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Abstract 

Technical advances in 3D metrology bring the increasing availability of imaging data, which are critical to quality inspection and process 

improvement.  Dealing with 3D imaging data has become a general problem facing both traditional and next-generation innovation practices in 

biotechnology. Traditional methodologies in statistical quality control focus on key characteristics of the product, and are limited in the ability to 

model spatiotemporal patterns in imaging streams.  This paper presents a dynamic network methodology for monitoring and control of high-

dimensional imaging streams.  The developed methodology is implemented and evaluated for process monitoring of living cells during the 

synthesis of bio-products.  
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1. Introduction 

Advances in life science and engineering have spurred the 

use of biological systems to create bio-products, such as 

vaccines, biomaterials, and amino acids to add in medicine, 

biology, and industrial applications. The past decade has 

witnessed the booming of bio-tech industry and a fast growth 

of its global market. For example, biopharmaceuticals, one of 

the most important bio-products, not only replaces traditional 

small-molecule drugs with new therapeutics but also provides 

new types of treatment for previously untreatable diseases. 

According to [1], the global market of biopharmaceuticals will 

grow 12%, and it is estimated to reach $344 billion in 2018. 

With the increasing understanding of complex biological 

systems in genetic and cellular levels and the development of 

single-use technology, biomanufacturing will become highly 

scalable and flexible and produces bio-products with high 

quality and controlled costs. 

Biomanufacturing contains a broad range of areas. In 

mechanical engineering, researchers mainly focus on bio-

mechatronics and bio-fabrication.  For bio-mechatronics, 

machine-assisted systems, e.g., diagnostic equipment, robots, 

and surgical devices are designed to enhance clinical 

performance in medical interventions [2]. For example, Hansen 

Medical produced robotic catheters for cardiac arrhythmia 

treatment [3]. Incorporated with 3D mapping system and 

fluoroscopy, catheters are guided to the target region of the 

heart to deliver medications. Also, Medtronic developed 

surgical navigation systems to improve the precision of 

procedures. Advanced imaging technology and visualization 

solutions help surgeons to track surgical instruments during the 

operation. For bio-fabrication, investigations are conducted to 

produce natural (e.g., bones and tissues) and artificial (e.g., 

platinum group materials) biomaterials that can be used for 

Fig. 1. Biomanufacturing defined from two perspectives: 1) mechanical: bio-

mechatronics [1] and bio-fabrication [4-5]; 2) biomedical: gene and cell 

therapies (image from Penn Medicine). 
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arthroscopy, oncology, and dental treatment [2]. For example, 

dental implants are forged with elevated temperatures [4]. 

Pressures are monitored to ensure the quality and reliability of 

the produced implant. Also, scaffolds are fabricated for bone 

tissue engineering. Superior permeability and high bio-

compatibility are required when selecting proper scaffold 

materials (e.g., porous titania) [5]. 

Cellular biomanufacturing, on the other hand, has been 

increasingly investigated in the biomedical community. 

Cellular biomanufacturing administrates live cells or specific 

types of DNA for eliciting therapeutic efficacies and produces 

functional defined therapeutic cells, e.g., stem cells and T cells. 

Cellular biomanufacturing has a complex workflow, which 

involves cell isolation, activation, genetic modification, 

expansion and many others. Gene therapies and cell therapies 

produced from cellular biomanufacturing hold tremendous 

promise in treating complex disorders, such as cancer, 

cardiovascular diseases, and neurological diseases [6]. For 

example, normal genes of clotting factors are introduced to the 

liver of haemophilia patients to produce FVIII and FIX proteins 

for the correction of bleeding problems. Such gene therapy 

performs better than injected proteins that traditionally used to 

treat haemophilia. Also, T cells, a type of immune cells 

collected from the blood, are genetically engineered to produce 

chimeric antigen receptors (CARs). CARs enable T cells to 

recognize the antigen on tumors and further kill the cancer 

cells. Cellular biomanufacturing has a strong potential to 

revolutionize the healthcare industry in various contexts, 

including regenerative medicine, cancer treatment, and 

personalized medicine.  

However, the inherent complexity of biological systems 

poses a great challenge for biomanufacturing. For example in 

bio-fabrication, the machining of a neural bone involves high-

precision cutting and requires a careful control of multiple 

factors such as cut position, force, and heat generation [2]. Out 

of controls will significantly influence the effectiveness of 

treatment and even result in long-term problems. Also, cellular 

manufacturing is aimed at producing reproducible drugs with 

standardized characterization. Notably, large molecule drugs 

are most often produced using live microbial cells in the bio-

reactor. Because cells are alive and the intrinsically 

heterogeneous cell population, produced therapeutic cells have 

a large variability even within a single batch. As such, cellular 

biomanufacturing at large scale is expensive and unpredictable, 

which hampers the broad translation of cell therapies into 

clinical practice and results in the uncertainty in clinical trial 

outcomes. Hence, process monitoring and quality control of 

biomanufacturing are imperative to improve the productivity 

and ensure the integrity and efficacy of bio-products. 

Existing quality control approaches of biomanufacturing 

rely on off-line, post-build inspection. Despite the long 

inspection procedure, such inefficient approaches result in a 

low yield and a high cost. In the past decade, advances in 

metrology bring the increasing availability of imaging data in 

biomanufacturing, which are critical to quality inspection and 

process improvement. For example in bio-fabrication, 2-D and 

3-D microscopic images are collected to assess the 

microstructure of scaffolds [5]. Also, microscopic images were 

used to monitor crack propagation and chip formation in the 

bone machining [7]. In cellular manufacturing, high-resolution 

video microscope is utilized for process monitoring and quality 

control. Notably, images provide anatomical information at 

subcellular level, which contributes to the understanding of 

structural and physical properties of cell-based products [8]. 

Furthermore, details of cellular dynamics are captured by the 

stream of dynamic images. This provides a great opportunity 

for the characterization of time-varying activities in 

biomanufacturing, such as the culture of cell lines and delivery 

of transgenes. This, in turn, enhances the capability of multi-

stage and multi-scale process monitoring and quality control of 

biomanufacturing [9].   

In this study, we develop a dynamic network approach for 

the image-guided monitoring and control of biomanufacturing 

processes. Specifically, we represent images as networks in the 

high-dimensional space and a graph-theoretic approach is 

introduced to characterize network topological structures (i.e., 

network communities). Further, statistics are extracted from 

network communities and a new control charting approach is 

developed for anomaly detection. The developed methodology 

is implemented and evaluated for process monitoring of living 

cells during the synthesis of bio-products. The remainder of 

this paper is organized as follows: Section II introduces the 

background of statistical process control (SPC) methods and 

control charts. Section III presents the developed methodology. 

Case studies are demonstrated in Section IV. Section V 

concludes and discusses this present investigation. 

2. Research Background 

Process control and quality improvement have been 

increasingly investigated over the past century. Early SPC 

methods primarily focused on key quality characteristics of 

product. For example, the diameter of holes drill in a certain 

metal clamp, the Rockwell hardness of the pin head, and the 

tensile strength of a material. Control charts were developed to 

evaluate the conformation to specifications by monitoring 

discrete data points. For example, two types of Shewhart 

charts, i.e., X-bar and R charts were widely used to monitor the 

mean and variance of quality characteristics. However, both 

charts used only the information in the most recently obtained 

sample, which limited their responsiveness to small process 

shifts. Thus, the cumulative sum (cusum) chart and 

exponentially weighted moving average (EWMA) chart were 

developed to address this challenge. The basic idea of cusum 

and EWMA was to incorporate the information of past 

observations. As such, the EWMA control chart was sensitive 

to small shifts that traditional Shewhart charts fail to capture.  

In the past decade, advances in sensing technology brought 

the era of profile monitoring. Instead of discrete data points, 

time-dependent functional data were obtained from online 

sensing and monitoring systems. To address the data 

complexity, multivariate control charts were more and more 

used in the process control. The most widely used multivariate 

chart was the Hotelling  chart, which was an extension of 

Shewhart chart for the monitoring of the mean vector of the 

process. Also, chart with sample generalized variance was 

extended from the univariate s chart for variability monitoring 

in multivariate processes. In addition, EWMA chart was also 
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extended to multivariate quality control and multivariate 

EWMA chart was developed to provide more sensitivity to 

small shifts.  

Besides the extension of univariate charts to multivariate 

charts, researchers addressed the data complexity by 

dimensional reduction algorithms. For example, Ding et al. 

[10] investigated both principal component analysis (PCA) and 

independent component analysis (ICA) for the Phase I 

monitoring of nonlinear profiles. Cycle-based forging tonnage 

signals were transformed into lower dimensional space by PCA 

and ICA to reveal pertinent quality information. Zhou et al. 

[11] decomposed cycle-based waveforms by Haar wavelet. The 

location of process shift and its magnitude were then detected 

by monitoring the wavelet coefficients. 

It may be noted that most of above SPC methods and tools 

focus on key product characteristics, 1-D linear and nonlinear 

profiles. However, they are limited in their ability for the 

image-based process monitoring and control. With the 

increasing availability of images in biomanufacturing, there is 

a need to develop new approaches to leverage high-

dimensional images for the quality control of bio-products. 

Most existing image-based SPCs, nevertheless, are limited in 

fault detection of snap-shot images. For example, Zhang et al. 

selected a number of sampling points from the wafer image to 

measure the variations of wafer thickness [12]. Wilcox et al. 

analyzed a subset of spectral bands from hyperspectral images 

for the monitoring of animal feed quality [13]. Thus, there is an 

urgent need to develop new SPC approaches that extract useful 

information from in-situ images in biomanufacturing and 

exploit the acquired information for process monitoring and 

control. 

3. Research Methodology 

In this study, a dynamic network scheme is developed to 

model the sequence of high-dimensional microscopic images 

collected in the biomanufacturing process. First, image profiles 

are represented as a network. Then, a graph-theoretic approach 

is introduced to detect community patterns in the network. 

Finally, a control chart is constructed to characterize variations 

in sub-graph structures, which, in turn, facilitates change-point 

detection in the image stream. 

3.1. Construction of Networks from Images 

Image profiles can be represented as both unweighted and 

weighted networks. For an unweighted network, a binary 

variable, i.e., 0 or 1 is assigned between each pair of nodes to 

characterize their connectivity. In contrast, a weighted network 

also characterizes how close each pair of nodes are connected 

by assigning a weight. In the literature, a weighted network is 

usually represented by , where , , and  

denote the set of nodes, edges and weights, respectively. In this 

study, we develop a regularized function to compute the weight 

 between node i and j as: 
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where  denotes the kernel bandwidth. It may be noted that the 
weight is calculated based on both intensity differences 

 and spatial distances  between node i and 

j. The regularization parameter  balances these two 

terms. When  is larger, the network primarily focus on 

intensity differences among pixels. When  is smaller, the 
network focuses more on distances between spatial locations of 
pixels. As such, a small weight will be assigned between nodes 
i and j when their corresponding pixels have similar intensity 
values or they are located closely. Notably, Eq. (1) can be used 
to construct networks from not only gray-scale images, but also 

RGB images. For gray-scale images, the intensity value  is 
denoted by a scalar within [0, 255]. For RGB images, the 

intensity  is represented by a vector with 3 elements of 
primary colors, i.e., red, green and blue. 

3.2. Characterization of Network Community Patterns 

A network community is a cluster of tightly connected 

network nodes. That is, nodes within a community have 

stronger internal connectivity than their connectivity to the 

remainder of the network. As network weights preserve the 

relationship (e.g., intensity differences and spatial distances) 

amongst image pixels, each community can be interpreted as a 

specific pattern in the image. Characterization of network 

communities provides a great opportunity to study patterns and 

their interactions in the image.  

In this study, an entropy rate clustering approach is 

implemented to optimally partition the network to obtain 

compact and homogeneous communities [14]. Assume  

is a subset of edges selected from the full edge set . The 

entropy rate of the random walk on the subset  is then: 

logi ij ij

i j

p p   (2) 

where  measures the transition 

probability from node i and j if the edge . Otherwise, 

  characterizes the stationary distribution of 

transition probability, i.e., .  

Notably, it is important to maintain similar size of detected 

communities to facilitate the characterization of image patterns 

in different scales. Thus, a balancing term is further introduced 

to penalty the large difference in the size of communities. 

Assume the edge set  is partitioned into  communities, i.e., 

 with denotes the number of nodes in 

the community. The distribution  of cluster membership 

in  can be represented as: 

k
D

n
p k

N
  (3) 

where  is the total number of nodes in the network (i.e., the 

total number of pixels in the image). Hence, the balancing term 

can be formulated as: 
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The first term, i.e., computes the 

entropy of the membership distribution  and it favors 
communities with similar sizes.  

Therefore, the objective function of the entropy rate 

clustering approach can be obtained by combining Eq. (2) and 

Eq. (4) as: . Here,  is a 

regularization parameter to give weights on the balancing term 

. By maximizing , the random graph walk has a 

large entropy rate and the cluster membership distribution has 

a large entropy. As such, strongly connected nodes will be 

assigned into the same community and the number of nodes in 

each community will be balanced.  

Maximizing the objective function  involves a greedy 

heuristic. Starting from , edges in  are sequentially 

added into . In other words, the algorithm selects one edge in 

each step that best increases the value of objective function and 

adds it to the set . It iterates until the number of communities 

 is reached. Notably, the algorithm needs to evaluate the gain 

of objective function for every possible candidate in  at each 

iteration. Thus, it will be time consuming when partitioning a 

large network (i.e., the number of nodes  is large).  

As both  and  are proven to be monotonically 

increasing submodular functions [14], a lazy greedy algorithm 

can be used to improve the computational efficiency [15]. The 

idea of lazy greedy algorithm is to exploit the submodularity 

and employ the diminishing return property. For the 

submodular function , the diminish return property gives: 

1

1 2 2,

E e E

E e e E e
 (5) 

That is, the marginal gain obtained by adding the edge to  

is smaller if it is added later. Thus, instead of updating the gains 

for all remaining edges after picking one from  to , only the 

marginal gain of the edge that ranks on the top is updated. In 

this way, the computational complexity can be significantly 

reduced and it makes the algorithm well-suited for community 

detection of large networks.  

3.3. Generalized Likelihood Ratio Chart for Process 

Monitoring 

After community detection, homogeneous pixels in the 
image are clustered into one community. As such, it is proper 
to assume that pixel intensities within one community follow a 

normal distribution with mean  and variance . Thus, we 

can represent the image profile as:

where  is the sample mean for 

the kth community,  is the sample standard distribution. 

Further, a multivariate normal distribution is assumed for   

as  Here,  and  are in-control mean and 
covariance matrix of feature vectors. If there is a process shift 

at the  image,  will be shifted to  and  is assumed as 
unchanged.  

In this study, a network generalized likelihood ratio (NGLR) 

chart is used to monitor the change in  . The NGLR chart 

calculates the likelihood function of both in-control and out-of-

control distributions and computes the maximum likelihood 

ratio statistic at the mth image: 
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where  is the estimation of shifted 

process mean and  and  are sample mean and sample 
covariance estimated from in-control data. 

However, Eq. (6) involves the calculation of , i.e., the 
inversion of sample covariance matrix. It may be noted that if 

two communities share similar distribution,  can be singular, 
which makes the computation of Eq. (6) impractical. As 
discussed in our previous study [16], this challenge can be 

addressed by transforming into the eigen space and using 

uncorrelated principal components  to compute 

equivalent NGLR statistics : 
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where  is the estimation of 

shifted mean from the principal components. If we only keep 

the first  principal components, the estimation of shifted mean 
becomes: 
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By replacing with   in Eq. (7), we can have the 

NGLR statistics in the reduced dimension.  

4. Experiments and Results 

In this study, we first evaluate the proposed community 
detection algorithm on benchmark images. Then, we evaluate 
and validate the proposed dynamic network scheme for the 
monitoring of real-world biomanufacturing process. Our 
experiments and results are detailed in the following sections. 

Fig. 2. Community detection using entropy rate clustering approach: (a) 

original RGB images; (b) smaller number of communities; (c) larger number 

of communities.  

(a) (b) (c) 
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4.1. Community Detection Results on Benchmark Images 

We first evaluate the entropy rate clustering approach 

introduced in Section 3.2 on benchmark images from the 

Berkeley BSDS500 dataset [17]. It may be noted that a small 

number of communities highlights the main object from the 

background. For example, two communities separate the plane 

from the sky (see the top figure in Fig. 2b). Four communities 

depict the sky, island, water, and rock (see the bottom figure in 

Fig. 2b). On the contrary, a larger number of communities 

reveal detailed information from the image. For example, 

twenty communities not only characterize detailed patterns on 

the plane but also show the morphology of clouds (see the top 

figure in Fig. 3c). 

4.2. Process Monitoring of Biomanufacturing Process 

Fig. 3a shows microscopic images of a living cell. 

Cytoplasm is shown in red and yellow, and extracellular fluids 

are in dark blue. It may be noted that the quality of 

biomanufactured cells directly impacts the effectiveness of 

gene and cell therapies. Thus, high-resolution video 

microscope is commonly used to monitor the biomanufacturing 

process for quality assurance in the cellular level. As opposed 

to static images, video microscopy brings a stream of dynamic 

images that describe time-varying activities of the living cells.  

In biomanufacturing, a vesicle carrying transgenes is 

inserted into the cell to manipulate the phenotype. As it 

dissolves, the size and color of inserted vesicle vary with 

respect to time (see Fig. 3b and 3c). The goal of this present 

study is to capture the dynamic 

vesicle under different 

scenarios. In our previous study, 

a sequence of cellular images is 

collected from in-control 

processes (without inserted 

vesicles). Also, out-of-control 

imaging profiles with inserted 

vesicles were also collected. 

These images are used as the 

basis for computer experiments to evaluate and validate the 

proposed methodology. 

The community detection result of in-control cellular 

images is shown in Fig. 4. Here, parameters of the entropy rate 

clustering algorithm are adjusted, and 15 communities are 

detected inside of the cell to reveal detailed patterns. It may be 

noted that when the inserted vesicle is significantly different 

from the background (i.e., both size and intensity shift are 

significant), it is likely to be isolated as a new community. As 

such, the vesicle can be detected by monitoring the change in 

the number of communities. However, more challenging 

scenarios occur when the inserted vesicle is close to the 

background. As such, we need to extract community statistics 

and use the developed network GLR chart for the detection of 

inserted vesicles.  

In this study, we implement the network GLR control chart 

to detect the inserted vesicle under two different scenarios: 

larger size and intensity shift (see Fig. 3b) and smaller size and 

intensity shift (see Fig. 3c). Notably, in both scenarios the 

vesicle is not significantly different from its background (i.e., 

the cell) to yield a new community.  

1) Detection of vesicles with larger size and intensity shift 

We first evaluate our proposed network monitoring scheme 
under the scenario that inserted vesicles are with larger size and 
intensity shift (e.g., intensity shift = 15 and size = 8, as shown 
in Fig. 3b). In total, we have 70 in-control images and 30 out-

control ones. In other words, the change point 71. As shown 
in Fig. 5a, the NGLR statistic increases dramatically after the 
70th image. That is, the control chart signals immediately when 

the vesicle is inserted. Here, all principal components in  are 
kept for the calculation of NGLR statistic. If we only keep the 

first 10 principal components (i.e.,  10 in Eq. (8)), the 
NGLR chart is shown in Fig. 5b. It may be noted that the control 
chart is still effective in the detection of inserted vesicles.  

2) Detection of vesicles with smaller size and intensity shift   

Furthermore, we 

conducted experiments to 

investigate the 

performance of proposed 

NGLR under the scenario 

that inserted vesicles are 

with smaller size and 

intensity shift (e.g., 

intensity shift = 4 and size 

= 4, as shown in Fig. 3c). 

In this case, it becomes 

difficult to distinguish the 

vesicle from the 

background by eyes. Fig. 6 shows the distribution of sample-

to-sample mean intensity of the community that contains the 

inserted vesicle. The distribution of mean intensity for the first 

70 in-control images (without vesicle) are shown in blue and 

the distribution of mean intensity for the 30 out-of-control 

images (with vesicle) are shown in orange. It may be noted that 

the two distributions are overlapped and there is no distinct 

Fig. 3. (a) Cellular image in the biomanufacturing process; (b) Out-of-control 

image with a vesicle (intensity shift = 15 and size = 8); (c) Out-of-control image 

with a vesicle (intensity shift = 4 and size = 4). 

(a) (b) (c) 
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Fig. 4. Community detection result 

of in-control cellular images.  

Fig. 5. NGLR chart for the detection of vesicles with intensity shift = 15 and 

size = 8, (a) keep all principal components; (b) keep first 10 principal 

components. 

(a) (b) 

Fig. 6. Histogram of sample-to-sample 

mean intensity of the community that 

contains the inserted vesicle. 
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difference. Thus, it is difficult to detect the inserted vesicle in 

this case.  

As shown in Fig. 7a, the developed NGLR chart still yields 

a large jump at the change point 71. This indicates that the 

developed NGLR chart is effective for the detection of very 

small changes in the biomanufacturing process. If we further 

reduce the dimensionality and only keep the first 10 principal 

components, the NGLR chart will encounter difficulty to detect 

the out-of-controls.   

5. Discussion and Conclusions  

The advancement of sensing technology brings the 

increasing availability of imaging data, which are critical to 

quality inspection and process improvement of 

biomanufacturing. However, traditional SPC methodologies 

focus on key characteristics of the product and are limited in 

the ability to model spatiotemporal patterns in imaging streams. 

Little work has been done to develop SPC methods for 

monitoring high-dimensional dynamic imaging profiles. 

In this study, we developed a dynamic network monitoring 

scheme for the process control of biomanufacturing. First, each 

image is optimally represented as a weighted network. Then, 

an entropy rate clustering approach is implemented to 

characterize community structures in the network. Statistics are 

further extracted from detected communities to characterize 

spatiotemporal patterns in the image. Finally, a network 

generalized likelihood ratio chart is constructed for the change-

point detection of the biomanufacturing process. The 

developed algorithm is implemented and validated in real-

world applications of biomanufacturing. Experimental results 

have shown that the developed NGLR chart effectively 

characterizes variations in the complex structure of high-

dimensional images and has high sensitivity for small process 

shifts. The proposed image-guided methodology has strong 

potential to be used for online monitoring of biomanufacturing 

processes and can be extended to 3D, 4D and even higher 

dimensional images.  
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