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Abstract Advanced sensing and internet of things bring the big data, which provides an
unprecedented opportunity for data-driven knowledge discovery. However, it is common
that a large number of variables (or predictors, features) are involved in the big data. Com-
plex interdependence structures among variables pose significant challenges on the traditional
framework of predictive modeling. This paper presents a new methodology of self-organizing
network to characterize the interrelationships among variables and cluster them into homoge-
neous subgroups for predictive modeling. Specifically, we develop a new approach, namely
nonlinear coupling analysis to measure variable-to-variable interdependence structures. Fur-
ther, each variable is represented as a node in the complex network. Nonlinear-coupling forces
move these nodes to derive a self-organizing topology of the network. As such, variables are
clustered into sub-network communities. Results of simulation experiments demonstrate that
the proposed method not only outperforms traditional variable clustering algorithms such as
hierarchical clustering and oblique principal component analysis, but also effectively iden-
tifies interdependent structures among variables and further improves the performance of
predictive modeling. Additionally, real-world case study shows that the proposed method
yields an average sensitivity of 96.80% and an average specificity of 92.62% in the identifi-
cation of myocardial infarctions using sparse parameters of vectorcardiogram representation
models. The proposed new idea of self-organizing network is generally applicable for predic-
tive modeling in many disciplines that involve a large number of highly-redundant variables.
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1 Introduction

Predictive analytics leverages information and patterns extracted from large amounts of data
to predict outcomes and drive decisions. It is widely used in a variety of disciplines, e.g.,
business, healthcare, and manufacturing. In business, online retailers use predictive analytics
to stratify customers and then recommend potential products to them (Neslin et al. 2006).
In healthcare, professionals use predictive analytics to extract information from clinical data
and exploit data-driven patterns for better medical decision making (Chen and Yang 2014;
Yang and Kundakcioglu 2014). In manufacturing, predictive analytics helps estimate the
degradation trajectory so as to prevent potential failures of manufacturing equipment and
defective products (Ding et al. 2006). Indeed, predictive analytics is critical to increasing the
profits of a company, improving the health of our society, and enhancing the performance of
manufacturing systems.

More specifically, advanced biosensing and health information technology bring big data
in biomedical science and health care, which presents a gold mine in the 21st century to
advance data-driven personalized medicine and medical decision making. For example,
electrocardiogram (ECG) is noninvasive and always obtainable with extremely portable
equipment. As a result, real-time ECG monitoring in days, months and even years generates
large amounts of data. This provides an unprecedented opportunity for the early prediction of
cardiac disorders. Nonetheless, big data also poses significant challenges for human experts
to inspect ECG signals visually. New analytical methods and tools are urgently needed to
realize the full potential of big data for predicting cardiac risks and improving healthcare
outcomes.

However, it is common that big data often involve a large number of variables (or pre-
dictors, features). High dimensionality and complex structures among variables also pose
significant challenges on traditional methodologies in predictive analytics. Realizing the full
potentials of big data for predictive analytics hinges upon the development of new method-
ologies that effectively handle the high dimensionality and complex variable-to-variable
interrelationships. A large number of variables brings the issue of “curse of dimensionality”
in predictive analytics. When the dimensionality increases, large amounts of training data are
required to learn within predictive models. It may be noted that “curse of dimensionality”
increases mean squared errors and the bias of predicted responses (Friedman 1997). On the
other hand, complex interdependence structures among variables (e.g., collinearity—a higher
correlation >0.90) will lead to more sensitive estimations of parameters in predictive mod-
els (i.e., increased variances of estimation) (Nas and Mevik 2001). Also, complex systems
often exhibit nonlinear coupling and synchronization behaviors (Wang et al. 2009). As such,
there are nonlinear interdependence structures among process variables of complex systems.
Linear and nonlinear redundancies among variables impact the performance of predictive
analytics.

In the literature, variable selection and variable clustering are widely used to address
these challenges. For example, generalized linear models are often integrated with shrink-
age methods to optimize model sparsity and improve the prediction accuracy. Examples
of shrinkage and selection methods include best-subset selection (Narendra and Fukunaga
1977), ridge regression (Hoerl and Kennard 1970), LASSO (Tibshirani 1996), least angle
regression (Efron et al. 2004) and elastic net (Zou and Hastie 2005). However, most of
existing methods focus on the relevancy between predictors and response variables. Interde-
pendent structures among predictors are often overlooked, or not explicitly investigated. On
the other hand, variable clustering depends on similarity measurements between variables
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such as linear correlation or mutual information. Note that linear correlation cannot capture
nonlinear interdependences among variables. Mutual information characterizes linear and
nonlinear correlation, but requires the stationarity assumption (Fraser and Swinney 1986).
Latent-variable methods are also proposed for variable clustering, e.g., oblique principal
component clustering (OPCC) (Lee et al. 2008). However, oblique rotation and principal
component analysis are based on linear projections of variables. Nonlinear interdependences
among variables are not explicitly considered. It should be noted that variable clustering
mainly focuses on the redundancy among variables but neglects the relevancy between pre-
dictors and response variables. New methodologies that integrate variable clustering with
variable selection to improve effectiveness and efficiency of predictive analytics are urgently
needed.

In this paper, we develop a new methodology of self-organizing network to investigate
both redundancy and relevancy among variables for improving the performance of predictive
modeling. Specifically, we propose to characterize and model nonlinear interdependence
structures among variables. Further, these variables are embedded as nodes in a complex
network. Nonlinear-coupling forces move these nodes to derive a self-organizing topology
of the network. As such, variables are grouped into sub-network communities in the space.
Experimental results in both simulation studies and real-world case studies demonstrate that
the proposed methodology not only outperforms traditional variable clustering algorithms
such as hierarchal clustering and oblique principal component analysis, but also effectively
identifies interdependent structures among variables and further improves the performance
of predictive modeling.

The remainder of this paper is organized as follows: Sect. 2 reviews the research back-
ground; Sect. 3 presents the methodology; Sect. 4 contains experimental design and results
of simulation study; Sect. 5 shows the results of a real-world case study that extracts model
parameters from vectorcardiogram (VCG) signals for the identification of myocardial infarc-
tions; and Sect. 6 includes the conclusions arising out of this investigation.

2 Research background
2.1 Variable clustering versus data clustering

Table 1 shows the data structure in the traditional table form, where samples are in rows and
variables are in columns. In the literature, “clustering” is often referred to be “data cluster-
ing.” Data clustering focuses on the samples in rows (i.e., 1, §2, ..., Sy ) that share similar
properties or patterns, where N is the number of samples. In other words, data clustering
groups data samples into homogeneous subsets, in which data samples are closer to each

Table 1 The data structure with

. . X Samples Variables (features, factors)
samples in rows and variables in
columns X X2 S xp
51 X11 X12 T X1P
51 x21 x22 e xop
SN AN1 XN2 e XNP
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Fig. 1 a Data clustering with each point representing a data sample and b variable clustering with each point
representing a variable

other in the same cluster than other clusters. However, variable clustering is more concerned
about the variables in the columns (i.e., x|, X2, ..., xp), where P is the number of variables.
Big data often brings a large number of variables that may be bigger than the number of
samples, i.e., P > N. Complex interdependence structures among variables call upon the
development of variable clustering to detect subsets of homogeneous variables and then clus-
ter them into the same group, in which variables have stronger interrelations to each other
than to those in other groups.

As shown in Fig. la, data clustering separates samples into clusters, where each point
represents a data sample, X-axis is the dimension of variable 1, and Y-axis is the dimension
of variable 2. Here, each data point has two coordinates, e.g., (1.26, —3.36) that represent a
data sample in the 2-dimensional space. Data samples are clustered based on the similarity
measure, e.g., Euclidean distance. Data clustering is an unsupervised method to group data
samples into homogeneous clusters based on similarity measures. However, Fig. 1b illustrates
the clustering results of 21 variables, each of which has 1000 data samples. For example, the
variable X g represents a series of 1000 samples. Notably, each point in Fig. 1b is a variable
instead of a data sample. Variable clustering considers the interdependence structure among
variables, e.g., correlation or mutual information.

2.2 Hierarchical clustering

In the literature, both Pearson’s correlation and mutual information were integrated with
hierarchical clustering (HC) (Ward 1963) for variable clustering. The Pearson’s correla-
tion py; x; Mmeasures the relationship of linear interdependence between x; and x,. Mutual
information M1, x, characterizes and quantifies linear and nonlinear correlations between
variables (Fraser and Swinney 1986), i.e.,

~ Pr(x1, x2)
My =) ) Prx.xlog (m) v

X2 X

The HC procedure is either done in an agglomerative way or in a divisive way. For example,
each variable is a singleton cluster in the first step of agglomerative HC. Then, two closest
clusters are merged into one cluster. The recursive merging continues to move up along the
hierarchy until the stopping criterion is satisfied, e.g., the maximum number of clusters or
the maximum group-average (GA) dissimilarity. The criterion of group average measures
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the intergroup dissimilarity as the average dissimilarity D a (C,-, C_/) between two clusters,

ie.,
1
DGa (Ci,Cj)=——— > Y Dy 2

" N¢,Nc;
Ci Cj xiEC,'XjECj

where N¢,; and ch are the number of variables in the cluster C; and C;, Dy, : is the
dissimilarity between variables x; and x;, which is usually calculated as 1 — py;, x; or 1-—
Ml ;.

It should be noted that linear correlation cannot adequately capture nonlinear interdepen-
dence among variables. Most importantly, both linear correlation and mutual information
measure symmetric interdependence between variables. In other words, two variables x|
and x, can be placed interchangeably without impacting the correlation measures. In fact,
HC is only applicable when dissimilarity measures are symmetric. However, it is not
uncommon that the interdependence structure between two variables are asymmetric, e.g.,
Pr(xi|x2) # Pr(x2]x1). In other words, information transfer between x1 and x> is not nec-
essarily symmetric. The presence of nonlinear and asymmetric interdependence structures
poses a significant challenge for variable clustering. Further, HC is not a dynamic approach.
In other words, we cannot relocate the variables once the merge is done for two closest clus-
ters. If two variables are ‘incorrectly’ clustered at the early stage, there is no adaptive step in
the later stage to make corrections. An effective algorithm should allow the re-examination
of clustering results in every step of the hierarchy.

2.3 Oblique principal component clustering

Also, latent-variable methods such as OPCC (Lee et al. 2008) are widely used for variable
clustering. Suppose Xpuxp = [x1,X2,...x,],X%; = [xi1, Xj2, ... Xin]" is the data matrix of
n rows representing n samples and p columns representing p variables. Without the loss
of generality, we standardize the variables in data matrix X to have zero mean and unit
standard deviation. Principal component analysis (PCA) transforms the data matrix into the
orthogonal space, where a sparse set of ¢ (¢ < p) principal components (PCs) preserve most
of information in original data (Yang and Chen 2014). These PCs are latent variables which

are linear projections of original variables. The k-th (k =1, 2, ..., g) PC is calculated as
p
Xzp = 20X1 + 2%y + -+ UpXp = Y ki 3
i=1
where z; = [Zkla Tk« s zkp]T is the k-th eigenvector with a unity norm. The eigenvector

Zk 1s derived by maximizing the variance of the k-th PC (i.e., Xzx), while meeting with the
constraints: (1) eigenvectors are orthogonal to each other; (2) PCs are ordered according to
the magnitude of variances. The PCs can be derived by

p
argmax var (Z zkix,-) = argmax z,{ DX 4%
Z,

k i=1 k
st Zaw =0z, {ze=1(K =1,....k—1) 4
where ¥ = X7 X is the covariance matrix of X.
Although PCA orthogonalizes the variables and tackles the multicollinearity issue, it

is limited in the capability to interpret data matrix in the original input space. Such an
interpretation is critical to cluster variables in the input space. Therefore, the OPCC method
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was further developed to enhance the interpretability of principal components and identify the
cluster structure of variables. The OPCC method rotates the eigenvector matrix Z to obtain
a new one B = Z that has a simpler structure. In other words, oblique rotation is aimed
at obtaining a sparse matrix B in which most of the elements are close to 0. The Varimax
criterion is to find the oblique rotation matrix €2 that maximizes the function:

2

p | a q
max Z Z b?j — Z bizj ©)
j=1

i=1| j=I

where b;; is the element in the i-th row and j-th column of new loading matrix B. See details
of oblique rotation, for example, in Kaiser (1958). After the oblique rotation, the simple
structure of B facilitates the identification of cluster structures of variables. The steps for
OPCC are as follows:

(1) Perform principal component analysis of all variables and find the first two PCs.
(ii) Oblique rotation of eigenvectors, Z, to obtain the B.

(iii) Calculate the linear correlation between all variables and the rotated components, and
then assign each variable to one of the two clusters based on the higher squared corre-
lation.

(iv) Repeat the binary split for each cluster.

(v) Stop the recursive split when the second eigenvalue is less than 1.

2.4 Simulation study

Both OPCC and HC methods are based on linear transformation and are limited in their
capability to handle nonlinear interdependences among variables. Here, we show a motivating
example to evaluate the performance of HC and OPCC for variable clustering. Four clusters
of variables are generated as follows:

Cluster 1: {x1,x2 = |x1], x3 =x%,x4 =x?,x5 =x‘1‘};

Cluster 2: {x¢, X7 = |x6|, X3 = x%,xg =xg,x10 = xg};

Cluster 3: {x11, X12 = x11 (¢t +3), x13 = x11(+5), x14 = xn@+7), x15 =
xn(t+9k

Cluster 4: {x16, X17 = x16( + 10), x13 = x16(t +20), x19 = x16(t +30), x20 =
X16 (t +40)}.

where x| and x¢ are independent standard normal variables, x1; is a nonlinear variable sam-
pled from logistic map x11 (n + 1) = 3.8x11 (n) (1 — x11 (n)), x16 is a second-order autore-
gressive variable that is nonlinearly coupled with x74renz, X16 (1) = 1.095x16 (n — 1) —
0.4x16(n —2)+0.7¢, + O.3x%wenz, where ¢,is Gaussian noise, Xz,oren; s the x-component
of a Lorenz system: x’ = 10(y —x),y = 28 —2) — y, 7 = xy — %z with time step 0.01.
The sample size of each variable is 1000.

Figure 2a shows the dendrogram of hierarchical clustering for the motivating example.
Figure 2b shows the clustering results of OPCC. It may be noted that both HC and OPCC
cannot identify the cluster structure of variables. This is mainly due to the fact that nonlinear
and asymmetric interdependence structures among variables are not considered. Very little
work has been done to cluster a large number of variables with complex structures of nonlinear
and asymmetric interdependences. In order to tackle these issues and fill the gap, we propose
a new strategy that integrates nonlinear coupling analysis with self-organizing networks for
variable clustering and predictive modeling.
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Fig. 2 Clustering of simulated variables using a HC and b OPCC

3 Research methodology

In this section, we will first introduce nonlinear coupling analysis to characterize and measure
nonlinear interdependence structures among variables. Second, we develop a self-organizing
network algorithm to cluster variables that involve nonlinear and asymmetric interdepen-
dences. Finally, we orthogonalize variables in each of self-organized clusters and then
integrate them with group elastic-net model to improve the performance of predictive model-
ing. We will illustrate the proposed methodology using both simulation and real-world case
studies in Sects. 4 and 5.

3.1 Nonlinear coupling analysis

In this investigation, we propose to characterize and quantify nonlinear interrelationships
among variables. Traditionally, such interrelationships are estimated with methods such as
correlation and mutual information. As aforementioned, correlation is a second-order quantity
evaluating merely linear dependency among data. Mutual information quantifies both linear
and nonlinear dependency between variables but requires stationarity in the computation.
Both of them are limited in the ability to handle nonlinear and asymmetric interdependence
structures.

Therefore, we performed nonlinear coupling analysis by exploiting cross recurrences
between two variables in the feature space (Kantz and Schreiber 2003; Arnhold et al. 1999).
The nonlinear measure is commonly used in neuroscience to study the interrelationship
between neurons. Very little has been done to extend nonlinear coupling for variable cluster-
ing. Let x1 () and x, (m) be the m-th observation of variables x; and x;. Denote T (x| (m))
as the recurrence neighborhood of xj () containing the k closest neighbors of x| (m).
Here, T (x1 (m)) is the recurrence set {x; (i)},i € {ny,...,ng}. If there are some rela-
tions between two variables x| and x;, then the recurrence of x; will also imply a recurrence
of x;, at least with a greater than zero probability. In other words, x; (i) with the same
indices i € {ny, ..., nt} should also be closer to x, (m) than the average of randomly chosen
observations. Therefore, the quantity of nonlinear interdependence is defined as:

fope, = <rm (x2) — dp (x2 |x1)> ©)

Im (X2) — diy (x2)
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Variable Index

10
Variable Index Variable Index

Fig. 3 Matrices of a linear correlations and b nonlinear interdependences

where (-),, is the ergodic average over the range of variable x5, and r, (x») is the average dis-
tance from x, (m) to k randomly chosen x3 (i)'s, i.€., 1y (x2) = % ZLI (x2 (m) — x2 (i)
Here, d,, (x2|x1) is the average conditional distance from x; (m) to k samples of x, whose

indices i € {ny, ..., ny} are from the recurrence set 7 (x| (m)) of the variable x:
1
dn(2e) =2 ) (2 m) —x2 (D) @)
ie{ny,...,n;}

In addition, d,, (x3) is the average distance from x; (m) to k closest neighbors of x; (m):

1
dy (x2) = = ,-ev%(m» (x2 (m) — x2 (i))? (8)

where V (x2 (m)) is the true neighborhood of x, (m). If Iy, , is small (close to zero), then
there is no evident interdependence between x; and x;, because true neighbors of x; (m) are
much closer to x (m) than those neighbors based on the recurrences in the x| process. When
I, x, is close to unity, there is a strong interdependence between x| and x». Figure 3 shows the
matrices of both linear correlations and nonlinear interdependences among variables that are
computed from the motivating example. The red (grey color along the diagonal in black and
white print) color represents a high interdependence, while the blue (black color off diagonal
in black and with print) color indicates no interrelationships. Note that nonlinear interde-
pendence in Fig. 3b is significantly different from linear correlation in Fig. 3a. Nonlinear
coupling analysis provides a better characterization of complex interdependence structures
(i.e., nonlinear and asymmetric) among variables than linear correlations.

3.2 Self-organizing network for variable clustering

Figure 3b shows that nonlinear interdependence is not symmetric. Traditional similarity-
based clustering algorithms are not applicable. Latent-variable methods using oblique PCA
or factor analysis do not fully consider nonlinear interdependences among variables. To
tackle these challenges, we develop a self-organizing network algorithm to cluster variables
that involve nonlinear and asymmetric interrelationships. Notably, this present investigation
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extends our previous work from self-organizing topology of recurrence networks (Yang and
Liu 2013) to self-organizing clustering of highly-redundant variables.

In the literature, very little work has been done to cluster variables with complex nonlinear
and asymmetric interdependences. We propose to treat variables as nodes in the network and
nonlinear interdependences between variables as the weights of edges, which is varying from
Oto 1. Let G = {V, E} be the directed and weighted network, where V is the set of nodes
and E is the set of edges. The spring-electrical model assigns two forces, i.e., attractive and
repulsive forces between nodes. The repulsive force exists between any pair of nodes while the
attractive forces exists between the nodes that have a relation of nonlinear interdependence.
The repulsive force is defined as

1 1
. AT
lls @) —s (DI

where « is a system parameter, s (i) and s (j) are spatial locations of node i and node j. The
repulsive force is inversely proportional to nonlinear interdependence between two nodes
(variables), because a bigger repulsive force is expected to separate two nodes when they
have a smaller interdependence. The attractive force is defined as

Jr@, ) =— (€))

Ix,xj

x,]

fa G ) =ls ) =s () 11> xe” ; #0 (10)

where y is the system parameter. The attractive force is proportlonal to nonlinear interdepen-
dence between two nodes (variables), because a bigger attractive force will pull two nodes
closer when they have a higher interdependence. The combined force on a node i is the
summation of all repulsive forces and attractive forces on the node:

1

. xlxj‘ . . 14
(7 s Uy ) - (()_ ())+
fas,a,y I;J s(l) ()3sz s(Jj Ee

Ixixj

s (i) =s () (s (@) —s())
an

where s (i) — s (j) is the force-directional vector, which is separated from f, (i, j) and
fa (i, j) to define the direction of combined force f (i, s, «, y). The attractive and repulsive
forces drive the network to self-organize and form a topological structure. The objective of
self-organizing process is to identify spatial locations of nodes by minimizing the energy of
the network, i.e., the summation of squared combined force on each node:

s*=argmsin[2f2(i,s,o{, )/)] (12)

ieN

i<j

The self-organizing process derives a topological structure of the network of variables by
minimizing the total energy, thereby clustering homogeneous variables into sub-network
communities. Our prior work showed that the variations of system parameters « and y
will not change the structure of the clusters but yield a similar structure only in difference
scales (Yang and Liu 2013). Table 2 summarizes the algorithm of self-organizing variable
clustering. Note that there are three scenarios for updating the magnitude of move step for
network nodes: (i) If the network energy keeps decreasing for 5 iterations, the magnitude will
be increased to A /0.9; (ii) If the network energy increases in one iteration, the magnitude
will be decreased to 0.9 x A; (iii) otherwise, the magnitude of move step remains the same.

Figure 4 shows the self-organizing process for clustering 20 variables in the motivating
example. In the beginning, 20 variables are randomly distributed in the 3-dimensional space
(see Fig. 4a). The topological structures after 200 and 400 iterations are shown in Fig. 4b,
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Table 2 The pseudo-agorithm of self-organizing variable clustering

1: Calculate nonlinear interdependence matrix 1
2: Construct G — a directed and weighted network
3: Initialize the layout of network in the high-dimensional space
4: Set flag as False and the magnitude of move step as A
S5: while flag is False do
6: //Calculate the energy of network structure EN
7 Initialize EN as 0
8: for all node i in G do
9: Calculate the combined force on node i
10: Move node i along the direction of combined force for a small step (magnitude A)
11: Add the square of combined force to energy EN
12: end for
13: Update the magnitude of move step A //three update scenarios
14: if the change of network energy is less than the tolerance &
15: Set flag as True
16: end if
17: end while
18: return spatial structure of the network s
(a) @19 °13°6 (b) o3
011 G al? el °12 °19 @6320
%1128 et °20 el18 9@‘7&8
> b 2 15 i ol
°1§1 E-7 9@ 1:'0 ® () .14 &5
@2
ot o
© @ AT
el q (AN | 2"
0 (e AR
o2 ” g Ve = B\
e'd’s 2 L SN

o't M L 7e° 40

1

i 1

15 Q7 o7

¢ N €68/
. G

Fig.4 Self-organizing network for clustering 20 variables: a initial topological structure, b topological struc-
ture after 200 iterations, ¢ topological structure after 400 iterations and d final topological structure. Note that
the computing time for this simulation study is approximately 17s. The animation video is available at the
following link: https://youtu.be/BwgjK8t7Pso
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c. The final structure after 600 iterations is shown in Fig. 4d. After 600 iterations, the self-
organizing process converges and identifies the underlying cluster structures of 20 variables,
which demonstrates the superior performance of self-organizing networks over HC and OPCC
(also see Fig. 1).

Our proposed self-organizing network shares some similarities with minimum energy
design (Joseph et al. 2014) in the field of design of experiments and self-organizing map
(Kohonen 1990; Chen and Yang 2012) in the domain of neural network. However, the spatial
location of a design point will not change in the minimum energy design when the experiment
has been conducted at this setting. The algorithm will optimize the spatial location of the next
design point given that spatial locations of previous design points are fixed. Also, the proposed
approach of self-organizing variable clustering is vastly different from the self-organizing
map in neural network, which learns self-organizing positions of neurons based on distance
measures in the data space. Nonetheless, our proposed research seeks to self-organize the
data space of variables.

3.3 Predictive modeling with highly-redundant variables

The self-organizing network drives highly-redundant variables into sub-network clusters.
The variables in each cluster bring the redundant information. Note that traditional regular-
ization methods tend to select one variable from the cluster of highly redundant variables,
while overlooking other variables. However, extra information does exist to some extent
among variables in spite of redundancy. It is necessary to delineate the structure of latent
variables hidden in each cluster of homogeneous variables. As such, we propose to minimize
the information redundancy within the same cluster before grouped variables are used in
predictive models. One idea is to use Gram—Schmidt orthonormalization (GSO) or PCA to
maximize the information extraction. Note that GSO and PCA only orthogonalize the vari-
ables and make them linearly independent. Such a transformation of data avoids the dropout
of variables and improves the extraction of useful information between variables.

Assume we have M clusters and there are Kvariables, x,,1, X2, - .., Xmk, in the m-th
cluster. The GSO minimizes the redundant information by transforming original variables
(Xm1,Xm2, - .., Xk ) into the orthonormal set of new variables (W1, W2, ..., Wk ) ineach
cluster. It begins by normalizing x,,1,

_ Vmi
[Vm1ll

Yml = Xml; Wml (13)
where w,, is the normalized variable of x,,1. The second orthogonal vector vy, is obtained

as,
Vm2

[Vm2l]

where wy,» is the second orthonormalized vector. The process is repeated to get the k-th
orthogonal vector vy,

V2 =Xm2 — Xm2, W)Wl Wm2 = (14)

k—1

Vimk = Xmk — E Xmks Wi )Wmis  Wmk
i=1

_ Vmk
[Vl

(15)

where wy, is the k-th orthonormalized vector.

After variables are orthonormalized in each cluster, information redundancy, at least linear
dependency, is minimized to some extent. Further, a group elastic-net model is utilized for
variable selection that penalizes in the levels of both individual variables and groups. First,
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the logistic regression model is constructed between predictor and response variables as:

1

0 <hg(w) <1 (16)

where B is model parameter and i g (w) is the estimated probability to get a response when
the predictor is W. Because the predictors are clustered into M homogeneous groups and
each group has K, variables, we rewrite this model with clustered variables as:

1
1 +exp [— (50 + (Z%:l Py w"'B"))]

If this is a multi-class classification problem, then we will build a separate logistic regression

hg (w) = a7

classifier hg) (w) for each class c to predict the probability that the response variable y = c.
When a new input W comes to make a prediction, the class ¢ with the maximal probability
hf;) (w) will be chosen. In this present investigation, we focus on the binary response variable
y = 0Oor1,i.e., diseased or healthy subjects. The log-likelihood function of logistic regression
model is then formulated as:
. . 112
J(B) =Y [vilog (hpg (w, i) + (1 — y) log (1 — hg (w, )] (18)

i=1

When performing the maximum likelihood estimation, we add the group elastic-net regular-
ization to penalize insignificant cluster of variables and identify key predictors as:

max J (6)

M Ky
st Y Y (eBi+ 1 —a)|By]) <2 (19)
k

m=1

where « and X are regularization parameters. Note that Eq. (19) adds the penalizations in the
levels of both individual variables and groups. The integration of orthonormalization with
group elastic-net model avoids the leave out of variables in traditional LASSO models and
improves the extraction of useful information between variables. In the next two sections,
we will evaluate and validate the proposed approach using both simulation and real-world
case studies.

4 Experimental design and results

In this section, simulation experiments were designed to evaluate the performance of self-
organizing variable clustering (SOC) algorithms. On the basis of 20 variables in the motivating
example, we further utilized cubic spline functions to expand each original variable into a
basis matrix for representing the family of piecewise polynomials, then these polynomials (or
basis functions) corresponding to the same original variable form a natural group. Therefore,
a total of 60 variables is generated in 4 groups to evaluate the proposed methodology. The
logistic function /g (x) is computed using a sparse set of variables selected from the original

20 variables: |

1 + exp [— (Z?gm xifi + ce)]

hg (x) = (20)
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Fig.5 Cause-and-effectdiagram for performance evaluation of the proposed self-organized variable clustering
algorithm

where p; denotes the sparsity level (i.e., the percentage of variables involved to derive the
response), ¢ is the amplitude of random noises, and §; is the model parameter that follows the
distribution of N (4, 0.1), u; =14+ (G — 1) x0.3,i =1, 2, ..., 20. The decision boundary
hg (x) = 0.5 is used to generate the binary response variable y.

As shownin Fig. 5, a 3-way layout experiment was designed to evaluate the performance of
SOC algorithms with three factor groups, i.e., signal-noise-ratio (SNR), sparsity, and sample
size. The sample sizes of training set n, validation set n, and testing set n3 are varied in three
levels (i.e., 50/50/100, 100/100/200, and 200/200/400). The sparsity level p; is changed from
10,40 to 70%. The SNR level is varied from no noise, 1, 2, to 3, where SN R is the power ratio

between the signal and the background noise, i.e., var (Z?g Ps x; ,Bi) /var (ce). As a result,

we generated 36 treatment levels of experimental factors and further evaluated and validated
the performance of clustering algorithms. In this present investigation, we compared the
performance of SOC with no clustering, HC, OPCC. The training dataset is used to train the
predictive model, and the validation dataset is to optimally select the penalization parameters
in Eq. (17). Model performance is only computed from the testing dataset. Each treatment
level is replicated for 100 times.

Table 3 summarizes the averages and standard deviations of prediction errors from 100
replicates with GSO of variables in each cluster. Note that the numbers in the parenthesis are
the standard deviations over 100 replicates. As shown in Table 2, all variable clustering meth-
ods yield better performance than no clustering of variables. In particular, self-organizing
variable clustering outperforms the other two methods and achieves a relatively better perfor-
mance. No clustering yields the highest prediction errors at all the 36 treatment levels. The
comparison results are not surprising because Figs. 2 and 4 show that self-organizing clus-
tering identifies cluster structures better than HC and OPCC. The proposed self-organizing
algorithm achieves better performance in 23 out of 36 treatment levels in the experiments.
Characterizing nonlinear interdependence structures among variables helps improve the per-
formance of predictive modeling. Also, Table 2 shows that the prediction error decreases
as more data samples are available for variable clustering and predictive modeling. Adding
noises to data deteriorates the predictive performance of models. Finally, it is worth men-
tioning that model performance is better when the sparsity level is lower.
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Table 3 Averages and standard deviation of prediction errors in the experimental study with 100 replications (GSO)

SNR Sample size No clustering GSO-HC GSO-OPCC GSO-SOC
S$=0.1 S=0.4 $=0.7 S$=0.1 S=0.4 $=0.7 S$=0.1 S=04 $=0.7 S$=0.1 S=0.4 $=0.7
1 nl=50, 0.361 0.489 0.508 0.278 0.413 0.406 0.259 0.335 0.381 0.252 0.340 0.381
n2=50,n3=100 (£0.06)  (£0.05)  (£0.05)  (£0.05) (£0.09) (£0.09) (£0.05)  (£0.07) (£0.09) (£0.03) (£0.09)  (£0.06)
nl =100, 0.351 0.456 0.430 0.276 0.304 0.299 0.251 0.301 0.295 0.278 0.335 0.307
n2=100,n3=200  (£0.05) (£0.04) (£0.06) (£0.03) (£0.04) (£0.04) (£0.03) (£0.04) (£0.03) (£0.03) (£0.06)  (£0.03)
n1=200, 0.283 0.328 0.337 0.270 0.298 0.280 0.264 0.294 0.255 0.259 0.266 0.283
n2=200,n3=400  (£0.02) (£0.02) (£0.03) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02)
2 nl=50, 0.203 0.345 0.438 0.157 0.271 0.263 0.161 0.280 0.255 0.120 0.192 0.230
n2=50, n3=100 (£0.05)  (£0.11)  (£0.08)  (£0.03)  (£0.10)  (£0.08) (£0.03)  (£0.08)  (£0.05)  (£0.02) (£0.05) (£0.05)
nl =100, 0.214 0.263 0.284 0.147 0.171 0.188 0.154 0.165 0.194 0.136 0.199 0.180
n2=100,n3=200  (£0.02)  (£0.03) (£0.05) (£0.02) (£0.02) (£0.03) (£0.02) (£0.03) (£0.03)  (£0.02) (£0.03) (£0.02)
nl =200, 0.175 0.236 0.227 0.154 0.171 0.174 0.130 0.172 0.167 0.131 0.170 0.185
n2=200,n3=400  (£0.01)  (£0.02) (£0.02) (£0.01) (£0.02) (£0.01) (£0.01) (£0.02) (£0.01) (£0.01) (£0.01) (£0.02)
3 nl =50, 0.197 0.355 0.436 0.116 0.169 0.240 0.098 0.210 0.247 0.097 0.165 0.236
n2=50,n3=100 (£0.04)  (£0.10)  (£0.08)  (£0.03)  (£0.05) (£0.07) (£0.03) (£0.08) (£0.05)  (£0.03) (£0.04) (£0.06)
nl=100, 0.156 0.262 0.269 0.100 0.154 0.168 0.105 0.137 0.158 0.099 0.135 0.157
n2=100,n3=200  (£0.02) (£0.03) (£0.04) (£0.02) (£0.04) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02) (£0.02)
n1=200, 0.133 0.194 0.187 0.084 0.138 0.136 0.088 0.150 0.114 0.072 0.116 0.133
n2=200,n3=400 (£0.01) (£0.02) (£0.02) (£0.01) (£0.01) (£0.02) (£0.01) (£0.01) (£0.01) (£0.01) (£0.01) (£0.01)
Nonoise ~ nl=50, 0.127 0.304 0.345 0.058 0.166 0.151 0.051 0.135 0.146 0.065 0.109 0.145
n2=50,n3=100 (£0.03)  (£0.10)  (£0.09)  (£0.02) (£0.08) (£0.05) (£0.03) (£0.08) (£0.03)  (£0.02) (£0.04) (£0.04)
nl=100, 0.109 0.199 0.206 0.043 0.063 0.101 0.043 0.056 0.095 0.052 0.062 0.099
n2=100,n3=200  (£0.02)  (£0.03) (£0.03) (£0.02) (£0.02) (£0.02) (£0.01) (£0.02) (£0.03) (£0.02) (£0.02) (£0.03)
n1=200, 0.072 0.145 0.163 0.026 0.054 0.067 0.030 0.056 0.066 0.023 0.044 0.066
n2=200,n3=400 (£0.01) (£0.01) (£0.02) (£0.01) (£0.01) (£0.02) (£0.01) (£0.02) (£0.02) (£0.01) (£0.01) (£0.02)

Bold values indicate the performances with smallest averages we can achieve at the same settings of SNR, sparsity and sample size
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Table 4 shows the averages and standard deviations (i.e., the numbers in the parenthesis)
of prediction errors from 100 replicates in each treatment level with PCA of variables in each
cluster. Similar to the results in Table 3, the proposed SOC algorithm yields better perfor-
mance than HC and OPCC algorithms in 23 out of 36 treatment levels in the experiments. The
performances of HC and OPCC are close to each other, which is because linear correlation
and PCA processing of variables are utilized in both cases. In terms of experimental factors
(i.e., sample size, noise and sparsity), Table 4 shows consistent results as in Table 3. The
prediction error decreases as the sample size increases. Adding noises to data deteriorates the
predictive performance of models. When the sparsity level is lower, the model performance
is better.

In addition, if we compared the GSO with PCA-based orthogonalization of variables
within each cluster, it may be noted that their performance is similar. For 36 treatment
levels, the GSO-SOC approach yields 18 settings that have lower prediction errors than
the PCA-SOC approach. The differences between GSO-SOC and PCA-SOC approaches
are not statistically significant. However, both Tables 3 and 4 show that the self-organizing
network algorithm significantly decreases the errors in predictive models. This demonstrates
that variable clustering is critical to improving the performance of predictive models. Further,
experimental results show that variable clustering that considers nonlinear correlations among
variables yields better results than the one with linear correlations.

5 Model-driven predictive model of space—time vectorcardiogram signals

Furthermore, we evaluate and validate the proposed methodology using a real-world case
study that utilizes the extracted parameters from representation models of VCG signals for
predictive modeling of myocardial infarctions. Our previous study developed a sparse basis
function model to represent 3-lead VCG signals, which minimizes the number of basis
functions involved but maintains sufficient explanatory power. As such, large amounts of
data are reduced to a parsimonious set of model parameters (i.e., weight, shifting and scaling
factors in basis functions) while preserving the information (Liu and Yang 2013). Further,
we used model parameters and their derivatives as predictors to build a lasso-penalized
logistic regression model for the prediction of cardiac disorders (Liu et al. 2014). However,
experimental results show that there are high levels of correlation among parametric features,
which lead to sensitive predictive models (i.e., increased variances of estimation). The novelty
of this present study is the development of topological network algorithms for handling both
redundancy and relevancy among variables and improving the performance of predictive
modeling.

As shown in Fig. 6a, cardiac electrical activity is varying across space and time. VCG
signals monitor cardiac electrical activity along three orthogonal X, Y, Z planes of the body,
namely, frontal, transverse, and sagittal (see Fig. 6b) (Yang et al. 2011, 2012; Yang 2011).
Within one cycle, the VCG waveform shows nonlinear variations. Each VCG cycle includes
P, QRS and T segments that correspond to different stages of cardiac operations. Between
cycles, the VCG waveform is similar to each other but with variations. As shown in Fig. 6b,
VCG trajectories of myocardial infarction (red/dashed) yield a different spatial path from the
healthy controls (blue/solid) (Yang et al. 2013). In order to reduce large amounts of VCG
signals into a sparse set of parameters, we developed the basis function representation of
VCG signals (see Fig. 6¢). This present paper leverages parametric features for predicting
the incidence of myocardial infarction (see Fig. 6d, e). Because the set of parametric features
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Table 4 Averages and standard deviation of prediction errors in the experimental study with 100 replications (PCA)

SNR Sample size PCA-HC PCA-OPCC PCA-SOC
S=0.1 S=0.4 $=0.7 S$=0.1 S=0.4 $=0.7 S$=0.1 S=0.4 $=0.7
1 nl =50, 0.2228 0.3316 0.3690 0.2442 0.3963 0.4271 0.2530 0.3298 0.3938
n2=>50, n3=100 (£0.0335) (£0.0727) (£0.0716) (£0.0338) (£0.0804) (£0.0669) (£0.0382) (£0.0783) (£0.0856)
nl =100, 0.2466 0.2750 0.3359 0.3266 0.3727 0.3070 0.2470 0.3279 0.2888
n2=100, n3=200 (£0.0275) (£0.0247) (£0.0515) (£0.0456) (£0.0635) (£0.0364) (£0.0270) (£0.0499) (£0.0327)
nl=200, 0.2621 0.2927 0.2844 0.2220 0.2740 0.2733 0.2151 0.2957 0.2809
n2=200, n3=400 (£0.0181) (£0.0179) (£0.0216) (£0.0164) (£0.0194) (£0.0168) (£0.0158) (£0.0196) (£0.0200)
2 nl=50, 0.1542 0.2362 0.2623 0.1577 0.2364 0.2175 0.1398 0.2269 0.2659
n2=50,n3=100 (40.0329) (£0.0743) (£0.0657) (£0.0310) (£0.0563) (£0.0479) (40.0280) (£0.0659) (£0.0620)
n1=100, 0.1518 0.2039 0.2007 0.1500 0.1759 0.1834 0.1433 0.1600 0.2082
n2=100, n3=200 (£0.0219) (£0.0260) (40.0283) (£0.0201) (£0.0255) (£0.0230) (£0.0188) (£0.0256) (£0.0372)
nl=200, 0.1395 0.1633 0.1698 0.1377 0.1852 0.1671 0.1327 0.1577 0.1593
n2=200, n3=400 (£0.0140) (£0.0151) (£0.0151) (£0.0144) (£0.0179) (£0.0181) (£0.0125) (£0.0142) (£0.0159)
3 nl =50, 0.1064 0.2010 0.2428 0.1253 0.1518 0.2409 0.0960 0.1653 0.2330
n2=50,n3=100 (£0.0281) (£0.0537) (£0.0547) (£0.0239) (£0.0534) (£0.0526) (£0.0267) (£0.0479) (£0.0578)
nl=100, 0.0966 0.1378 0.1877 0.0956 0.1352 0.1710 0.1097 0.1419 0.1691
n2=100, n3=200 (£0.0193) (£0.0231) (£0.0236) (£0.0176) (£0.0204) (£0.0243) (£0.0184) (£0.0216) (£0.0270)
n1=200, 0.0838 0.1261 0.1338 0.0779 0.1236 0.1397 0.0937 0.1317 0.1255
n2=200, n3=400 (£0.0115) (£0.0121) (£0.0151) (£0.0114) (£0.0134) (£0.0149) (£0.0121) (£0.0141) (£0.0148)
No noise nl=50, 0.0576 0.1458 0.1643 0.0605 0.1228 0.1607 0.0547 0.1178 0.1470
n2=50,n3=100 (£0.0208) (£0.0345) (40.0338) (£0.0238) (£0.0600) (£0.0353) (£0.0225) (£0.0617) (£0.0390)
nl=100, 0.0429 0.0686 0.1125 0.0425 0.0684 0.1052 0.0388 0.0506 0.0982
n2=100, n3=200 (£0.0139) (£0.0209) (£0.0253) (£0.0158) (£0.0212) (£0.0258) (£0.0135) (£0.0195) (£0.0302)
nl =200, 0.0255 0.0515 0.0647 0.0289 0.0468 0.0612 0.0205 0.0461 0.0610
n2=200, n3=400 (£0.0085) (£0.0149) (£0.0182) (£0.0101) (£0.0132) (£0.0154) (£0.0085) (£0.0119) (£0.0165)

Bold values indicate the performances with smallest averages we can achieve at the same settings of SNR, sparsity and sample size
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Fig. 6 Flow chart of a real-world case study that extracts model parameters from VCG signals for the
identification of myocardial infarctions

contains redundant information that inflates the variance of predictive models, this motivates
our further development of the proposed methodology of self-organizing variable clustering.

5.1 Multiscale basis function modeling of VCG signals

Our previous work developed a sparse basis function model to characterize and represent
3-dimensional VCG signals (Liu and Yang 2013). Such a sparse representation reduces large
amounts of data to a limited number of model parameters while preserving the same infor-
mation. This present paper will further develop predictive models of myocardial infarctions
using the low-dimensional set of model parameters, as opposed to the original data itself.
Figure 6¢ shows an example of the basis function model of 3D trajectories of VCG signals.
In order to capture intrinsic characteristics of cardiac electrical activity, we modeled VCG
signals as the superposition of M basis functions:

v =wok Yo wiy (- o) e 1)

where v () is the basis function, w; is the weight factor, u ;is the shifting factor and o; is
the scaling factor. The objective is to optimize the representation of 3D VCG signals with a
sparse basis function model:

M 2
V() —wo— »_w; (1)

i=1

argmin |: Aw, M,y (f)}:| (22)
Compact topological representation calls upon the minimization of the number of basis
functions M and the optimal placement of basis functiony (t). Model parameters w, u, o
are adaptively estimated by “best matching” projections of VCG signals onto a dictionary
of nonlinear basis functions. Our previous work detailed the modeling algorithms to develop
a sparse basis function representation of spatiotemporal VCG signals (Liu and Yang 2013).
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In addition, our previous experiments show that model goodness-of-fit is greater than 99.9%
(R?) with a parsimonious set of 20 basis functions for a variety of cardiac conditions. In this
present study, model parameters, i.e., weight, shifting, scaling factors and residuals, will be
further investigated for the identification of myocardial infarctions.

5.2 Predictive modeling of myocardial infarction

This case study focuses on the extraction of parametric features from the sparse basis function
model, and their further applications for predictive modeling of myocardial infarctions. If
M basis functions are used to represent 3-lead VCG signals, then the set of parameters
(i.e., weight, shifting and scaling factors) is {w3x ., U3xm, 03xm}. The total number of
parameters will be 3 x 3 x M. Our previous study showed that 20 basis functions yield
>99.9% goodness-of-fit in the modeling performance for a variety of cardiac conditions.
Hence, we have a total of 180 model parameters that are adaptively estimated from the 3D
VCG trajectory. In addition, we added the absolute values of weights, residual sum of squares
(RSS) and the RR interval (i.e., heart rate) in this present investigation. The feature matrix
is:

X = {W3520, 3%20,03x20, [W3520, RSS31, RR1x1}

where the absolute values of weights |w|3,.,( describes the amplitudes of each basis function,
which provide local strengths of a heartbeat. The residual sum of squares RSS31 describes
the variations that cannot be adequately explained by the model representation. The RR inter-
val characterizes temporal beat-to-beat variations of cardiac electrical activity. In total, we
have 244 parameter-based features that provide effective measures of original VCG signals.
Notably, model representation reduces the high-dimensional set of VCG signals into a sparse
set of feature matrix.

In this present investigation, we used 3-lead VCG signals from 388 subjects (79 healthy
controls and 309 myocardial infarctions), available in the PhysioNet PTB Database (Gold-
berger et al. 2000). Each recording contains 15 simultaneous heart monitoring signals, i.e.,
12-lead ECG and 3-lead VCG. The signals were digitized at 1 kHz sampling rate with a
16-bit resolution over a range of 16.384 mV. The VCG recordings are typically about 2 min
duration, and all signals were recorded for at least 30s. Our previous study showed that most
of model-driven parametric features are statistically significant between healthy controls and
myocardial infarctions (Liu et al. 2014). Specifically, our experimental results showed that
more than 146 features have the Kolmogorov—Smirnov statistic greater than the critical value
0.17, indicating significant differences between control and diseased conditions. It is worth
mentioning that weight factors are the most significant group of features among all parametric
features. However, a large number of predictors tend to bring the “curse of dimensionality”
problem, as well as the overfitting for the predictive modeling. Therefore, our previous study
utilized the lasso-penalized logistic regression model to shrink the number of predictors and
identify the cases of myocardial infarction.

Nonetheless, our previous study Liu et al. (2014) focused on the relevancy between
predictor variables and the response variables, but did not specifically consider complex
interdependence structures among predictor variables. Prior research showed that a higher
correlation (>0.90) between variables (collinearity) leads to more sensitive estimations of
parameters in predictive models (i.e., increased variances of estimation) (Nas and Mevik
2001). This present paper further investigates the nonlinear correlations between variables
and then identifies the cluster structures for improving the performance of predictive mod-
eling. Figure 7a shows the plot of nonlinear and asymmetric interdependence structures
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Fig. 7 a Nonlinear interdependence matrix; b self-organized clustering results of model-based parametric
features

among variables. It may be noted that there are three groups of variables with stronger inter-
dependences, and also some groups of variables with weaker interdependence relationships.
However, few, if any, previous work has explicitly considered such relationships among
variables before predictive modeling. Figure 7b shows sub-network communities in the self-
organized clustering of model-based parametric features. Notably, self-organizing algorithms
derive a topological structure of the network of variables based on the matrix of nonlinear and
asymmetric interdependences in Fig. 7a. As a result, homogeneous variables are clustered
into sub-network communities.

Furthermore, we minimized the redundancy of variables within each self-organized clus-
ter through GSO and then integrated this new set of clustered variables with group elastic-net
model to improve the performance of predictive modeling. The available data are divided
into three parts: a training set (25% of samples), a validation set (25% of samples), and a
test set (50% of samples). The training set is to train the predictive model, and the validation
set is to cross-validate the model and optimally determine the penalization parameters (also
see Eq. 17). Model performance is only computed from the test dataset. The experiments
were replicated for 100 times. Figure 8 shows the averages and standard deviation of pre-
diction errors in the real-world case study. “Without clustering” represents the results from
the lasso-penalized logistic regression model in our previous study Liu et al. (2014), while
“SOC clustering” denotes the results from the present study with self-organizing variable
clustering. As shown in Fig. 8, self-organizing variable clustering yields smaller standard
deviations of performance metrics (i.e., accuracy, sensitivity, and specificity) than “with-
out clustering”. Also, the average accuracy is improved from 89.50 to 94.71%, the average
sensitivity is improved from 94.33 to 96.80%, and the average specificity is increased from
84.80 to 92.62%. In addition, our experiments showed that OPCC yields an average accu-
racy of 93.76% (sensitivity 96.28% and specificity 91.28%), which is better than HC (average
accuracy 93.07%, sensitivity 96.05% and specificity 90.18%) but inferior to the proposed
SOC method. Experimental results demonstrate that the proposed method outperforms tradi-
tional models that do not explicitly consider variable clustering and complex interdependent
structures among predictor variables.

The classification of myocardial infarctions with ECG/VCG signals is a general problem
in the biomedical domain. See a detailed review of the state of the art in Yang (2011). Our
previous investigations focused on the use of nonlinear recurrence quantifiers (Yang 2011)
and spatiotemporal features (Yang et al. 2013) for the identification of myocardial infarc-
tions. This present paper approached this problem from a different angle, i.e., leveraging the
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Fig. 8 Averages and standard deviation of prediction errors in the real-world case study that extracts a sparse
set of model parameters from VCG signals for the identification of myocardial infarctions

parameters of representation model of ECG/VCG signals to build the classification model.
Notably, self-organizing variable clustering yields comparable performance as recurrence
quantification analysis (accuracy 92.70%, sensitivity 96.50% and specificity 74.80%) (Yang
2011) and spatiotemporal warping features (accuracy 95.10%, sensitivity 94.90% and speci-
ficity 95.70%) (Yang et al. 2013). Our future work will focus on the investigation of ensemble
models and feature combination to improve the predictive performance.

6 Discussion and conclusions

Advanced sensing and real-time data acquisition bring “Big Data” which provides an unprece-
dented opportunity to move forward the new frontier of innovation and knowledge discovery.
However, it is common that big data involve large amounts of variables with complex inter-
dependence structures, which pose significant challenges on traditional methodologies in
predictive analytics. To tackle these challenges, variable selection and variable clustering
are widely used in the literature. Nonetheless, variable selection focuses primarily on the
relevancy between predictors and the response variable but does not explicitly consider the
redundancy (i.e., interdependence structures) among variables. The variable clustering, on
the other hand, focuses only on the issues of variable redundancy while overlooking the
relevancy between variables and the response. In the literature, Kojadinovic proposed to
integrate mutual information with agglomerative hierarchical clustering to identify “classes”
of continuous variables (Kojadinovic 2004). A homogeneous class refers to the variables in
the cluster should be “functional dependent”, and a separated class refers to the variables in
the cluster that are as “mutually stochastically independent” as possible. Slonim et al. uti-
lized mutual information to cluster nonlinear structures among data samples by designing a
tradeoff function between information carried by the cluster identities and average similarity
(Slonim et al. 2005). It should be noted that this information-theoretic approach pre-defines
the number of clusters to solve the tradeoff function, as well as considers nonlinear corre-
lation structures among data samples instead of continuous variables. Mutual information
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shows the advantage to provide an equitable measure of association between two variables
but requires stationarity in the computation and is limited in the ability to handle asymmetric
interdependence structures. Nonetheless, nonlinear variables (e.g., logistic map and Lorenz
variables in the simulation study) show nonstationary properties. Traditional measures that
require stationary assumptions tend to yield time-varying dependence structures between
variables. In addition, the asymmetric dependence structure between two nonlinear vari-
ables is not uncommon, i.e., Pr(xy|x2) # Pr(xz|x1). Indeed, the presence of nonlinear and
asymmetric interdependence structures poses a significant challenge for variable clustering.

New methodologies that consider nonlinear interdependence structures among variables
and further integrate variable clustering with variable selection to improve the effectiveness
of predictive analytics are urgently needed. This paper presents a new strategy that combines
the advantages of both variable clustering and variable selection. Complex interdependence
structures among variables are characterized and quantified using nonlinear coupling analy-
sis. Then, we developed a self-organizing network algorithm to effectively cluster variables
that have nonlinear and asymmetric interdependences. This new method circumvents the
limitations of existing methods of variable clustering. For example, the HC algorithm is not
applicable when the interdependence structure is asymmetric. The OPCC algorithm can-
not adequately handle nonlinear interdependences. Further, the redundant information from
related variables in self-organized clusters is minimized. Finally, self-organized clusters are
integrated with group elastic net models to improve the performances of predictive models.
As such, we handle the relevancy and redundancy among variables simultaneously. Results
of simulation experiments demonstrated that the proposed method not only outperforms tra-
ditional variable clustering algorithms such as HC and OPCC but also effectively identifies
cluster structures among variables, thereby improving the performance of predictive mod-
eling. Also, we evaluated and validated the proposed methodology using a real-world case
study that extracts parameters from representation models of VCG signals for the identifica-
tion of myocardial infarctions. Experimental results showed that the proposed method yields
an average sensitivity of 96.80% and an average specificity of 92.62% in the identification
of myocardial infarctions using sparse parameters of VCG representation models. The pro-
posed new idea of self-organizing algorithm is generally applicable for variable clustering
and predictive modeling in many disciplines that involve a large number of highly-redundant
variables.
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