1/ε) memory, whereas the CountMin and CountSketch al-
gorithms use a larger Θ(ε−1 logn) memory in the strict turn-
stile model, which is optimal in that model. Thus there is
a gap of logn between the space complexities of `1 heavy
hitters in the insertion-only and strict turnstile models. [7]
recently showed that a gap also exists for `2 heavy hitters.

The paper [7] also introduced a (1 ± ε)-relative error F2

tracking scheme based on a linear sketch that uses only
O(logm log logm) bits of memory, for constant ε. This is

known to be optimal when n = (logm)O(1) by a lower bound
of [19].

1.2 Our contributions
We provide a new one-pass algorithm, BPTree, which in

the insertion-only model solves `2 heavy hitters and achieves
the (ε, 1/ε2)-tail guarantee. For any constant ε our algo-
rithm only uses a constant O(1) words of memory, which
is optimal. This is the first optimal-space algorithm for `2
heavy hitters in the insertion-only model for constant ε. The
algorithm is described in Theorem 11.

En route to describing BPTree and proving its correct-
ness we describe another result that may be of independent
interest. Theorem 1 is a new limited randomness supre-
mum bound for Bernoulli processes. Lemma 9 gives a more
advanced analysis of the algorithm of Alon, Matias, and
Szegedy (AMS) for approximating ‖f‖2 [1], showing that
one can achieve the same (additive) error as the AMS algo-
rithm at all points in the stream, at the cost of using 8-wise
independent random signs rather than 4-wise independent
signs. An alternative is described in Appendix B where we
show that if one accepts an additional log 1/ε space then
4-wise independent signs suffice. Note that [7] describes an
algorithm using O(log logn) words that does F2 tracking in
an insertion only stream with a multiplicative error (1± ε).
The multiplicative guarantee is stronger, albeit with more
space for the algorithm, but the result can be recovered as
a corollary to our additive F2 tracking theorem, which has
a much simplified algorithm and analysis compared to [7].

After some preliminaries, Section 3 presents both algo-
rithms and their analyses. The description of BPTree is split
into three parts. Section 3.2 states and proves the chaining
inequality. Section 4 presents the results of some numerical
experiments.

1.3 Overview of approach
Here we describe the intuition for our heavy hitters algo-

rithm in the case of a single heavy hitter H ∈ [n] such that
f2
H ≥ 9

10
‖f‖22. The reduction from multiple heavy hitters

to this case is standard. Suppose also for this discussion
we knew a constant factor approximation to F2 := ‖f‖22.
Our algorithm and its analysis use several of the techniques
developed in [7]. We briefly review that algorithm for com-
parison.

Both CountSieve and BPTree share the same basic build-
ing block, which is a subroutine that tries to identify one
bit of information about the identity of H. The one-bit sub-
routine hashes the elements of the stream into two buck-
ets, computes one Bernoulli process in each bucket, and
then compares the two values. The Bernoulli process is just

the inner product of the frequency vector with a vector of
Rademacher (i.e., uniform ±1) random variables. The hope
is that the Bernoulli process in the bucket with H grows
faster than the other one, so the larger of the two processes
reveals which bucket contains H. In order to prove that
the process with H grows faster, [7] introduce a chaining
inequality for insertion-only streams that bounds the supre-
mum of the Bernoulli processes over all times. The one-bit
subroutine essentially gives us a test that H will pass with
probability, say, at least 9/10 and that any other item passes
with probability at most 6/10. The high-level strategy of
both algorithms is to repeat this test sequentially over the
stream.

CountSieve uses the one-bit subroutine in a two part strat-
egy to identify `2 heavy hitters with O(log log n) memory.
The two parts are (1) amplify the heavy hitter so fH ≥
(1 − 1

poly(logn)
)‖f‖2 and (2) identify H with independent

repetitions of the one-bit subroutine. Part (1) winnows the
stream from, potentially, n distinct elements to at most
n/ poly(logn) elements. The heavy hitter remains and, fur-
thermore, we get fH ≥ (1 − 1

poly(logn)
)‖f‖2 because many

of the other elements are removed. CountSieve accomplishes
this by running Θ(log log n) independent copies of the one-
bit subroutine in parallel, and discarding elements that do
not pass a super-majority of the tests. A standard Cher-
noff bound implies that only n/2O(log logn) = n/ poly(logn)
items survive. Part (2) of the strategy identifies Θ(log n)
‘break-points’ where ‖f‖2 of the winnowed stream increases
by approximately a (1+1/ logn) factor from one break-point
to the next. Because H already accounts for nearly all of
the value of ‖f‖2 it is still a heavy hitter within each of the
Θ(logn) intervals. CountSieve learns one bit of the identity
of H on each interval by running the one-bit subroutine. Af-
ter all Θ(log n) intervals are completed the identity of H is
known.

BPTree merges the two parts of the above strategy. As
above, the algorithm runs a series of Θ(log n) rounds where
the goal of each round is to learn one bit of the identity of
H. The difference from CountSieve is that BPTree discards
more items after every round, then recurses on learning the
remaining bits. As the algorithm proceeds, it discards more
and more items and H becomes heavier and heavier in the
stream. This is reminiscent of work on adaptive compressed
sensing [20], but here we are able to do everything in a single
pass given the insertion-only property of the stream. Given
that the heavy hitter is even heavier, it allows us to weaken
our requirement on the two counters at the next level in
the recursion tree: we now allow their suprema to deviate
even further from their expectation, and this is precisely
what saves us from having to worry that one of the O(logn)
Bernoulli processes that we encounter while walking down
the tree will have a supremum which is too large and cause
us to follow the wrong path. The fact that the heavy hitter
is even heavier also allows us to “use up” even fewer updates
to the heavy hitter in the next level of the tree, so that
overall we have enough updates to the heavy hitter to walk
to the bottom of the tree.

2. PRELIMINARIES
An insertion only stream is a list of items p1, . . . , pm ∈ [n].

The frequency of j at time t is f
(t)
j := #{i ≤ t | pi = j},

f (t) ∈ Zn≥0 is called the frequency vector, we denote f :=
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f (m), F
(t)
2 =

∑n
i=1(f

(t)
i )2, F2 =

∑n
j=1 f

2
j , and F0 = #{j ∈

[n] : fj > 0}. An item H ∈ [n] is a α-heavy hitter2 if
f2
H ≥ α2∑

j 6=H f
2
j = α2(F2 − f2

H). For W ⊆ [n], denote by

f (t)(W ) ∈ Zn≥0 the frequency vector at time t of the stream

restricted to the items in W , that is, a copy of f (t) with the
ith coordinate replaced by 0 for every i /∈W . We also define
f (s:t)(W ) := f (t)(W )− f (s)(W ) and F2(W ) =

∑
j∈W f2

j . In

a case where the stream is semi-infinite (it has no defined
end) m should be taken to refer to the time of a query of
interest. When no time is specified, quantities like F2 and f
refer to the same query time m.

Our algorithms make use of 2-universal (pairwise inde-
pendent), 4-wise independent, and 8-wise independent hash
functions. We will commonly denote such a function h :
[n] → [p] where p is a prime larger than n, or we may use
h : [n] → {0, 1}R, which may be taken to mean a function
of the first type for some prime p ∈ [2R−1, 2R). We use
h(x)i to denote the ith bit, with the first bit most signifi-
cant (big-endian). A crucial step in our algorithm involves
comparing the bits of two values a, b ∈ [p]. Notice that, for
any 0 ≤ r ≤ dlog2 pe, we have ai = bi, for all 1 ≤ i ≤ r, if

and only if |a− b| < 2dlog2 pe−r. Therefore, the test ai = bi,
for all 1 ≤ i ≤ r, can be performed with a constant number
of operations.

We will use, as a subroutine, and also compare our al-
gorithm against CountSketch [11]. To understand our re-
sults, one needs to know that CountSketch has two param-
eters, which determine the number of “buckets” and “repe-
titions” or “rows” in the table it stores. The authors of [11]
denote these parameters b and r, respectively. The algo-
rithm selects, independently, r functions h1, . . . , hr from a
2-universal family with domain [n] and range [b] and r func-
tions σ1, . . . , σr from a 2-universal family with domain [n]
and range {−1, 1}. CountSketch stores the value

∑
j:ht(j)=i σ(j)fj ,

in cell (t, i) ∈ [r]× [b] of the table.
In our algorithm we use the notation 1(A) denote the

indicator function of the event A. Namely, 1(A) = 1 if A
is true and 0 otherwise. We sometimes use x . y to denote
x = O(y).

3. ALGORITHM AND ANALYSIS
We will now describe and analyze the main algorithm,

which is broken into several subroutines. The most impor-
tant subroutine is HH1, Algorithm 1, which finds a single
O(1)-heavy hitter assuming we have an estimate σ of

√
F2

such that
√
F2 ≤ σ ≤ 2

√
F2. Next is HH2, Algorithm 2,

which removes the assumption entailing σ by repeatedly
“guessing” values for σ and restarting HH1 as more items
arrive. The guessing in HH2 is where we need F2 tracking.
Finally, a well known reduction from finding ε-heavy hitters
to finding a single O(1)-heavy hitter leads us to the main
heavy hitters algorithm BPTree, which is formally described
in Theorem 11.

This section is organized as follows. The first subsection
gives an overview of the algorithm and its analysis. Sec-
tion 3.2 proves the bound on the expected supremum of the
Bernoulli processes used by the algorithm. Section 3.3 uses
the supremum bound to prove the correctness of the main

2This definition is in a slightly different form from the one
given in the introduction, but this form is more convenient
when f2

H is very close to F2.

Algorithm 1 Identify a heavy hitter.

procedure HH1(σ, p1, p2, . . . ,pm)
R← 3blog2(min{n, σ2}+ 1)c
Initialize b = b1b2 · · · bR = 0 ∈ [2R]
Sample h : [n]→ {0, 1}R ∼ 2-wise indep. family
Sample Z ∈ {−1, 1}n 4-wise indep.
X0, X1 ← 0
r ← 1, H ← −1
β ← 3/4, c← 1/32
for t = 1, 2, . . . ,m and r < R do

if h(pt)i = bi, for all i ≤ r − 1 then
H ← pt
Xh(pt)r ← Xh(pt)r + Zpt
if |X0 +X1| ≥ cσβr then

Record one bit br ← 1(|X1| > |X0|)
Refresh (Zi)

n
i=1, X0, X1 ← 0

r ← r + 1
end if

end if
end for
return H

end procedure

subroutine HH1. Section 3.4 establishes the correctness of
F2 tracking. The subroutine HH2, which makes use of the
F2 tracker, and the complete algorithm BPTree are described
and analyzed in Section 3.5.

3.1 Description of the algorithm
The crux of the problem is to identify one K-heavy hit-

ter for some constant K. HH1, which we will soon describe
in detail, accomplishes that task given a suitable approxi-
mation σ to

√
F2. HH2, which removes the assumption of

knowing an approximation σ ∈ [
√
F 2, 2

√
F 2], is described

in Algorithm 2. The reduction from finding all ε-heavy hit-
ters to finding a single K-heavy hitter is standard from the
techniques of CountSketch; it is described in Theorem 11.

HH1, Algorithm 1, begins with randomizing the item la-
bels by replacing them with pairwise independent values on
R = Θ(log min{n, σ2}) bits, via the hash function h. Since
n and σ2 ≥ F2 are both upper bounds for the number of
distinct items in the stream, R can be chosen so that every
item receives a distinct hash value.

Once the labels are randomized, HH1 proceeds in rounds
wherein one bit of the randomized label of the heavy hitter
is determined during each round. It completes all of the
rounds and outputs the heavy hitter’s identity within one
pass over the stream. As the rounds proceed, items are
discarded from the stream. The remaining items are called
active. When the algorithm discards an item it will never
reconsider it (unless the algorithm is restarted). In each
round, it creates two Bernoulli processes X0 and X1. In
the rth round, X0 will be determined by the active items
whose randomized labels have their rth bit equal to 0, and

X1 determined by those with rth bit 1. Let f
(t)
0 , f

(t)
1 ∈

Zn≥0 be the frequency vectors of the active items in each
category, respectively, initialized to 0 at the beginning of the

round. Then the Bernoulli processes are X
(t)
0 = 〈Z, f (t)

0 〉 and

X
(t)
1 = 〈Z, f (t)

1 〉, where Z is a vector of 4-wise independent
Rademacher random variables (i.e. the Zi are marginally
uniformly random in {−1, 1}).
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The rth round ends when |X0 + X1| > cσβr−1, for spec-
ified3 constants c and β. At this point, the algorithm com-
pares the values |X0| and |X1| and records the identity of
the larger one as the rth bit of the candidate heavy hitter.
All those items with rth bit corresponding to the smaller
counter are discarded (made inactive), and the next round
is started.

After R rounds are completed, if there is a heavy hitter
then its randomized label will be known with good probabil-
ity. The identity of the item can be determined by selecting
an item in the stream that passes all of the R bit-wise tests,
or by inverting the hash function used for the label. If it
is a K-heavy hitter, for a sufficiently large K = O(1), then
the algorithm will find it with probability at least 2/3. The
algorithm is formally presented in Algorithm 1.

The most important technical component of the analysis
is the following theorem, which is proved in Section 3.2.
Theorem 1 gives us control of the evolution of |X0| and |X1|
so we can be sure that the larger of the two identifies a bit
of H.

Theorem 1. If Z ∈ {−1, 1}n is drawn from a 4-wise in-

dependent family, E supt |〈f (t), Z〉| < 23 · ‖f (m)‖2.

We will use C∗ < 23 to denote the optimal constant in The-
orem 1.

The key idea behind the algorithm is that as we learn
bits of the heavy hitter and discard other items, it becomes
easier to learn additional bits of the heavy hitter’s identity.
With fewer items in the stream as the algorithm proceeds,
the heavy hitter accounts for a larger and larger fraction of
the remaining stream as time goes on. As the heavy hitter
gets heavier the discovery of the bits of its identity can be
sped up. When the stream does not contain a heavy hitter
this acceleration of the rounds might not happen, though
that is not a problem because when there is no heavy hitter
the algorithm is not required to return any output. Early
rounds will each use a constant fraction of the updates to the
heavy hitter, but the algorithm will be able to finish all R =
Θ(logn) rounds because of the speed-up. The parameter β
controls the speed-up of the rounds. Any value of β ∈ ( 1

2
, 1)

can be made to work (possibly with an adjustment to c),
but the precise value affects the heaviness requirement and
the failure probability.

3.2 Proof of Theorem 1
Let Z ∈ {−1, 1}n be random. We are interested in bound-

ing E supt |〈f (t), Z〉|. It was shown in [7] that if each entry in
Z is drawn independently and uniformly from {−1, 1}, then

E supt |〈f (t), Z〉| . ‖f (m)‖2. We show that this inequality
still holds if the entries of Z are drawn from a 4-wise inde-
pendent family, which is used both in our analyses of HH1
and our F2 tracking algorithm. The following lemma is im-
plied by [16].

Lemma 2 (Khintchine’s inequality). Let Z ∈ {−1, 1}n
be chosen uniformly at random, and x ∈ Rn a fixed vector.
Then for any even integer p, E 〈Z, x〉p ≤ √pp · ‖x‖p2.

Proof of Theorem 1. To simplify notation, we first nor-
malize the vectors in {f (0) = 0, f (1), . . . , f (m)} (i.e., divide

by ‖f (m)‖2). Denote the set of these normalized vectors by
T = {v0, . . . , vm}, where ‖vm‖2 = 1. Recall that an ε-net of

3c = 1/32 and β = 3/4 would suffice.

some set of points T under some metric d is a set of point
T ′ such that for each t ∈ T , there exists some t′ ∈ T ′ such
that d(t, t′) ≤ ε. For every k ∈ N, we can find a 1/2k-net
of T in `2 with size |Sk| ≤ 22k by a greedy construction as
follows.

To construct an ε-net for T , we first take v0, then choose
the smallest i such that ‖vi− v0‖2 > ε, and so on. To prove
the number of elements selected is upper bounded by 1/ε2,
let u0, u1, u2, . . . , ut denote the vectors we selected accord-
ingly, and note that the second moments of u1 − u0, u2 −
u1, . . . , ut − ut−1 are greater than ε2. Because the vec-
tors ui− ui−1 have non-negative coordinates, ‖ut‖22 is lower
bounded by the summation of these moments, while on the
other hand ‖ut‖22 ≤ 1. Hence the net is of size at most 1/ε2.

Let S be a set of vectors. Let Z ∈ {−1, 1}n be drawn from
a p-wise independent family, where p is an even integer. By
Markov and Khintchine’s inequality,

Pr(|〈x, Z〉| > λ · |S|1/p · ‖x‖2) <
E|〈x, Z〉|p

λp · |S| · ‖x‖p2

<
1

|S| ·
(√

p

λ

)p
.

Hence,

E sup
x∈S
|〈x, Z〉| =

∫ ∞
0

Pr(sup
x∈S
|〈x, Z〉| > u)du

= |S|1/p · sup
x∈S
‖x‖2·∫ ∞

0

Pr(sup
x∈S
|〈x, Z〉| > λ · |S|1/p · sup

x∈S
‖x‖2)dλ

< |S|1/p · sup
x∈S
‖x‖2 ·

(
√
p+

∫ ∞
√
p

(√
p

λ

)p
dλ

)
(union bound)

= |S|1/p · sup
x∈S
‖x‖2 ·

√
p ·
(

1 +
1

p− 1

)
Now we apply a similar chaining argument as in the proof

of Dudley’s inequality (cf. [14]). For x ∈ T , let xk denote
the closest point to x in Sk. Then ‖xk − xk−1‖2 ≤ ‖xk −
x‖2 + ‖x − xk−1‖2 ≤ (1/2k) + (1/2k−1). Note that if for
some x ∈ T one has that xk = vt is the closest vector to
x in Tk (under `2), then the closest vector xk−1 to x in
Tk−1 must either be the frequency vector vt′ in Tk−1 such
that t′ is the smallest timestamp after t of a vector in Tk−1,
or the largest timestamp before t in Tk−1. Thus the size
of {xk − xk−1|x ∈ T} is upper bounded by 2|Sk| ≤ 22k+1,
implying for p = 4

E sup
x∈T
|〈x, Z〉| ≤

∞∑
k=1

E sup |〈xk − xk−1, Z〉|

< 3 · 21/p√p
(

1 +
1

p− 1

) ∞∑
k=1

(22k)1/p · (1/2k)

< 23.

3.3 Identifying a single heavy hitter given an
approximation to F2

This section analyzes the subroutine HH1, which is for-
mally presented in Algorithm 1. The goal of this section is
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Figure 1: In this example of the execution of HH1,
the randomized label h(H) of the heavy hitter H be-
gins with 01 and ends with 00. Each node in the tree
corresponds to a round of HH1, which must follow
the path from H0 to HR for the output to be correct.

to prove Lemma 6, the correctness of HH1. We use H ∈ [n]
to stand for the identity of the most frequent item in the
stream. It is not assumed to be a heavy hitter unless explic-
itly stated.

3.3.1 Randomizing the labels
The first step of HH1 is to choose a hash function h :

[n] → {0, 1}R, for R = O(logn), that relabels the universe
of items [n]. For each r ≥ 0, let

Hr := {i ∈ [n] \ {H} | h(i)k = h(H)k for all 1 ≤ k ≤ r},

and let H̄r := Hr−1 \ Hr, with H̄0 = ∅ for convenience. By
definition, HR ⊆ HR−1 ⊆ · · · ⊆ H0 = [n] \ {H}, and, in
round r ∈ [R], our hope is that the active items are those in
Hr−1.

The point of randomizing the labels is as a sort of “load
balancing” among the item labels. The idea is that each bit
of h(H) partitions the active items into two roughly equal
sized parts, i.e. |Hr| ≈ |H̄r| in every round r. This leads
HH1 to discard roughly half of the active items after each
round, allowing us to make progress on learning the (hashed)
identity of a heavy hitter. We will make use of the random-
ized labels in the next section, within the proof of Lemma 3.

For h, we recommend choosing a prime p ≈ min{n, F2}2
and assigning the labels h(i) = a0 + a1i mod p, for a0 and
a1 randomly chosen in {0, 1, . . . , p − 1} and a1 6= 0. We
can always achieve this with R = 3 log2(min{n, F2} + 1),
which is convenient for the upcoming analysis. This distri-
bution on h is known to be a 2-wise independent family [9].
Note computing h(i) for any i takes O(1) time. It is also
simple to invert: namely x = a−1

1 (h(x) − a0) mod p, so x
can be computed quickly from h(x) when p > n. Invert-
ing requires computing the inverse of a1 modulo p, which
takes O(log min{n, F2}) time via repeated squaring, how-
ever this computation can be done once, for example during
initialization of the algorithm, and the result stored for all
subsequent queries. Thus, the time to compute a−1

1 mod p
is negligible in comparison to reading the stream.

3.3.2 Learning the bits of the randomized label
After randomizing the labels HH1 proceeds with the se-

ries of R rounds to identify the (randomized) label h(H) of
the heavy hitter H. The sequence of rounds is depicted in
Figure 1. Each node in the tree corresponds to one round of
HH1. The algorithm traverses the tree from left to right as
the rounds progress. Correctness of HH1 means it traverses
the path from H0 to HR. The 0/1 labels on the path leading

to HR are the bits of h(H), and when R = O(logn) is suffi-
ciently large we get HR = {H} with high probability. Thus
the algorithm correctly identifies h(H), from which it can
determine H with the method discussed in Section 3.3.1.

Now let us focus on one round and suppose that H is a
K-heavy hitter, for some large constant K. Suppose the al-
gorithm is in round r ≥ 1, and recall that the goal of the
round is to learn the rth bit of h(H). Our hope is that the
active items are those in Hr−1 (otherwise the algorithm will
fail), which means that the algorithm has correctly discov-
ered the first r − 1 bits of h(H). The general idea is that
HH1 partitions Hr−1 ∪ {H} into Hr ∪ {H} and H̄r, creates
a Bernoulli process for each of those sets of items, and com-
pares the values of the two Bernoulli processes to discern
h(H)r. Suppose that the active items are indeed Hr−1 and,
for the sake of discussion, that the rth bit of the heavy hit-
ter’s label is h(H)r = 0. Then the Bernoulli processes X0

and X1, defined in Algorithm 1, have the following form

X0(t) = ZHf
(s:t)
H +

∑
i∈Hr

Zif
(s:t)
i , X1(t) =

∑
i∈H̄r

Zif
(s:t)
i ,

where s ≤ m is the time of the last update to round r−1 and
t is the current time. To simplify things a little bit we adopt
the notation f(S) for the frequency vector restricted to only
items in S. For example, in the equations above become

X0 = ZHf
(s:t)
H + 〈Z, f (s:t)(Hr)〉 and X1 = 〈Z, f (s:t)(H̄r)〉.

The round is a success if |X0| > |X1| (because we assumed
h(H)r = 0) at the first time when |X0 +X1| > cσβr. When
that threshold is crossed, we must have |X0| ≥ cσβr/2,
|X1| ≥ cσβr/2, or both. The way we will ensure that the
round is a success is by establishing the following bound on
the Bernoulli process X1: |X1| = |〈Z, f (s:t)(H̄r)〉| < cσβr/2,
for all times t ≥ s. Of course, the round does not end until
the threshold is crossed, so we will also establish a bound

on the complementary Bernoulli process |X0 − ZHf (s:t)
H | =

|〈Z, f (s:t)(H̄r)〉| < cσβr/2, at all times t ≥ s. When this
holds we must have |X0 +X1| > cσβr no later than the first

time t where f
(s:t)
H ≥ 2cσβr, so the round ends after at most

2cσβr updates to H. In total over all of the rounds this uses
up no more than

∑
r≥0 2cσβr < fH updates to H, where

we have used σ < 2
√
F2 < 3fH by our assumption that H

is a heavy hitter. In truth, both of those inequalities fail
to hold with some probability, but the failure probability is
O(1/βr2r/2) so the probability that the algorithm succeeds

will turn out to be 1−
∑
r≥0 O(1/βr2r/2) > 2/3.

The next lemma establishes the control on the Bernoulli
processes that we have just described (compare the events
Ei with the previous paragraph). We will use it later with
K ≈ βr so that, while the rounds progress, the upper bounds
on the process maxima and the failure probabilities both de-
crease geometrically as desired. This means that the lengths
of the rounds decreases geometrically and the latter means
that a union bound suffices to guarantee that all of the events
Ei occur. In our notation F2 − f2

H = F2(H0).

Lemma 3. For any r ∈ {0, 1, . . . , R} and K > 0, the
events

E2r−1 :=

{
max
s,t≤m

|
〈
Z, f (s:t)(H̄r)

〉
| ≤ KF2(H0)1/2

}
and

E2r :=

{
max
s,t≤m

|
〈
Z, f (s:t)(Hr)

〉
| ≤ KF2(H0)1/2

}
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have respective probabilities at least 1− 4C∗
K2r/2 of occurring,

where C∗ < 23 is the constant from Theorem 1.

Proof. By the Law of Total Probability and Theorem 1
with Markov’s Inequality we have

Pr

(
max
t≤m
|〈Z, f (t)(Hr)〉| ≥

1

2
KF2(H0)1/2

)
= E

{
Pr

(
max
t≤m
|〈Z, f (t)(Hr)〉| ≥

1

2
KF2(H0)1/2

∣∣∣∣Hr)}
≤ E

{
2C∗F2(Hr)1/2

KF2(H0)1/2

}
≤ 2C∗F2(H0)1/2

KF2(H0)1/22r/2
,

where the last inequality is Jensen’s. The same holds if Hr
is replaced by H̄r.

Applying the triangle inequality to get |〈Z, f (s:t)(Hr)〉| ≤
|〈Z, f (s)(Hr)〉| + |〈Z, f (t)(Hr)〉| we then find P (E2r) ≥ 1 −

4C∗
K2r/2 . A similar argument proves P (E2r−1) ≥ 1− 4C∗

K2r/2 .

From here the strategy to prove the correctness of HH1
is to inductively use Lemma 3 to bound the success of each
round. The correctness of HH1, Lemma 6, follows directly
from Lemma 4.

Let U be the event {h(j) 6= h(H) for all j 6= H, fj > 0}
which has, by pairwise independence, probability Pr(U) ≥
1−F02−R ≥ 1− 1

min{n,F2}2
, recalling that F0 ≤ min{n, F2}

is the number of distinct items appearing before time m.
The next lemma is the main proof of correctness for our
algorithm.

Lemma 4. Let K′ ≥ 128, c = 1/32, and β = 3/4. If

2K′C∗
√
F2(H0) ≤ σ ≤ 2

√
2fH and fH > 2K′C∗

√
F2(H0)

then, with probability at least 1 − 1
min{F2,n}2

− 8

K′c(
√

2β−1)

the algorithm HH1 returns H.

Proof. Recall that H is active during round r if it hap-
pens that h(H)i = bi, for all 1 ≤ i ≤ r−1, which implies that
updates from H are not discarded by the algorithm during
round r. Let K = K(r) = K′cC∗β

r in Lemma 3, and let E
be the event that U and ∩2R

r=1Er both occur. We prove by
induction on r that if E occurs then either br = h(H)r, for
all r ∈ [R] or H is the only item appearing in the stream.
In either case, the algorithm correctly outputs H, where in
the former case it follows because E ⊆ U .

Let r ≥ 1 be such that H is still active in round r, i.e.
bi = h(H)i for all 1 ≤ i ≤ r − 1. Note that all items are
active in round 1. Since H is active, the remaining active
items are exactly Hr−1 = Hr ∪ H̄r. Let tr denote the time
of the last update received during the rth round, and define
t0 = 0. At time tr−1 ≤ t < tr we have

cσβr > |X0 +X1|

= |〈Z, f (tr−1:t)(Hr ∪ H̄r)〉+ ZHf
(tr−1:t)

H |

≥ f (tr−1:t)

H −K(r − 1)F2(H0)1/2,

where the last inequality follows from the definition of E2(r−1).
Rearranging and using the assumed lower bound on σ, we
get the bound

K(r − 1)F2(H0)1/2 ≤ K(r − 1)

2K′C∗
σ =

1

2
cσβr−1. (1)

Therefore, by rearranging we see f
(tr−1:tr)

H ≤ 1 + f
(tr−1:t)

H <

1 + 3
2
cσβr−1. That implies f

(tr)
H =

∑r
k=1 f

(tk−1:tk)

H < r +

3
2
cσ
∑r
k=1 β

k−1 ≤ r + 3
√

2c
1−β fH . Thus, if fH − 3

√
2c

1−β fH > R
then round r ≤ R is guaranteed to be completed and a
further update to H appears after the round. Suppose, that

is not the case, and rather R ≥ fH − 3
√

2c
1−β fH ≥

1
2
fH , where

the last inequality follows from our choices β = 3/4 and
c = 1/32. Then, by the definition of R, 9(1 + log2 8f2

H)2 ≥
R2 ≥ 1

4
f2
H . One can check that this inequality implies that

fH ≤ 104. Now K′ ≥ 128 and the heaviness requirement of
H implies that F2(H0) = 0. Therefore, H is the only item
in the stream, and, in that case the algorithm will always
correctly output H.

Furthermore, at the end of round r, |X0 +X1| ≥ cσβr, so
we have must have either |X0| ≥ cσβr/2 or |X1| ≥ cσβr/2.
Both cannot occur for the following reason. The events
E2r−1 and E2r occur, recall these govern the non-heavy
items contributions to X0 and X1, and these events, with
the inequality (1), imply

|〈Z, f (tr−1:tr)(Hr)〉| ≤ K(r)F2(H0)1/2 <
1

2
cσβr

and the same holds for H̄r. Therefore, the Bernoulli pro-
cess not including H has its value smaller than cσβr/2, and
the other, larger process identifies the bit h(H)r. By induc-
tion, the algorithm completes every round r = 1, 2, . . . , R
and there is at least one update to H after round R. This
proves the correctness of the algorithm assuming the event
E occurs.

It remains to compute the probability of E. Lemma 3
provides the bound

Pr(U and ∩2R
i=1 Ei) ≥ 1− 1

min{n, F2}2
−

R∑
r=0

8C∗
K(r)2r/2

= 1− 1

min{n, F2}2
−

R∑
r=0

8

K′cβr2r/2

> 1− 1

min{n, F2}2
− 8

K′c(
√

2β − 1)
.

Proposition 5. Let α ≥ 1. If F
1/2
2 ≤ σ ≤ 2F

1/2
2 and

fH ≥ α
√
F2(H0) then α

√
F2(H0) ≤ σ ≤ 2

√
2fH .

Proof. σ2 ≥ F2 ≥ f2
H = F2 − F2(H0) ≥ (1− 1

1+α2 )F2 ≥
1
8
σ2.

Lemma 6 (HH1 Correctness). There is a constant K
such that if H is a K-heavy hitter and

√
F2 ≤ σ ≤ 2

√
F2,

then with probability at least 2/3 algorithm HH1 returns H.
HH1 uses O(1) words of storage.

Proof. The Lemma follows immediately from Proposi-
tion 5 and Lemma 4 by setting K′ = 213, which allows
K = 214C∗ ≤ 380, 000.

3.4 F2 Tracking
This section proves that the AMS algorithm with 8-wise,

rather than 4-wise, independent random signs has an addi-
tive εF2 approximation guarantee at all points in the stream.
We will use the tracking to“guess”a good value of σ for input
to HH1, but, because the AMS algorithm is a fundamental
streaming primitive, it is of independent interest from the
BPTree algorithm. The following theorem is a direct conse-
quence of Lemma 9 and [1].
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Theorem 7. Let 0 < ε < 1. There is a streaming al-

gorithm that outputs at each time t a value F̂
(t)
2 such that

Pr(|F̂ (t)
2 −F

(t)
2 | ≤ εF2, for all 0 ≤ t ≤ m) ≥ 1−δ. The algo-

rithm use O( 1
ε2

log 1
δ
) words of storage and has O( 1

ε2
log 1

δ
)

update time.

Let us remark that it follows from Theorem 7 and a union
bound that one can achieve a (1± ε) multiplicative approxi-
mation to F2 at all points in the stream usingO(ε−2 log logm)
words. The proof that this works breaks the stream into
O(logm) intervals of where the change in F2 doubles.

In its original form [1], the AMS sketch is a product of
the form Πf , where Π is a random k×n matrix chosen with
each row independently composed of 4-wise independent ±1
random variables. The sketch uses k = Θ(1/ε2) rows to
achieve a (1 ± ε)-approximation with constant probability.
We show that the AMS sketch with k ' 1/ε2 rows and 8-wise
independent entries provides `2-tracking with additive error
ε‖f‖2 at all times. We define vt = f (t)/‖f (m)‖2 so ‖vt‖2 ≤
1, for all t ≥ 0, and ‖vm‖2 = 1. Define T = {v0, v1, . . . , vm}.
We use ‖A‖ to denote the spectral norm of A, which is equal
to its largest singular value, and ‖A‖F for the Frobenious
norm, which is the Euclidean length of A when viewed as a
vector. Our proof makes use of the following moment bound
for quadratic forms. Recall that given a metric space (X, d)
and ε > 0, an ε-net of X is a subset N ⊆ X such that
d(x,N) = infy∈N d(x, y) ≤ ε for all x ∈ X.

Theorem 8 (Hanson-Wright [17]). For B ∈ Rn×n
symmetric with (Zi) uniformly random in {−1, 1}n, for all
p ≥ 1, ‖ZTBZ − EZTBZ‖p .

√
p‖B‖F + p‖B‖.

Observe the sketch can be written Πx = AxZ, where

Ax :=
1√
k

k∑
i=1

n∑
j=1

xijei ⊗ en(i−1)+j

=
1√
k


−x− 0 · · · 0

0 −x− · · · 0
...

...
...

0 0 · · · −x−

 .
We are thus interested in bounding EZ supx∈T |ZTBxZ −
EZTBxZ|,for Bx = ATxAx. Note for any ‖x‖2, ‖y‖2 ≤ 1,

‖xxT − yyT ‖F ≤ 4‖x− y‖2. (2)

Lemma 9 (F2 tracking). If k & 1/ε2 and Z ∈ {−1,+1}kn
are 8-wise independent then

E sup
t

∣∣∣‖Πf (t)‖22 − ‖f (t)‖22
∣∣∣ ≤ ε‖f‖22.

Proof. Let Ax, x ∈ T , as defined above andBx = ATxAx.
By (2), ‖Bx − By‖F ≤ 4√

k
‖x − y‖2, for all x, y ∈ T . In

particular, supx∈T ‖Bx‖ ≤ supx∈T ‖Bx‖F ≤ 1/
√
k. Let T`

be a (1/2`)-net of T under `2; we know we can take |T`| ≤ 4`.

B` = {Bx : x ∈ T`} is a 1/
√
k2`-net under ‖·‖ and also under

‖ · ‖F . For x ∈ T , let x` ∈ T` denote the closest element in
T`, under `2. Then we can write Bx = Bx0 +

∑∞
`=1 ∆x` ,

where ∆x` = Bx` − Bx`−1 . For brevity, we will also define

γ(A) := |ZTAZT − EZTAZT |. Thus if the (Zi) are 2p-wise

independent

E sup
x∈T

γ(Bx) ≤ E sup
x∈T

γ(Bx0) + E sup
x∈T

∞∑
`=1

γ(∆x`)

.
p√
k

+

∞∑
`=1

E sup
x∈T

γ(∆x`) (3)

If A ∈ Rn×n is symmetric, then by the Hanson-Wright In-
equality

Pr(γ(A) > λ · S1/p) <
1

S
·
[(

C
√
p‖A‖F
λ

)p
+

(
Cp‖A‖
λ

)p]
for some constant C > 0. Thus if A is a collection of such
matrices, |A| = S, choosing u∗ = C(

√
p · supA∈A ‖A‖F + p ·

supA∈A ‖A‖)

E sup
A∈A

γ(A) =

∫ ∞
0

Pr( sup
A∈A

γ(A) > u)du

= S1/p ·
∫ ∞

0

Pr( sup
A∈A

γ(A) > λ · S1/p)dλ

= S1/p(u∗ +

∫ ∞
u∗

Pr( sup
A∈A

γ(A) > λ · S1/p)dλ)

. S1/p(
√
p · sup

A∈A
‖A‖F + p · sup

A∈A
‖A‖) (4)

Now by applying (4) to (3) repeatedly with A = A` =
{Bx`−Bx`−1 : x ∈ T}, noting supA∈A`

‖A‖ ≤ supA∈A`
‖A‖F ≤

1/
√
k2` and |A`| ≤ 2|T`| ≤ 2 · 22`,

E sup
x∈T

γ(Bx) .
p√
k

+

∞∑
`=1

p2
2 `
p
−`

√
k

.
p√
k

for p ≥ 4. Thus it suffices for the entries of Z to be 2p-wise
independent, i.e. 8-wise independent.

3.5 The complete heavy hitters algorithm
We will now describe HH2, formally Algorithm 2, which

is an algorithm that removes the assumption on σ needed
by HH1. It is followed by the complete algorithm BPTree.
The step in HH2 that guesses an approximation σ for

√
F2

works as follows. We construct the estimator F̂2 of the pre-
vious section to (approximately) track F2. HH2 starts a new

instance of HH1 each time the estimate F̂2 crosses a power
of 2. Each new instance is initialized with the current esti-
mate of

√
F2 as the value for σ, but HH2 maintains only the

two most recent copies of HH1. Thus, even though, over-
all, it may instantiate Ω(logn) copies of HH1 at most two
will running concurrently and the total storage remains O(1)
words. At least one of the thresholds will be the “right” one,
in the sense that HH1 gets initialized with σ in the inter-
val [
√
F2, 2

√
F2], so we expect the corresponding instance of

HH1 to identify the heavy hitter, if one exists.
The scheme could fail if F̂2 is wildly inaccurate at some

points in the stream, for example if F̂2 ever grows too large
then the algorithm could discard every instance of HH1 that
was correctly initialized. But, Theorem 7 guarantees that it
fails only with small probability.

We begin by proving the correctness of HH2 in Lemma 10
and then complete the description and correctness of BPTree
in Theorem 11.

Lemma 10. There exists a constant K > 0 and a 1-pass
streaming algorithm HH2, Algorithm 2, such that if the stream
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Algorithm 2 Identify a heavy hitter by guessing σ.

procedure HH2(p1, p2, . . . ,pm)

Run F̂2 from Theorem 7 with ε = 1/100 and δ = 1/20
Start HH1 (1, p1,. . . , pm)

Let t0 = 1 and tk = min{t | F̂ (t)
2 ≥ 2k}, for k ≥ 1.

for each time tk do
Start HH1((F̂

(tk)
2 )1/2, ptk , ptk+1, . . . pm)

Let Hk denote its output if it completes
Discard Hk−2 and the copy of HH1 started at tk−2

end for
return Hk−1

end procedure

contains a K-heavy hitter then with probability at least 0.6
HH2 returns the identity of the heavy hitter. The algorithm
uses O(1) words of memory and O(1) update time.

Proof. The space and update time bounds are imme-
diate from the description of the algorithm. The success
probability follows by a union bound over the failure prob-
abilities in Lemma 6 and Theorem 7, which are 1/3 and
δ = 0.05 respectively. It remains to prove that there is a
constant K such that conditionally given the success of the
F2 estimator, the hypotheses of Lemma 6 are satisfied by
the penultimate instance of HH1 by HH2.

Let K′ denote the constant from Lemma 6 and set K =
12K′, so if H is a K-heavy hitter then for any α > 2/K and

in any interval (t, t′] where (F
(t′)
2 )1/2−(F

(t)
2 )1/2 ≥ α

√
F2 we

will have

f
(t:t′)
H +F2(H0)1/2 ≥ ‖f (t:t′)‖2 ≥ ‖f (t′)‖2−‖f (t)‖2 ≥ α

√
F2.

If follows with in the stream pt, pt+1, . . . , pt′ the heaviness
of H is at least

f
(t:t′)
H

F
(t:t′)
2 (H0)1/2

≥
α
√
F2 −

√
F2(H0)√

F2(H0)
≥ Kα− 1 ≥ Kα

2
. (5)

Of course, if F
(t:t′)
2 (H0) = 0 the same heaviness holds.

Let k be the last iteration of HH2. By the definition of

tk, we have (F̂
(tk−1)

2 )1/2 ≥ 1
4
(F̂2)1/2 ≥ 1

4

√
(1− ε)F2. Sim-

ilar calculations show that there exists a time t∗ > tk−1

such that (F
(t∗)
2 )1/2− (F

(tk−1)

2 )1/2 ≥ 1
6
F2 and ‖f tk−1:t∗‖2 ≤

(F̂
(tk−1)

2 )1/2 ≤ 2‖f tk−1:t∗‖2. In particular, the second pair

of inequalities implies that F̂
(tk−1)
2 is a good “guess” for σ

on the interval (tk−1, t
∗]. We claim H is a K′ heavy hitter

on that interval, too. Indeed, because of (5), with α = 1/6,
we get that H is a K′-heavy hitter on the interval (tk−1, t

∗].
This proves that the hypotheses of Lemma 6 are satisfied for
the stream ptk−1+1, . . . , pt∗ . It follows that from Lemma 6
that HH1 correctly identifies Hk−1 = H on that substream
and the remaining updates in the interval (t∗, tm] do not
affect the outcome.

A now standard reduction from ε-heavy hitters to O(1)-
heavy hitters gives the following theorem. The next section
describes an implementation that is more efficient in prac-
tice.

Theorem 11. For any ε > 0 there is 1-pass streaming al-
gorithm BPTree that, with probability at least (1−δ), returns
a set of ε

2
-heavy hitters containing every ε-heavy hitter and

an approximate frequency for every item returned satisfying

the (ε, 1/ε2)-tail guarantee. The algorithm uses O( 1
ε2

log 1
εδ

)

words of space and has O(log 1
εδ

) update and O(ε−2 log 1
εδ

)
retrieval time.

Proof. The algorithm BPTree constructs a hash table in
the same manner as CountSketch where the items are hashed
into b = O(1/ε2) buckets for r = O(log 1/εδ) repetitions. On
the stream fed into each bucket we run an independent copy
of HH2. A standard r × b CountSketch is also constructed.
The constants are chosen so that when an ε-heavy hitter in
the stream is hashed into a bucket it becomes a K-heavy hit-
ter with probability at least 0.95. Thus, in any bucket with
a the ε-heavy hitter, the heavy hitter is identified with prob-
ability at least 0.55 by Lemma 10 and the aforementioned
hashing success probability.

At the end of the stream, all of the items returned by in-
stances of HH2 are collected and their frequencies checked
using the CountSketch. Any items that cannot be ε-heavy
hitters are discarded. The correctness of this algorithm, the
bound on its success probability, and the (ε, 1/ε2)-tail guar-
antee follow directly from the correctness of CountSketch
and the fact that no more than O(ε−2 log(1/δε)) items are
identified as potential heavy hitters.

We can amplify the success probability of HH2 to any
1 − δ by running O(log(1/δ)) copies in parallel and taking
a majority vote for the heavy hitter. This allows one to
track O(1)-heavy hitters at all points in the stream with
an additional O(log logm) factor in space and update time.
The reason is because there can be a succession of at most
O(logm) 2-heavy hitters in the stream, since their frequen-
cies must increase geometrically, so setting δ = Θ(1/ logm)
is sufficient. The same scheme works for BPTree tree, as
well, and if one replaces each of the counters in the attached
CountSketch with an F2-at-all-times estimator of [7] then one
can track the frequencies of all ε-heavy hitters at all times
as well. The total storage becomes O( 1

ε2
(log log n + log 1

ε
))

words and the update time is O(log logn+ log 1
ε
).

4. EXPERIMENTAL RESULTS
We implemented HH2 in C to evaluate its performance and

compare it against the CountSketch for finding one frequent
item. The source code is available from the authors upon
request. In practice, the hashing and repetitions perform
predictably, so the most important aspect to understand the
performance of BPTree is determine the heaviness constant
K where HH2 reliably finds K-heavy hitters. Increasing the
number of buckets that the algorithm hashes to effectively
decreases n. Therefore, in order to maximize the “effective”
n of the tests that we can perform within a reasonable time,
we will just compare CountSketch against HH2.

The first two experiments help to determine some param-
eters for HH2 and the heaviness constant K. Afterwards, we
compare the performance of HH2 and CountSketch for find-
ing a single heavy hitter in the regime where the heavy hitter
frequency is large enough so that both algorithms work re-
liably.

Streams. The experiments were performed using four
types of streams (synthetic data). In all cases, one heavy
hitter is present. For a given n and α there are n items with
frequency 1 and one item, call it H, with frequency α

√
n. If

α is not specified then it is taken to be 1. The four types of
streams are (1) all occurrences of H occur at the start of the
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stream, (2) all occurrences of H at the end of the stream,
(3) occurrences of H placed randomly in the stream, and (4)

occurrences of H placed randomly in blocks of n1/4.
The experiments were run on a server with two 2.66GHz

Intel Xenon X5650 processors, each with 12MB cache, and
48GB of memory. The server was running Scientific Linux
7.2.

4.1 F2 tracking experiment
The first experiment tests the accuracy of the F2 tracking

for different parameter settings. We implemented the F2

tracking in C using the speed-up of [30], which can be proved
to correct for tracking using Appendix B. The algorithm
uses the same r× b table as a CountSketch. To query F2 one
takes the median of r estimates, each of which is the sum of
the squares of the b entries in a row of the table. The same
group of ten type (3) streams with n = 108 and α = 1 was
used for each of the parameter settings.

The results are presented in Table 4.1. Given the tracker
F̂2(t) and true evolution of the second moment F2(t), we
measure the maximum F2 tracking error of one instance as
maxt |F̂2(t)−F2(t)|/F2, where F2 is the value of the second
moment at the end of the stream. We report the average
maximum tracking error and the worst (maximum) maxi-
mum tracking over each of the ten streams for every choice
of parameters.

The table indicates that, for every choice of parameter set-
tings, the worst maximum tracking error is not much worse
than the average maximum tracking error. We observe that
the tracking error has relatively low variance, even when
r = 1. It also shows that the smallest possible tracker, with
r = b = 1, is highly unreliable.

4.2 Implementations of HH2 and CountSketch

HH2 implementation details. We have implemented
the algorithm HH2 as described in Algorithm 2. The max-
imum number of rounds is R = min{d3 log2 ne, 64}. We
implemented the four-wise independent hashing using the
“CW” trick using the C code from [31] Appendix A.14. We
use the code from Appendix A.3 of [31] to generate 2-universal
random variables for random relabeling of the item. The F2

tracker from the previous section was used, we found exper-
imentally that setting the tracker parameters as r = 1 and
b = 30 is accurate enough for HH2. We also tried four-wise
hashing with the tabulation-based hashing for 64-bit keys
with 8 bit characters and compression as implemented in
C in Appendix A.11 of [31]. This led to a 48% increase in
speed (updates/millisecond), but at the cost of a 55 times
increase in space.

CountSketch implementation details. We implemented
CountSketch in C as described in the original paper [11] with
parameters that lead to the smallest possible space. We
use the CountSketch parameters as b = 2 (number of buck-
ets/row) and r = d3 + log2 ne (number of rows). The choice
of b is the smallest possible value. The choice of r is the min-
imum needed to guarantee that, with probability 7/8, there
does not exist an item i ∈ [n] \ {H} that collides the heavy
hitter in every row of the data structure. In particular, if

we use only r′ < r rows then we expect 2log2 N−r
′

collisions
with the heavy hitter, which would break the guarantee of
the CountSketch. Indeed, suppose there is a collision with
the heavy hitter and consider a stream where all occurrences
of H appear at the beginning, then CountSketch will not cor-
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Figure 2: Success rate for HH2 on four types of
streams with n = 108 and heavy hitter frequency
α
√
n.

rectly return H as the most frequent item because some item
that collides with it and appears after it will replace H as
the candidate heavy hitter in the heap. In our experiments,
the CountSketch does not reliably find the α-heavy hitter
with these parameters when α < 32. This gives some speed
and storage advantage to the CountSketch in the compari-
son against HH2, since b and/or r would need to increase to
make CountSketch perform as reliably as HH2 during these
tests.

We also tried implementing the four-wise hashing with
the Thorup-Zhang tabulation. With the same choices of b
and r this led to an 18% speed-up and a 192 times average
increase in space. Since the hash functions are such a large
part of the space and time needed by the data structure
this could likely be improved by taking b > 2, e.g. b = 100,
and r ≈ dlogb ne. No matter what parameters are chosen
the storage will be larger than using the CW trick because
each tabulation-based hash function occupies 38kB, which
already ten times larger than the whole CountSketch table.

4.3 Heaviness
The goal of this experiment is to approximately determine

the minimum value K where if fH ≥ K
√
n then HH2 cor-

rectly identifies H. As shown in Lemma 10, K ≤ 12·380, 000
but we hope this is a very pessimistic bound. For this exper-
iment, we take n = 108 and consider α ∈ {1, 2, 22, . . . , 26}.
For each value of α and all four types of streams we ran
HH2 one hundred times independently. Figure 4.3 displays
the success rate, which is the fraction of the one hundred
trials where HH2 correctly returned the heavy hitter. The
figure indicates that HH2 succeeds reliably when α ≥ 32.

4.4 HH2 versus CountSketch comparison
In the final experiment we compare HH2 against CountS-

ketch. The goal is to understand space and time trade-off
in a regime where both algorithms reliably find the heavy
hitter.

For each choice of parameters we compute the update rate
of the CountSketch and HH2 (in updates/millisecond) and
the storage used (in kilobytes) for all of the variables in the
associated program. The results are presented in Figure 3.

The figure shows that HH2 is much faster and about one
third of the space. The dramatic difference in speed is to be
expected because two bottlenecks in CountSketch are com-
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avg. maximum F2 tracking error worst maximum F2 tracking error

b \ r 1 2 4 8 16 1 2 4 8 16

1 1.2 0.71 0.82 0.66 0.59 4.3 1.2 2.7 0.85 0.86

10 0.35 0.30 0.33 0.19 0.16 1.1 0.68 0.91 0.28 0.20

100 0.12 0.095 0.080 0.074 0.052 0.24 0.17 0.13 0.13 0.10

1000 0.044 0.030 0.028 0.018 0.017 0.076 0.060 0.045 0.029 0.024

Table 1: Average and maximum F2 tracking error over 10 streams for different choices of b and r.
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Figure 3: Update rate in updates/ms (•) and stor-
age in kB (◦) for HH2 and CountSketch (� and �,
respectively) with the CW trick hashing.

puting the median of the Θ(log n) values and evaluating
Θ(logn) hash functions. HH2 removes both bottlenecks.
Furthermore, as the subroutine HH1 progresses a greater
number of items are rejected from the stream, which means
the program avoids the associated hash function evaluations
in HH2. This phenomena is responsible for the observed
increase in the update rate of HH2 as n increases. An addi-
tional factor that contributes to the speedup is amortization
of the start-up time for HH2 and of the restart time for each
copy of HH1.

4.5 Experiments summary
We found HH2 to be faster and smaller than CountSketch.

The number of rows strongly affects the running time of
CountSketch because during each update r four-wise inde-
pendent hash functions must be evaluated and of a me-
dian r values is computed. The discussion in Section 4.2
explains why the number of rows r cannot be reduced by
much without abandoning the CountSketch guarantee or in-
creasing the space. Thus, when there is a K-heavy hitter for
sufficiently large K our algorithm significantly outperforms
CountSketch. Experimentally we found K = 32 was large
enough.

The full BPTree data structure is needed to find an item
with smaller frequency, but for finding an item of smaller
frequency CountSketch could outperform BPTree until n is
very large. For example, to identify an α-heavy hitter in the
stream our experiments suggest that one can use a BPTree
structure with about d(32/α)2e buckets per row. In com-
parison a CountSketch with roughly max{2, 1/α2} buckets
per row should suffice. When α is a small constant, e.g. 0.1,
what we find is that one can essentially reduce the num-
ber rows of the data structure from log(n) to just a few,
e.g. one or two, at the cost of a factor 322 = 1024 increase
in space.4 This brief calculation suggests that CountSketch

4Recall, Ω(logn/ log(1/α)) rows are necessary CountSketch
whereas BPTree needs only O(log 1/α) rows.

will outperform BPTree when the heaviness is α < 1 un-
til n & 21024—which is to say always in practice. On the
other hand, our experiments demonstrate that HH2 clearly
outperforms CountSketch with a sufficiently heavy heavy hit-
ter. More experimental work is necessary to determine the
heaviness threshold (as a function of n) where BPTree out-
performs CountSketch. There are many parameters that af-
fect the trade-offs among space, time, and accuracy, so such
an investigation is beyond the scope of the preliminary re-
sults reported here.

5. CONCLUSION
In this paper we studied the heavy hitters problem, which

is arguably one of the most important problems for data
streams. The problem is heavily inspired from practice and
algorithms for it are used in commercial systems. We pre-
sented the first space and time optimal algorithm for finding
`2-heavy hitters, which is the strongest notion of heavy hit-
ters achievable in polylogarithmic space. By optimal, we
mean the time is O(1) to process each stream update, and
the space is O(logn) bits of memory. These bounds match
trivial lower bounds (for constant ε). We also provided new
techniques which may be of independent interest: (1) a one-
pass implementation of a multi-round adaptive compressed-
sensing scheme where we use that after filtering a fraction of
items, the heavy item is becoming even heavier (2) a deran-
domization of Bernoulli processes relevant in this setting us-
ing limited independence. Both are essential in obtaining an
optimal heavy hitters algorithm with O(1) memory. Tech-
nique (1) illustrates a new power of insertion-only streams
and technique (2) can be stated as a general chaining re-
sult with limited independence in terms of the size of the
nets used. Given the potential practical value of such an al-
gorithm, we provided preliminary experiments showing our
savings over previous algorithms.
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APPENDIX
A. Pick-and-Drop COUNTER EXAMPLE

We begin with a brief description of the Pick-and-Drop
algorithm and refer the reader to [8] for the full details. Af-
terwards we will describe a stream where the algorithm fails,
with probability at least 1−n−1/8, to find a `2 heavy hitter
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and give some intuition about why the algorithm has this
behavior. That is, the probability the algorithm succeeds is
inverse polynomially small.

There is a parameter to the algorithm t and the algorithm
begins by partitioning the stream into m/t consecutive in-
tervals of t updates each. The value of t is chosen such that
m/t is roughly the smallest frequency of a heavy hitter that
we wish to find. Hence, the average number of heavy hitter
updates per interval is Ω(1). In each interval, independently,
a position T ∈ {1, 2, . . . , t} is chosen at random and the item
in the T th position within the interval is sampled. We also
count how many times the sampled item it appears within
{T, T + 1, . . . , t}. Next, the following “competition” is per-
formed. We traverse the intervals sequentially from the first
to the last and maintain a global sample and counter. Ini-
tially, the global sample is the sample from the first interval
and the global counter is the counter from the first interval.
For each future interval i, two options are possible: (1) the
global sample is replaced with the sample from i and the
global counter is replaced with the counter from interval i,
or (2) the global sample remains unchanged and the global
counter is increased by the number of times the global sam-
ple item appears in interval i. Also, the algorithm maintains
X which is the current number of intervals for which the cur-
rent global counter has not been replaced. If the maximum
between X and the counter from the ith interval is greater
than the global counter then (1) is executed, otherwise (2)
is executed.

Consider the following counter example that shows Pick-
and-Drop cannot find `2 heavy hitters in O(1) words. f ∈
R2n is a frequency vector where one coordinate H has fre-
quency

√
n, n elements have frequency 1, and

√
n elements

have frequency n1/4, call the latter “pseudo-heavy”. The re-
maining coordinates of f are 0. Consider the stream that
is split into t intervals B1, . . . , Bt where t =

√
n and each

interval has size Θ(t). The items are distributed as follows.

• Each interval w where w = qn1/4 for q = 1, 2, . . . , n1/4,
is filled with n1/4 pseudo-heavy elements each appear-
ing n1/4 times and appearing in no other interval.
• Each interval w+h, for h = 1, 2, . . . , n1/8 contains n1/8

appearances ofH and remaining items that appear only
once in the stream.
• Each interval w + h, for h = n1/8 + 1, . . . , n1/4 − 1

contains items that appear only once in the stream.

Obviously, a pseudo-heavy element will be picked in every
“w interval”. In order for it to be beaten by H, its count
must be smaller than n1/8 and H must be picked from one
of the n1/8 intervals immediately following. The intersec-
tion of these events happens with probability no more than

n−1/8
(
n1/8 · n

1/8

n1/2

)
= n−3/8. As there are only n1/4 “w

intervals”, the probability that the algorithm outputs H is
smaller than n−1/8.

Note that the algorithm cannot be fixed by choosing other
values of t in the above example. If t �

√
n then H might

be sampled with higher probability but the pseudo-heavy
elements will also have higher probabilities and the above
argument can be repeated with a different distribution in
the intervals. If t �

√
n then the probability to sample H

in any of the rounds becomes too small.
This counterexample is not contrived—it shows why the

whole Pick-and-Drop sampling algorithm fails to shed any
light on the `2 heavy hitters problem. Let us explain why the

algorithm will not work in polylogarithmic space for k = 2.
Consider the case when the global sample is h 6= H and
the global counter is fh. In this case, the global sample can
“kill” fh appearances of H in the next fh intervals, by the
description of the algorithm. The probability to sample h
is fh/t, so the expected number of appearances of H that
will be killed is upper bounded by

∑
h f

3
h/t = F3/t. In the

algorithm, we typically choose t =
√
F1. Consider the case

when F1 = Θ(n), F2 = Θ(n) but F2 = o(F3). In this case the
algorithm needs fH to be at least CF3/

√
F2 for a constant

C. This is impossible if f2
H = Θ(F2). For t = o(

√
n) the

probability that H is sampled becomes o(1). For t = ω(
√
n)

we need a smaller decay for H to survive until the end in
which case the above analysis can be repeated with the new
decay factor for pseudo-heavy elements.

B. ALTERNATIVE F2 TRACKING ANALY-
SIS

This section describes an alternative F2 tracking analysis.
It shows that 4-wise independence is enough, that is the
original setting used by [1], but at the cost of an extra log 1/ε
factor on the space complexity. Let N ∈ N, Zj be a vector
of 4-wise independent Rademacher random variables for j ∈
N , and define Xj,t = 〈Zj , f (t)〉. Let Yt = 1

N

∑N
j=1 X

2
j,t,

obviously Yt can be computed by a streaming algorithm.

Theorem 12. Let 0 < ε < 1. There is a streaming algo-

rithm that outputs at each time t a value F̂
(t)
2 such that

Pr(|F̂ (t)
2 − F (t)

2 | ≤ εF2, for all 0 ≤ t ≤ m) ≥ 1− δ.

The algorithm use O( 1
ε2

log 1
δε

) words of storage and has

O( 1
ε2

log 1
δε

) update time.

The proof of Theorem 7 uses the following technical lemma
that bounds the divergence the estimate over an entire in-
terval of updates. It follows along the lines of Lemma 22
from the full version of [7].

Lemma 13. Let ε < 1, N ≥ 12/ε2, and ∆ > 0. If F
(v)
2 −

F
(u)
2 ≤ ( ε

20NC∗
)2F2, then

Pr
(
Yt − F (t)

2 ≤ 2εF2, ∀t ∈ [u, v]
)
≥ 2

3
.

Proof. We denote ∆ = (F
(v)
2 − F (u)

2 )/F2 and split the
expression above as follows

Yt − F (t)
2 = (Yt − Yu) + (Yu − F (u)

2 ) + (F
(t)
2 − F (u)

2 ).

Let b1 > 0. For the second term, and it is shown in [1] that

Pr(Yu − F (u)
2 ≥ b1) ≤ 2(F

(u)
2 )2

Nb21
.

Let X(t) = 1√
N

(X1,t, X2,t, . . . , XN,t) and X(u:t) = Xt −Xu,

in particular Yt = ‖X(t)‖22. For the first term, we have

Yt = ‖X(u) +X(u:t)‖22 ≤
(
‖X(u)‖2 + ‖X(u:t)‖2

)2

,

so

Yt − Yu ≤ 2
√
Yu‖X(u:t)‖2 + ‖X(u:t)‖22.

Now from Theorem 1 and a union bound it follows that for
b2 > 0

P

(
sup

j∈[N ],u≤t≤v
|Xj,t −Xj,u| ≥ b2

)
≤ NC∗‖f (u:v)‖2

b2
,
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so P (supt≥u ‖X(u:t)‖2 ≥ b2) ≤ NC∗‖f (u:v)‖2/b2.

With probability at least 1 − 2(F
(u)
2 )2

Nb21
− NC∗‖f(u:v)‖2

b2
we

get, for all t ≥ u

Yt − F (t)
2 ≤ 2(F

(u)
2 + b1)

1
2 b2 + b22 + b1 + ∆F2.

Now we set b1 = εF2 and b2 = 6NC∗
√

∆F2 and the above
expression is bounded by

Yt − F (t)
2 ≤ 12

√
2NC∗F2

√
∆ + εF2 + 2∆

≤ 20NC∗F2

√
∆ + εF2,

≤ 2εF2

since ∆ ≤ F2. The probability of success is at least

1− 2(F
(u)
2 )2

Nε2F 2
2

− ‖f
(u:m)‖2
6
√

∆
≤ 1− 1

3
.

We now proceed to describe the F2 estimation algorithm
and prove Theorem 7.

Proof proof of Theorem 7. The algorithm returns at
each time t the value

F̂2(t) = max
s≤t

median(Y1,t, Y2,t, . . . , YM,t),

which are M = Θ(log 1
δε

) independent copies of Yt with

N = 12( 3
ε
)2. Let ∆ = ( ε/3

20NC∗
)2 and define t0 = 0 and

tk = max{t ≤ m | F (tk)
2 ≤ F (tk−1)

2 + ∆F2}, for k ≥ 1. These
times separate the stream into no more than 2/∆ intervals
during which the second moment increases no more than
∆F2. Lemma 13 and an application of Chernoff’s Inequality
imply that for each interval k

Pr

(
medianj∈[M ](Yj,t)− F (t)

2 ≤ 2

3
εF2, ∀t ∈ [tk−1, tk)

)
≥ 1− poly(δε).

The original description of the AMS algorithm [1] implies
that, for all k,

Pr
(

medianj∈[M ](Yj,tk ) ≥ (1− ε/3)F
(t)
2

)
≥ 1− poly(δε).

By choosing the constants appropriately and applying a union
bound over all O(ε−2) intervals and endpoints we achieve all
of these events events occur with probability at least 1− δ.
One easily checks that this gives the desired guarantee.

C. FASTER WITH LESS SPACE
Maintaining all of the O(ε−2 log 1

εδ
) instances of the F2

tracking algorithm is a significant speed and memory bot-
tleneck for BPTree. For example, Section 4 uses a tracker
with thirty counters, which is a lot of additional storage.
Furthermore, evaluating the four-wise hash functions is one
of the main bottlenecks limiting the speed, so it is much
slower to have update one F2 tracker for every row of the
datastructure. This section addresses that bottleneck by re-
ducing the number of instances of F2 tracking to only one.
This is the most efficient way we have found to implement
the algorithm. It does not improve (nor degrade) the space
complexity or update time for BPTree. In this section we
will describe the intuition behind the following theorem. Its
proof appears in the full version of this paper.

Theorem 14. The algorithm BPTree can be implemented
with a single F2 tracker, which periodically restarts. The
storage, update time, and retrieval times all retain the same
asymptotic complexity.

The single-tracker version will use the same data struc-

ture with b · r buctets, where K2

ε2
< b = O(1/ε2) and r =

O(log 1/δε). However, the supressed constants may be larger.
For convenience, we will take b ·r to be the dimensions of the
auxiliary CountSketch, too. However, it is not necessary that
the same size table is used for the auxiliary CountSketch.

We will make two modifications to BPTree. The first is to
change how we determine when to restart HH1. Instead of
using one F2 tracker in each of the b·r = O(ε−2 log 1

δε
) buck-

ets, we will use only one F2 tracker overall, which periodi-
cally restarts. To be precise, replace all b·r = O(ε−2 log 1/δε)
copies of the F2 trackers used by the instances of HH2 in each
bucket with a single tracker that is periodically restarted. At
the beginning we start T1, the first F2 tracker, we label the
first restart T2, then T3, and so on. The random bits used
for each new tracker are independent of the previous ones.

For k ≥ 1, we recursively define tk = min{t ≥ 0 | T (t)
k ≥ 2k}

and T
(t)
k , t ≥ tk−1, is an F2 estimate on the stream at

times tk−1, tk−1 + 1, . . . t. Let ˆ̀ be the index of the last
tracker started, and we define t0 = 1 and tˆ̀ = m for conve-

nience even though T
(t)
ˆ̀ < 2

ˆ̀
by definition. We will take the

trackers to each have error probability δ′ = O(δ/ log ε−1),
where the supressed constant will be taken sufficiently small,
and accuracy ε′ = 1/100. Upon each time tk, for k =

0, 1, 2, . . . , ˆ̀, the instance of HH1 in every bucket is restarted
simultaneously with the value σ = ε

16
2k/2 given as the in-

put “guess” of F2. When a restart happens at time tk, the
old F2 tracker Tk and the corresponding HH1 instance are
discarded by the algorithm. Here is another difference from
the implementation using HH2, this faster version does not
stagger-start the instances of HH1, only a single copy of HH1
is operating in each bucket at one time.

The second modification is to guarantee that we do not
discard a heavy hitter after it is identified. Let us focus
on a singe bucket. In this bucket, HH1 is restarted repeat-
edly, and each time it could output a candidate heavy hitter.
Rather than keep the last two candidates, as in BPTree, we
maintain the identity of one candidate, call it H0, and each
time a new candidate is identified for this bucket, we com-
pare its estimated frequency with an estimate of fH0 and
replace H0 with the new candidate if only if the freqency
estimate of H0 is the smaller of the two. When comparing
frequencies we use estimates from the auxiliary CountSketch.

The rest of this section contains the details of the proof of
Theorem 14, but here is a rough outline. We define two fa-
vorable events, these are E1:“the F2 tracking is accurate”and
E2:“the auxiliary CountSketch is accurate” and show that
they have high enough probability in Lemmas 15 and 16.
Next, we show that the probability that some heavy hitter
H is identified, conditionally given the random bits used by
the F2 trackers and E := E1 ∩ E2, is Ω(1) per each of the
r rows of the data structure (Lemmas 17 and 18). That is
enough to guarantee that H is identified at least once among
all r = O(log 1/δε) rows with probability at least 1−poly(δε)
using a Chernoff Bound, so we can apply a union bound over
all heavy hitters. A more detailed version of that argument
completes the proof of Theorem 14 at the end of this section.
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We need the conditioning because the rows of the BP-
Tree data structure are no longer independent, since all of
the restarts are timed from the same F2 tracker, and that
precludes a Chernoff Bound. However, the rows are con-
ditionally independent. In order to show that H is indeed
identified with probability Ω(1), we will define the event
that a restart k is “good” in a particular bucket of the data
structure. If k is good it means two things. First, the corre-
sponding interval of updates, tk, tk + 1, . . . , tk+1 − 1, in this
bucket satisfies the hypotheses of Lemma 4, so H is identi-
fied with (conditional) probability at least 2/3, and second,
H is never eclipsed as the heavy hitter in any of the subse-
quent rounds. The rationale behind the proof of the bound
itself is that, on average, rounds that are not good use up
few of the updates to H, because the correspond to intervals
in the stream where H is not a heavy hitter.

Let Tk denote the random bits used for all trackers started
at times tk′ , for k′ ≤ k, and let T denote the random bits
for all of the trackers in total. Similarly, let C denote the
collection of random bits used by the auxiliary CountSketch.
In most of the events we need to consider we can as well
condition on C without any extra legwork because C is in-
dependent of T and all instances of HH1. Let t∗ = min{t ≥
0 | F (t)

2 ≥ ε2

1002F2} and let `∗ = min{k | tk ≥ t∗}. We de-
fine E1 to be the event that, for all k where tk ≥ t∗ and all

t ∈ [tk−1, tk), |T̂ (t)
k − F

(tk−1:t)

2 | ≤ 1
100

F
(tk−1:tk)

2 .

Lemma 15. Pr(E1) ≥ 1− δ/3

Proof. Let Dk be the event that, for all t ∈ [tk−1, tk),

|T̂ (t)
k − F (tk−1:t)

2 | ≤ 1
100

F
(tk−1:tk)

2 . By Theorem 7 and our

choice δ′ = O(δ/ log ε−1) for the error probability of the F2

tracking, we have that, for all k = 1, 2, . . . , ˆ̀+ 1, Pr(Dk |
Tk−1) ≥ 1 − δ′. Starting from t∗, the value of F

(t)
2 dou-

bles only O(log ε−1) times in the remainder of the stream.

Therefore, ˆ̀− `∗ = O(log ε−1) on the event E1, and E1 ⊆⋃ˆ̀+1

k=ˆ̀−O(log 1
ε

)
Dk. The bound follows as

1− Pr(E1) ≤
∑
k∈L

1− Pr(Dk)

=
∑
k∈L

1− EPr(Dk | Tk−1)

≤ O(log ε−1) · δ′ ≤ δ

3
.

The last inequality follows by taking the supressed constant
in the definition of δ′ to be sufficiently small.

An observation from the last proof that we will use again
is E1 implies O(log ε−1) restarts are enough to go from t∗

to the start of the stream. Let L = {`∗, `∗ + 1, . . . , ˆ̀}. Al-

though L is random (ˆ̀ and `∗ depend on the F2 trackers),
|L| = O(log ε−1) over the event E1, which is sufficient for
our purposes.

Now we will define the event E2 that the auxiliary CountS-
ketch frequency estimates are accurate enough. Let H de-
note the (random) set of candidate heavy hitters returned
from a given bucket by instances of HH1 started at times tk,
for k ∈ L, i.e. the final O(log ε−1) instances of HH1 run on
the items in this bucket. Let Htot denote the union over all
of the buckets of the sets H. E2 is the event that at every
time tk, k ∈ L, and every H ′ ∈ Htot, the auxiliary CountS-

ketch returns a (1 ± 1/2) approximation to f
(tk)

H′ when it is
queried at time tk.

Lemma 16. Pr(E2|E1) ≥ 1− δ/3.

Proof. The number of buckets is br = O(ε−2 log 1/δε),
in each bucket the number of candidate heavy hitters re-
turned by the L instances of HH1 is |H| ≤ |L| = O(log ε−1),
and we are requesting that the CountSketch gives an accu-
rate estimate of each of those items on |L| = O(log ε−1)
different queries. Thus we need a union bound over at most
|Htot| · |L| ≤ b · r · |L|2 = poly(1/ε) queries to the CountS-
ketch. The set Htot and the times tk, k ∈ L, are indepen-
dent of the auxiliary CountSketch, and since the auxiliary
CountSketch has r = O(log 1/δε) rows we can guarantee that
P (E2|E1) ≥ 1− δ/3 by choosing the surpressed constant on
r to be sufficiently large.

Let us narrow our focus to a single bucket within the data
structure and suppose it contains some ε-heavy hitter H.
Let B ⊆ [n]\{H} be the (random) set of items in the bucket
besides H. Let us say that index k ∈ L is good in this bucket
if the following three things happen, where K = 212C∗,

(i) f
(tk−1:tk)

H ≥ ε
16

2k/2,

(ii) for all indices k′ ≥ k and items i ∈ B, we have f
(tk′ )
H ≥

4f
(tk′ )
i , and

(iii) F
(tk−1:tk)

2 (B)1/2 ≤ ε
16K

2k/2.

The next two lemmas prove that within any bucket hold-
ing a heavy hitter there is a good index with (conditional)
probability at least 1/2. The first lemma establishes prop-
erties (i) and (ii). The second lemma establishes (iii).

Lemma 17. If H is an item with frequency fH ≥ ε
√
F2

and is B the set of items going into some bucket with H,
then conditionally given T and E the probability that there
exists an index k∗ ∈ L satisfying both (i) and (ii) it at least
3/4.

Proof. Let j ∈ L be the largest index such that exists

an element i ∈ B such that 4f
(tj)

i > f
(tj)

H , or j = `∗−1 if no

such index exists. Then f
(tj)

H ≤ 4f
(tj)

i ≤ 4
√
F2(B). Let F

be the event that there is no k∗ ∈ L satisfying both (i) and

(ii). F implies f
(tk−1:tk)

H < ε
16

2k/2, for all k > j. Therefore,
on the event F we have

fH = f
(tj)

H +

ˆ̀∑
k=j+1

f
(tk−1:tk)

H ≤ 4
√
F2(B) +

ˆ̀∑
k=j+1

ε

16
2k/2

≤ 4
√
F2(B) +

ε

16
2

ˆ̀/2
∞∑
k=0

2k/2 = 4
√
F2(B) +

ε

4
2

ˆ̀
.

The event E implies 4F2 ≥ 2
ˆ̀
, so fH− ε

4
2

ˆ̀/2 ≥ ε
2

√
F2. Thus,

F2(B) ≥ ε2

32
F2, and it implies Pr(F |T , E) ≤ Pr(F2(B) ≥

ε2

32
F2|T , E). However, E(F2(B)|T , E) = E(F2(B)) = 1

b
(F2−

f2
H). The conditional probability can be bounded with Markov’s

Inequality to find Pr(F2(B) ≥ ε2

32
F2|T , E) ≤ 16

ε2b
, so b =

O(1/ε2) can be chosen large enough to guarantee Pr(F |T , E) ≤
1/4, as desired.

Lemma 18. For every k ∈ L

Pr

(
F

(tk−1:tk)

2 (B) ≤ ε2

16K
2k | T , E

)
≥ 3/4.
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Proof. We have

E(F
(tk−1:tk)

2 (B)|T , E) =
1

b
E(F

(tk−1:tk)

2 − (f
(tk−1:tk)

H )2|T , E)

≤ 1

b
E(F

(tk−1:tk)

2 |T , E)

≤ 1

b
2k(1 + 1/100).

Upon choosing b = O(1/ε2) sufficiently large, Markov’s In-
equality shows that the desired inequality holds with condi-
tional probability at least 3/4.

Proof Proof of Theorem 14. It is enough to show that
if H ∈ [n] has freqency fH ≥ ε

√
F2 then in each repeti-

tion r′ ≤ r the probability, conditionally given T , C, and
E := E1 ∩E2, that H is identified by some instance of HH1
and is not discarded thereafter is Ω(1). The reason that this
enough is that the r = Θ(log 1/δε) rows of the data struc-
ture are independent conditionally given T , C, and E, so a
Chernoff’s Bound guarantees that H is found with proba-
bility 1− δε2/3. Let A represent the event that all ε-heavy
hitters are returned. By a union bound, what we have is
Pr(A|T , C, E) ≥ 1 − δ/3. Thus, by Lemmas 15 and 16,
Pr(A) ≥ Pr(A|E)−Pr(Ē) ≥ E(Pr(A|T , C, E))−2δ/3 ≥ 1−δ.

It remains to prove that within a given bucket contain-
ing a heavy hitter H the probability that H is reported
from the bucket is Ω(1). Conditioning on C, as well, doesn’t
change Lemmas 17 and 18. Thus, the probability that an
index is good conditionally given T , C, and E is at least
1 − 2 · 1/4 = 1/2. If index k is good then fH ≥ σ =
ε
16

2k/2 ≥ K(F
(tk−1:tk)

2 (B))1/2. Therefore, the hypotheses
for Lemma 4 are met and H is returned by the modified
algorithm with (conditional) probability at least 2/3. Fur-
thermore, after H is identified it is never discarded because
the estimated frequencies from the auxiliary CountSketch

are guaranteed by (ii) and E to satisfy f̂
(tk′ )
H > f̂

(tk′ )
j , for

all j ∈ B and k′ ≥ k. The probability that H is identified,
conditionally given C, T , and E is at least 2/3− 1/2 = 1/6,
which completes the proof.
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