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Abstract

Technical advances in 3D metrology bring the increasing availability of imaging data, which are critical to quality inspection and process
improvement. Dealing with 3D imaging data has become a general problem facing both traditional and next-generation innovation practices in
biotechnology. Traditional methodologies in statistical quality control focus on key characteristics of the product, and are limited in the ability to
model spatiotemporal patterns in imaging streams. This paper presents a dynamic network methodology for monitoring and control of high-
dimensional imaging streams. The developed methodology is implemented and evaluated for process monitoring of living cells during the

synthesis of bio-products.
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1. Introduction

Advances in life science and engineering have spurred the
use of biological systems to create bio-products, such as
vaccines, biomaterials, and amino acids to add in medicine,
biology, and industrial applications. The past decade has
witnessed the booming of bio-tech industry and a fast growth
of its global market. For example, biopharmaceuticals, one of
the most important bio-products, not only replaces traditional
small-molecule drugs with new therapeutics but also provides
new types of treatment for previously untreatable diseases.
According to [1], the global market of biopharmaceuticals will
grow 12%, and it is estimated to reach $344 billion in 2018.
With the increasing understanding of complex biological
systems in genetic and cellular levels and the development of
single-use technology, biomanufacturing will become highly
scalable and flexible and produces bio-products with high
quality and controlled costs.

Biomanufacturing contains a broad range of areas. In
mechanical engineering, researchers mainly focus on bio-
mechatronics and bio-fabrication.  For bio-mechatronics,
machine-assisted systems, e.g., diagnostic equipment, robots,
and surgical devices are designed to enhance clinical
performance in medical interventions [2]. For example, Hansen
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Fig. 1. Biomanufacturing defined from two perspectives: 1) mechanical: bio-
mechatronics [1] and bio-fabrication [4-5]; 2) biomedical: gene and cell
therapies (image from Penn Medicine).

Biomedical
Gene therapies

Medical produced robotic catheters for cardiac arrhythmia
treatment [3]. Incorporated with 3D mapping system and
fluoroscopy, catheters are guided to the target region of the
heart to deliver medications. Also, Medtronic developed
surgical navigation systems to improve the precision of
procedures. Advanced imaging technology and visualization
solutions help surgeons to track surgical instruments during the
operation. For bio-fabrication, investigations are conducted to
produce natural (e.g., bones and tissues) and artificial (e.g.,
platinum group materials) biomaterials that can be used for
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arthroscopy, oncology, and dental treatment [2]. For example,
dental implants are forged with elevated temperatures [4].
Pressures are monitored to ensure the quality and reliability of
the produced implant. Also, scaffolds are fabricated for bone
tissue engineering. Superior permeability and high bio-
compatibility are required when selecting proper scaffold
materials (e.g., porous titania) [5].

Cellular biomanufacturing, on the other hand, has been
increasingly investigated in the biomedical community.
Cellular biomanufacturing administrates live cells or specific
types of DNA for eliciting therapeutic efficacies and produces
functional defined therapeutic cells, e.g., stem cells and T cells.
Cellular biomanufacturing has a complex workflow, which
involves cell isolation, activation, genetic modification,
expansion and many others. Gene therapies and cell therapies
produced from cellular biomanufacturing hold tremendous
promise in treating complex disorders, such as cancer,
cardiovascular diseases, and neurological diseases [6]. For
example, normal genes of clotting factors are introduced to the
liver of haemophilia patients to produce FVIII and FIX proteins
for the correction of bleeding problems. Such gene therapy
performs better than injected proteins that traditionally used to
treat haemophilia. Also, T cells, a type of immune cells
collected from the blood, are genetically engineered to produce
chimeric antigen receptors (CARs). CARs enable T cells to
recognize the antigen on tumors and further kill the cancer
cells. Cellular biomanufacturing has a strong potential to
revolutionize the healthcare industry in various contexts,
including regenerative medicine, cancer treatment, and
personalized medicine.

However, the inherent complexity of biological systems
poses a great challenge for biomanufacturing. For example in
bio-fabrication, the machining of a neural bone involves high-
precision cutting and requires a careful control of multiple
factors such as cut position, force, and heat generation [2]. Out
of controls will significantly influence the effectiveness of
treatment and even result in long-term problems. Also, cellular
manufacturing is aimed at producing reproducible drugs with
standardized characterization. Notably, large molecule drugs
are most often produced using live microbial cells in the bio-
reactor. Because cells are alive and the intrinsically
heterogeneous cell population, produced therapeutic cells have
a large variability even within a single batch. As such, cellular
biomanufacturing at large scale is expensive and unpredictable,
which hampers the broad translation of cell therapies into
clinical practice and results in the uncertainty in clinical trial
outcomes. Hence, process monitoring and quality control of
biomanufacturing are imperative to improve the productivity
and ensure the integrity and efficacy of bio-products.

Existing quality control approaches of biomanufacturing
rely on off-line, post-build inspection. Despite the long
inspection procedure, such inefficient approaches result in a
low yield and a high cost. In the past decade, advances in
metrology bring the increasing availability of imaging data in
biomanufacturing, which are critical to quality inspection and
process improvement. For example in bio-fabrication, 2-D and
3-D microscopic images are collected to assess the
microstructure of scaffolds [5]. Also, microscopic images were
used to monitor crack propagation and chip formation in the

bone machining [7]. In cellular manufacturing, high-resolution
video microscope is utilized for process monitoring and quality
control. Notably, images provide anatomical information at
subcellular level, which contributes to the understanding of
structural and physical properties of cell-based products [8].
Furthermore, details of cellular dynamics are captured by the
stream of dynamic images. This provides a great opportunity
for the characterization of time-varying activities in
biomanufacturing, such as the culture of cell lines and delivery
of transgenes. This, in turn, enhances the capability of multi-
stage and multi-scale process monitoring and quality control of
biomanufacturing [9].

In this study, we develop a dynamic network approach for
the image-guided monitoring and control of biomanufacturing
processes. Specifically, we represent images as networks in the
high-dimensional space and a graph-theoretic approach is
introduced to characterize network topological structures (i.e.,
network communities). Further, statistics are extracted from
network communities and a new control charting approach is
developed for anomaly detection. The developed methodology
is implemented and evaluated for process monitoring of living
cells during the synthesis of bio-products. The remainder of
this paper is organized as follows: Section II introduces the
background of statistical process control (SPC) methods and
control charts. Section III presents the developed methodology.
Case studies are demonstrated in Section IV. Section V
concludes and discusses this present investigation.

2. Research Background

Process control and quality improvement have been
increasingly investigated over the past century. Early SPC
methods primarily focused on key quality characteristics of
product. For example, the diameter of holes drill in a certain
metal clamp, the Rockwell hardness of the pin head, and the
tensile strength of a material. Control charts were developed to
evaluate the conformation to specifications by monitoring
discrete data points. For example, two types of Shewhart
charts, i.e., X-bar and R charts were widely used to monitor the
mean and variance of quality characteristics. However, both
charts used only the information in the most recently obtained
sample, which limited their responsiveness to small process
shifts. Thus, the cumulative sum (cusum) chart and
exponentially weighted moving average (EWMA) chart were
developed to address this challenge. The basic idea of cusum
and EWMA was to incorporate the information of past
observations. As such, the EWMA control chart was sensitive
to small shifts that traditional Shewhart charts fail to capture.

In the past decade, advances in sensing technology brought
the era of profile monitoring. Instead of discrete data points,
time-dependent functional data were obtained from online
sensing and monitoring systems. To address the data
complexity, multivariate control charts were more and more
used in the process control. The most widely used multivariate
chart was the Hotelling T? chart, which was an extension of
Shewhart chart for the monitoring of the mean vector of the
process. Also, |S| chart with sample generalized variance was
extended from the univariate s chart for variability monitoring
in multivariate processes. In addition, EWMA chart was also
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extended to multivariate quality control and multivariate
EWMA chart was developed to provide more sensitivity to
small shifts.

Besides the extension of univariate charts to multivariate
charts, researchers addressed the data complexity by
dimensional reduction algorithms. For example, Ding et al.
[10] investigated both principal component analysis (PCA) and
independent component analysis (ICA) for the Phase I
monitoring of nonlinear profiles. Cycle-based forging tonnage
signals were transformed into lower dimensional space by PCA
and ICA to reveal pertinent quality information. Zhou et al.
[11] decomposed cycle-based waveforms by Haar wavelet. The
location of process shift and its magnitude were then detected
by monitoring the wavelet coefficients.

It may be noted that most of above SPC methods and tools
focus on key product characteristics, 1-D linear and nonlinear
profiles. However, they are limited in their ability for the
image-based process monitoring and control. With the
increasing availability of images in biomanufacturing, there is
a need to develop new approaches to leverage high-
dimensional images for the quality control of bio-products.
Most existing image-based SPCs, nevertheless, are limited in
fault detection of snap-shot images. For example, Zhang et al.
selected a number of sampling points from the wafer image to
measure the variations of wafer thickness [12]. Wilcox et al.
analyzed a subset of spectral bands from hyperspectral images
for the monitoring of animal feed quality [13]. Thus, there is an
urgent need to develop new SPC approaches that extract useful
information from in-situ images in biomanufacturing and
exploit the acquired information for process monitoring and
control.

3. Research Methodology

In this study, a dynamic network scheme is developed to
model the sequence of high-dimensional microscopic images
collected in the biomanufacturing process. First, image profiles
are represented as a network. Then, a graph-theoretic approach
is introduced to detect community patterns in the network.
Finally, a control chart is constructed to characterize variations
in sub-graph structures, which, in turn, facilitates change-point
detection in the image stream.

3.1. Construction of Networks from Images

Image profiles can be represented as both unweighted and
weighted networks. For an unweighted network, a binary
variable, i.e., 0 or 1 is assigned between each pair of nodes to
characterize their connectivity. In contrast, a weighted network
also characterizes how close each pair of nodes are connected
by assigning a weight. In the literature, a weighted network is
usually represented by G = (V,E,W), where V, E, and W
denote the set of nodes, edges and weights, respectively. In this
study, we develop a regularized function to compute the weight
W, ; between node i and j as:
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where [ denotes the kernel bandwidth. It may be noted that the
weight is calculated based on both intensity differences
||xl- - x]-” and spatial distances ||si — sj” between node i and
Jj. The regularization parameter a € [0, 1] balances these two
terms. When « is larger, the network primarily focus on
intensity differences among pixels. When « is smaller, the
network focuses more on distances between spatial locations of
pixels. As such, a small weight will be assigned between nodes
i and j when their corresponding pixels have similar intensity
values or they are located closely. Notably, Eq. (1) can be used
to construct networks from not only gray-scale images, but also
RGB images. For gray-scale images, the intensity value x; is
denoted by a scalar within [0, 255]. For RGB images, the
intensity x; is represented by a vector with 3 elements of
primary colors, i.e., red, green and blue.

3.2. Characterization of Network Community Patterns

A network community is a cluster of tightly connected
network nodes. That is, nodes within a community have
stronger internal connectivity than their connectivity to the
remainder of the network. As network weights preserve the
relationship (e.g., intensity differences and spatial distances)
amongst image pixels, each community can be interpreted as a
specific pattern in the image. Characterization of network
communities provides a great opportunity to study patterns and
their interactions in the image.

In this study, an entropy rate clustering approach is
implemented to optimally partition the network to obtain
compact and homogeneous communities [14]. Assume @ € E
is a subset of edges selected from the full edge set E'. The
entropy rate of the random walk on the subset S is then:

I'(4)= _Z‘ ”i;pi/ (¢)10g(p,-j (¢)) %)

where p;;(@) = W,;;/%;W;; measures the transition
probability from node i and j if the edge e;; € @. Otherwise,
p;j(@) = 0. n; characterizes the stationary distribution of
transition probability, i.e., n; = W;/>; W;.

Notably, it is important to maintain similar size of detected
communities to facilitate the characterization of image patterns
in different scales. Thus, a balancing term is further introduced
to penalty the large difference in the size of communities.
Assume the edge set @ is partitioned into K communities, i.e.,
® = {®,, D,, ..., Dy} with ndenotes the number of nodes in
the k*"community. The distribution D, of cluster membership
in @ can be represented as:

P, (K)="¢ )

where N is the total number of nodes in the network (i.e., the
total number of pixels in the image). Hence, the balancing term
can be formulated as:
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B(¢)=-2py, (R)log(py,(0) -k
The first term, i.c., —X;pp, (k) log (pD¢(k)) computes the

entropy of the membership distribution Dg and it favors
communities with similar sizes.

Therefore, the objective function of the entropy rate
clustering approach can be obtained by combining Eq. (2) and
Eq. (4) as: E(@)=T(®)+LB(®) . Here, B is a
regularization parameter to give weights on the balancing term
B(®). By maximizing E(®), the random graph walk has a
large entropy rate and the cluster membership distribution has
a large entropy. As such, strongly connected nodes will be
assigned into the same community and the number of nodes in
each community will be balanced.

Maximizing the objective function E (@) involves a greedy
heuristic. Starting from @ = @, edges in E are sequentially
added into @. In other words, the algorithm selects one edge in
each step that best increases the value of objective function and
adds it to the set @. It iterates until the number of communities
K is reached. Notably, the algorithm needs to evaluate the gain
of objective function for every possible candidate in E at each
iteration. Thus, it will be time consuming when partitioning a
large network (i.e., the number of nodes N is large).

As both I'(@) and B(®) are proven to be monotonically
increasing submodular functions [14], a lazy greedy algorithm
can be used to improve the computational efficiency [15]. The
idea of lazy greedy algorithm is to exploit the submodularity
and employ the diminishing return property. For the
submodular function E, the diminish return property gives:

E(¢ufe})-E(9)
2 E(potene})-E(pule})

That is, the marginal gain obtained by adding the edge e to @
is smaller if it is added later. Thus, instead of updating the gains
for all remaining edges after picking one from E to @, only the
marginal gain of the edge that ranks on the top is updated. In
this way, the computational complexity can be significantly
reduced and it makes the algorithm well-suited for community
detection of large networks.

®)

3.3. Generalized Likelihood Ratio
Monitoring

Chart for Process

After community detection, homogeneous pixels in the
image are clustered into one community. As such, it is proper
to assume that pixel intensities within one community follow a
normal distribution with mean g, and variance a2. Thus, we

can represent the " image profile as: y® =
S () B () B ()] T () .
(=7, ... %, 81, .., sy ) where X, is the sample mean for

the kth community, sfci) is the sample standard distribution.
Further, a multivariate normal distribution is assumed for y®
as yO~MVN (u, Z). Here, g and X are in-control mean and

covariance matrix of feature vectors. If there is a process shift

at the T" image, po will be shifted to pu; and X is assumed as
unchanged.

In this study, a network generalized likelihood ratio (NGLR)
chart is used to monitor the change in y®. The NGLR chart
calculates the likelihood function of both in-control and out-of-
control distributions and computes the maximum likelihood
ratio statistic at the m” image:

m-—t -\ —
R - 7( B ) S71 ( B ) 6
m,y ()nélziﬁ 2 /'lm,r,y y /’lm,r,y y ( )
where i, -, = P m ., ¥y® is the estimation of shifted

process mean and y and S are sample mean and sample
covariance estimated from in-control data.

However, Eq. (6) involves the calculation of $71, i.e., the
inversion of sample covariance matrix. It may be noted that if
two communities share similar distribution, S can be singular,
which makes the computation of Eq. (6) impractical. As
discussed in our previous study [16], this challenge can be
addressed by transforming y®into the eigen space and using
uncorrelated principal components Z(i,:)T to compute
equivalent NGLR statistics Ry, z:

R, .= max %(ﬂz )T Sél(ﬂm,r.z) Q)

m—w<r<m

where ﬁm.r,z=m m o1 Z(i,:)T is the estimation of

shifted mean from the principal components. If we only keep
the first d principal components, the estimation of shifted mean
becomes:

1 & . T
> Z(i1:d)

T =+l

lum,r,Z = (8)

By replacing fip, 7z with fi,,, .7 in Eq. (7), we can have the
NGLR statistics in the reduced dimension.

4. Experiments and Results

In this study, we first evaluate the proposed community
detection algorithm on benchmark images. Then, we evaluate
and validate the proposed dynamic network scheme for the
monitoring of real-world biomanufacturing process. Our
experiments and results are detailed in the following sections.

(2) (b) ()

Fig. 2. Community detection using entropy rate clustering approach: (a)
original RGB images; (b) smaller number of communities; (c) larger number
of communities.
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4.1. Community Detection Results on Benchmark Images

We first evaluate the entropy rate clustering approach
introduced in Section 3.2 on benchmark images from the
Berkeley BSDS500 dataset [17]. It may be noted that a small
number of communities highlights the main object from the
background. For example, two communities separate the plane
from the sky (see the top figure in Fig. 2b). Four communities
depict the sky, island, water, and rock (see the bottom figure in
Fig. 2b). On the contrary, a larger number of communities
reveal detailed information from the image. For example,
twenty communities not only characterize detailed patterns on
the plane but also show the morphology of clouds (see the top
figure in Fig. 3c).

4.2. Process Monitoring of Biomanufacturing Process

Fig. 3. (a) Cellular image in the biomanufacturing process; (b) Out-of-control
image with a vesicle (intensity shift= 15 and size = 8); (¢) Out-of-control image
with a vesicle (intensity shift = 4 and size = 4).

Fig. 3a shows microscopic images of a living cell.
Cytoplasm is shown in red and yellow, and extracellular fluids
are in dark blue. It may be noted that the quality of
biomanufactured cells directly impacts the effectiveness of

gene and cell therapies. Thus, high-resolution video
microscope is commonly used to monitor the biomanufacturing
process for quality assurance in the cellular level. As opposed
to static images, video microscopy brings a stream of dynamic
images that describe time-varying activities of the living cells.

In biomanufacturing, a vesicle carrying transgenes is
inserted into the cell to manipulate the phenotype. As it
dissolves, the size and color of inserted vesicle vary with
respect to time (see Fig. 3b and 3c). The goal of this present
- study is to capture the dynamic
1 vesicle under different
12 scenarios. In our previous study,

a sequence of cellular images is
collected  from  in-control
processes  (without inserted
vesicles). Also, out-of-control
imaging profiles with inserted
vesicles were also collected.
These images are used as the
basis for computer experiments to evaluate and validate the
proposed methodology.

10

ANRROON® O

Fig. 4. Community detection result
of in-control cellular images.

The community detection result of in-control cellular
images is shown in Fig. 4. Here, parameters of the entropy rate
clustering algorithm are adjusted, and 15 communities are
detected inside of the cell to reveal detailed patterns. It may be
noted that when the inserted vesicle is significantly different
from the background (i.e., both size and intensity shift are
significant), it is likely to be isolated as a new community. As
such, the vesicle can be detected by monitoring the change in
the number of communities. However, more challenging
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scenarios occur when the inserted vesicle is close to the
background. As such, we need to extract community statistics
and use the developed network GLR chart for the detection of
inserted vesicles.

In this study, we implement the network GLR control chart
to detect the inserted vesicle under two different scenarios:
larger size and intensity shift (see Fig. 3b) and smaller size and
intensity shift (see Fig. 3c). Notably, in both scenarios the
vesicle is not significantly different from its background (i.e.,
the cell) to yield a new community.

1) Detection of vesicles with larger size and intensity shift

We first evaluate our proposed network monitoring scheme
under the scenario that inserted vesicles are with larger size and
intensity shift (e.g., intensity shift = 15 and size = 8, as shown
in Fig. 3b). In total, we have 70 in-control images and 30 out-

140 25
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>

N
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N
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0 20 40 60 80 100 0 20 40 60 80 100
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Fig. 5. NGLR chart for the detection of vesicles with intensity shift = 15 and
size = 8, (a) keep all principal components; (b) keep first 10 principal
components.

control ones. In other words, the change point 7 =71. As shown
in Fig. 5a, the NGLR statistic increases dramatically after the
70" image. That is, the control chart signals immediately when
the vesicle is inserted. Here, all principal components in Z are
kept for the calculation of NGLR statistic. If we only keep the
first 10 principal components (i.e., d =10 in Eq. (8)), the
NGLR chart is shown in Fig. 5b. It may be noted that the control
chart is still effective in the detection of inserted vesicles.

2)  Detection of vesicles with smaller size and intensity shift

Furthermore, we
conducted experiments to
investigate the
performance of proposed
NGLR under the scenario
that inserted vesicles are
with smaller size and
intensity  shift  (e.g.,
intensity shift = 4 and size
=4, as shown in Fig. 3c).
In this case, it becomes
difficult to distinguish the
vesicle from the
background by eyes. Fig. 6 shows the distribution of sample-
to-sample mean intensity of the community that contains the
inserted vesicle. The distribution of mean intensity for the first
70 in-control images (without vesicle) are shown in blue and
the distribution of mean intensity for the 30 out-of-control
images (with vesicle) are shown in orange. It may be noted that
the two distributions are overlapped and there is no distinct

[ Out-of-control

55 260 265 270 275 280 285
Mean Intensity

Fig. 6. Histogram of sample-to-sample
mean intensity of the community that
contains the inserted vesicle.
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difference. Thus, it is difficult to detect the inserted vesicle in
this case.

As shown in Fig. 7a, the developed NGLR chart still yields
a large jump at the change point 7 =71. This indicates that the
developed NGLR chart is effective for the detection of very
small changes in the biomanufacturing process. If we further
reduce the dimensionality and only keep the first 10 principal
components, the NGLR chart will encounter difficulty to detect
the out-of-controls.

80 12

(a) (b)

NGLR Statistics

w S (3] o ~
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=
o
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Fig. 7. NGLR chart for the detection of vesicles with intensity shift = 4 and size
=4, (a) keep all principal components; (b) keep first 10 principal components.

5. Discussion and Conclusions

The advancement of sensing technology brings the
increasing availability of imaging data, which are critical to
quality  inspection and process improvement  of
biomanufacturing. However, traditional SPC methodologies
focus on key characteristics of the product and are limited in
the ability to model spatiotemporal patterns in imaging streams.
Little work has been done to develop SPC methods for
monitoring high-dimensional dynamic imaging profiles.

In this study, we developed a dynamic network monitoring
scheme for the process control of biomanufacturing. First, each
image is optimally represented as a weighted network. Then,
an entropy rate clustering approach is implemented to
characterize community structures in the network. Statistics are
further extracted from detected communities to characterize
spatiotemporal patterns in the image. Finally, a network
generalized likelihood ratio chart is constructed for the change-
point detection of the biomanufacturing process. The
developed algorithm is implemented and validated in real-
world applications of biomanufacturing. Experimental results
have shown that the developed NGLR chart effectively
characterizes variations in the complex structure of high-
dimensional images and has high sensitivity for small process
shifts. The proposed image-guided methodology has strong
potential to be used for online monitoring of biomanufacturing
processes and can be extended to 3D, 4D and even higher
dimensional images.
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