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A B S T R A C T

QRS morphology is commonly used in the electrocardiographic diagnosis of ventricular depolarization such as

left bundle branch block (LBBB) and ventricular septal infarction. We investigated whether pattern matching of

QRS loops in the 3-dimensional vectorcardiogram (VCG) will improve the grouping of patients whose space-

time electrical activity akin to each other, thereby assisting in clinical decision making. First, pattern

dissimilarity of VCG QRS loops is qualitatively measured and characterized among patients, resulting in a

93×93 distance matrix of patient-to-patient dissimilarity. Each patient is then represented as a node in the

network (or a star in the galaxy), but node locations are optimized to preserve the dissimilarity matrix. The

optimization is achieved with a self-organizing algorithm that iteratively minimizes the network energy.

Experimental results showed that patients’ locations converge as the representation error reaches a stable

phase. The convergence is independent of initial locations of network nodes. Most importantly, 93 patients are

automatically organized into 3 clusters of healthy control, LBBB, and infarction. Spatial coordinates of nodes (or

patients) are evidently novel predictors that can be used in the computer-assisted detection of cardiac disorders.

Self-organizing pattern matching is shown to have strong potentials for large-scale unsupervised learning of

patient groups.

1. Introduction

The Electrocardiogram remains the most commonly performed

cardiac test, which is essential to the diagnosis and management of a

large number of cardiac pathologies. Given the large number of ECG

acquired daily, computerized interpretation of tracings can be extre-

mely time-saving and conducive to clinical decision support [1]. For

this reason, automated computer programs have nowadays become a

fixed feature in the great majority of commercially available ECG

devices. As the computer diagnostic accuracy of interpretation is often

considered too low, the majority of ECGs will be over read by a

qualified physician [2]. The increasing mismatch between competent

cardiologists and the increasing number of ECGs obtained has gener-

ated a number of dissenting opinions [3,4] including Guidelines

recommendations [5] where automated interpretation of ECG is part

of the patients’ initial assessment. Existing ECG algorithms mainly

focus on a time-scale representation of cardiac electrical events

ignoring a large amount of information contained in the spatial

distribution of the ECG. Therefore, there is a need to study new

vectorcardiographic methods to examine the dissimilarity of space-

time electrical activity in the heart.

Among many cardiac pathologies, left bundle branch block (LBBB)

is an electrocardiographic diagnosis based on QRS patterns such as

time duration, morphology, notching or slurring. Such diagnostic

criteria play important roles in the selection of LBBB patients for

cardiac resynchronization therapy (CRT). It is worth mentioning that

QRS area of 3-lead VCG was recently shown to effectively predict the

CRT responses and equivalently perform as well as the state-of-the-art

ECG definition of LBBB [6]. The effectiveness of VCG for the

optimization of CRT therapy was demonstrated in the experimental

study of canine left bundle branch block hearts [7]. In addition, the

VCG feature of QRS-T area angle was shown to effectively predict

sudden cardiac death after acute coronary syndromes [8]. Note that

ECGs are time-domain projections of 3-dimensional propagation and

conduction of electrical activity of the human heart, while 3-lead VCG

presents the added space-time information. Although 12-lead ECG

presents such spatiotemporal activity along 12 different perspectives,

the loss of spatial information in each temporal ECG tracing under-

mines the complete picture of 3D cardiac electrical activity [9,10].

In addition, the blockage of bundle branches can take place at
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different locations of the heart and with complications such as

myocardial infarction [11]. The spatial locations of blocked branches

or infarcted lesions lead to the variations of ventricular depolarization

and cardiac electrical activity in both space and time. Therefore, there

are variations in the QRS morphology of ECG signals from LBBBs and

myocardial infarctions. As traditional temporal ECG tracings diminish

important spatial information, automated algorithms can be signifi-

cantly influenced by such an information loss. There is a need to extract

useful space-time information from 3-lead VCG and fully exploit the

spatiotemporal knowledge to improve the effectiveness of automated

algorithms for computerized interpretation of tracings.

This paper focuses on the unsupervised visualization of patient

dissimilarity through pattern matching of VCG signals, as opposed to

classification (i.e., supervised learning and training). QRS morphology

is commonly used in the electrocardiographic diagnosis of ventricular

depolarization such as left bundle branch block (LBBB) and ventricular

Fig. 1. The ensembles of 3-lead VCG, x y z respectively, from 31 subjects of (a) healthy control, (b) LBBB and (c) MI (anterior septal).
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septal infarction. In this investigation, we hypothesized that pattern

matching between QRS loops in 3D VCG improves the grouping of

patients whose electrical activity akin to each other, thereby assisting in

clinical decision making of LBBB and myocardial infarctions. This is

based on the premise that if two subjects share similar space-time

trajectories and moving paths in QRS loops of 3D VCG, their electrical

activities of ventricular depolarization are also akin to each other. The

first step is to develop quantitative measures of pattern similarity and

dissimilarity between 3D QRS loops, which should combine pertinent

information about the time duration, morphology, notching/slurring,

area of QRS loops. Once the patient-to-patient dissimilarity matrix is

obtained, the second step is to exploit the acquired knowledge of

pattern dissimilarity for optimal clinical decision making. Although 12-

lead ECG is standard practice in the state of the art, time-domain

interpretation often overlooks the electrical activity in the 3D space. As

electrical activity is conducted and propagated in the 3D human heart,

new vectorcardiographic methods are needed to characterize the

pattern variations of space-time electrical activity in the heart and

predict cardiac ailments.

This paper presents new methods to quantitatively measure the

pattern dissimilarity of 3D QRS loops, innovatively represent each

patient as a node in the network that preserves the patient-to-patient

distance matrix, and iteratively self-organize nodes to visualize patient

grouping in the network. Experimental results showed that node

locations converge as the representation error reaches a stable phase.

Spatial coordinates of nodes (or patients) provide a new way to

examine the closeness of signal patterns in the space, which is

conducive to develop a better understanding of the disease mechanisms

(conduction pathway). This pilot study shows strong potentials to

establish a large-scale patient dissimilarity network that will enable

and assist the visualization of VCG pattern similarity, characterization

of VCG pattern variations, cluster subjects with similar cardiac

electrical activity in groups, and further predict cardiac ailments.

2. Materials and methods

2.1. Dataset

The 12-lead ECGs from 93 patients, equally divided among healthy

control, left bundle branch block (LBBB) and antero-septal myocardial

infarction (MI) are retrospectively collected from the GE MUSE

cardiology management information system at the James A. Haley

Veterans’ Hospital. This study is performed according to the protocol

approved by the Institutional Review Board (IRB) of the same hospital.

The dataset is completely de-identified to protect privacy and contains

only the electrocardiographic tracing. The demographic information is

not included in the dataset in this pilot study. The ECGs have been

reviewed by an experienced Cardiologist and the diagnosis confirmed

based on accepted criteria. Note that 12-lead ECG is commonly used in

the clinical practice and is readily accessible from the MUSE cardiology

information system. However, 3-lead VCG is not generally recorded

and stored in the MUSE system at the James A. Haley Veterans’

Hospital. Although prior work shows the need to customize transfor-

mation matrices (i.e., from 12-lead ECG to 3-lead VCG) for a subject

[12], it is difficult to develop different transformation matrices in the

present study. As such, we pre-process the 12-lead ECG printout from

GE MUSE Cardiology Information System to obtain the digitized 12

ECG data. Then, a generalized Dower transform was used to synthesize

the 3-lead VCG from 12-lead ECG [13]. This brings the flexibility to

utilize readily available ECG data in the current practice and avoid the

investment of new VCG systems.

Initial evaluation of time-domain X, Y, Z ensembles of 3-lead VCG

of the three groups is performed to assess the variations between three

datasets. Differences in QRS time duration, morphology, notching/

slurring among the groups were evaluated. Fig. 1a shows the time-

domain X, Y, Z ensembles of 3-lead VCG from 31 subjects of healthy

control, LBBB, and MI. It may be noted that there are significant

variations within each category of cardiac conditions. Among these

three categories, there are also differences in QRS time duration,

morphology, notching/slurring, area. However, a single parameter is

not sufficient enough to differentiate three categories.

Fig. 2 shows the boxplot of QRS time duration for healthy control,

LBBB and MI. The red line in the middle of boxplot represents the

median, the blue box shows the lower quartile and upper quartile of

data distributions, and the black dash lines represent the most extreme

values within 1.5 times the interquartile range. Outliers are shown as

the red cross in the box plot [14,15]. The box plot shows that QRS time

durations are not normally distributed, but instead yield a skewed

distribution. As such, means and standard deviations are not sufficient

to fully characterize the distribution of QRS time durations. Note that

the mean and standard deviation of QRS time durations are 131.6 ±

11.3, 165.2 ± 17.8, and 90.2 ± 26.9 ms for healthy control, LBBB, and

anterior-septal MI, respectively. Although means are significantly

different, there are overlaps in the box plot of QRS time durations

among three categories. While QRS time duration is one parameter

describing pattern dissimilarity of VCG, it is challenging to design a

composite parameter that integrates the dissimilarity measures of QRS

time duration, morphology, notching/slurring, area.

As shown in Fig. 3, QRS loops of 3D VCG yield different

spatiotemporal paths for healthy control, LBBB, and MI (anterior

septal), including the 3D morphology, area, length (i.e., QRS time

Fig. 2. The boxplot of QRS time duration for healthy control, LBBB and MI (anterior

septal).

Fig. 3. The QRS loops of 3-lead VCG for 3 subjects in the control, LBBB and MI group

respectively.
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duration), angle (i.e., electrical axis). We hypothesized that 3D pattern

matching provides dissimilarity information that cannot be otherwise

achieved through the parameters extracted in the time-domain ECGs.

This is mainly because time-domain ECGs are projections of 3D cardiac

electrical activity. Therefore, we propose to develop a composite

measure of pattern dissimilarity through pattern matching of 3D VCGs.

2.2. Quantitative measure of dissimilarity among VCG waveforms

Fig. 3 shows that there is significant space-time dissimilarity among

QRS loops of 3D VCG of healthy, LBBB and MI-septal subjects. Pattern

matching of 3D QRS loops is a new way to identify various types of

disorders in the ventricular depolarization. As shown in Fig. 4, two

ECG signals are often misaligned because of heart rate variability,

phase shift, and discrete sampling. Fig. 4a shows that a bigger

dissimilarity will be resulted for two alike ECG signals if time indices

are not properly aligned. It is imperative to align the ECG signals in

terms of cardiac electrical activity (see Fig. 4b). In other words, such an

alignment is critical to compare the corresponding electrical activity of

heart chambers. For example, we should compare ventricular depolar-

ization (i.e., QRS loops) for two subjects (or cycles), as opposed to an

incorrect comparison between atrial depolarization (P loop) and

ventricular depolarization (QRS loop).

In this investigation, we developed a new warping approach to align

3D VCG vector loops from two subjects and then measure the pattern

dissimilarity between them [14]. Note that the alignment of QRS loops

in both space and time is critical to compare the electrical activity of

ventricular depolarization. If there are two 3D VCG QRS loops

y t t N
⎯→( ), = 1, …,1 1 and y t t N

⎯→( ), = 1, …,2 2, their dissimilarity measure is

calculated as y yt t∑ ⎯→( ) − ⎯→( )
t t i j( , )∈path 1 2i j

by the alignment path. We used

the dynamic programming (DP) method to search the optimal path that

connect (1, 1) to N N( , )1 2 in the 2-dimensional lattice. The algorithm

starts at the initial condition: y yD d t t(1,1) = (1, 1) = ⎯→( ) − ⎯→( )1 1 2 1 and the
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

D t t

D t t d t t

D t t d t t

D t t d t t

( , )=min

( , –1)+ ( , )

( −1, −1)+ ( , )

( −1, )+ ( , )
i j

i j i j

i j i j

i j i j (1)

Finally, the dissimilarity measure of two 3D QRS loops is calculated

as:
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Note that N1and N2 are the length of y
⎯→

1 and y
⎯→

2 that are corresponding

to the time durations of QRS loops. The distance measure

y yd t t t t( , ) = ⎯→( ) − ⎯→( )i j i j1 2 captures the morphology, notching/slurring,

and area of QRS loops along the alignment path.

2.3. Self-organizing network of VCG QRS waveforms

Furthermore, we propose to treat patients as nodes in the network

and dissimilarity distance between 3D VCG waveforms as the weights

of edges. As shown in Fig. 5a, patient-to-patient dissimilarity matrix

provides information pertinent to the pattern variations of 3D VCG

QRS loops among patients. It may be noted that each patient's

dissimilarity to himself or herself is 0 and dissimilarity measures to

all other patients are captured in the matrix. Fig. 5b shows a network of

nodes with the dissimilarity distances as the weights of the edges.

Ideally, this analysis should optimize the locations of nodes in the

network so that node-to-node distances preserve the patient-to-patient

dissimilarity measures in the matrix of Fig. 5a.

Based on our previous work on self-organizing networks [16,17],

we derive the self-organizing network of patients. Let G V E W={ , , } be

the directed and weighted network, whereV is the set of nodes, E is the

set of edges, and W is the set of weights (i.e., dissimilarity measure) on

each edge. We utilized the spring-electrical model to assign two forces,

Fig. 4. (a) Pattern matching of misaligned ECG signals leads to a bigger dissimilarity for two alike ECG signals; (b) Aligned ECG signals according to electrical activity of heart

chambers.

Fig. 5. (a) Dissimilarity matrix among patients; (b) Network embedding to optimize node-to-node distances that preserve the dissimilarity matrix.
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i.e., attractive and repulsive forces between nodes. As this network is

fully connected, repulsive and attractive forces exist between any pair

of nodes (i.e., patients). The repulsive force is defined as

s s
f i j

i j
e( , )=−

1

( ) − ( )
*

r

α w i j

2
( , )

(3)

where α regulates the amplitude of repulsive force, is( ) and js( ) are

spatial locations of node i and node j. The repulsive force is propor-

tional to the edge weight between two nodes (i.e., dissimilarity),

because a bigger repulsive force is expected to separate two nodes

when they have a bigger weight (i.e., bigger dissimilarity). The

attractive force is defined as

s sf i j i j e w i j( , ) = ( )− ( ) * , ( , ) ≠ 0
a

γ

w i j2 ( , ) (4)

where γ is the natural spring force. The attractive force is inversely

proportional to edge weight between two nodes (i.e., dissimilarity),

because a bigger attractive force will pull two nodes closer when they

have a smaller weight (i.e., smaller dissimilarity). The combined force

on a node i is the summation of all repulsive forces and attractive forces

on the node:
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where i j↔ means node i and node j are linked, s si j( )− ( ) is the force-

directional vector, which is separated from f i j( , )
r

and f i j( , )
a

to define

the direction of combined force sf i α γ( , , , ). The self-organizing

process minimizes the total energy of the network as follows:
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As a result, the self-organizing process optimizes spatial locations of

network nodes that preserve the edge weights between nodes (i.e.,

dissimilarity distances between patients). Note that if the parameters

α γ, are varied, the relative locations of nodes will not change

significantly but a similar topology in different scales. See details on

the optimization algorithms in our previous work [16,17]. As the

network energy converges, nodes are self-organized in the 3D space

and yield a unique topology. Such a self-organizing process drives

nodes in the 3D space to preserve the patient-to-patient dissimilarity

measures. Our hypothesis is that pattern matching between QRS loops

in 3D VCG improves the grouping of patients whose space-time

electrical activity akin to each other. This hypothesis will be tested

using the dataset of QRS loops of 3D VCG from 93 patients in three

categories, namely healthy control, LBBB and MI (anterior septal) that

will be detailed in the next section.

3. Results

3.1. Dissimilarity matrix among VCG waveforms

Fig. 6 shows the dissimilarity matrix of 93 patients in 3 categories

of healthy, LBBB, and MI subjects. The dissimilarity measure is

mapped onto a color scale. The small distances are in blue colors with

a gradual transition to the large distances in red colors. Note that the

dissimilarity matrix is symmetric with on-diagonal squares represent-

ing the within-group dissimilarities and off-diagonal squares repre-

senting the dissimilarities across groups. As shown in Fig. 6, within-

group distances are smaller than across-group distances. The on-

diagonal squares are mainly in blue colors, while off-diagonal squares

show light blue and red colors. From the color mapping visualization of

the dissimilarity matrix, it is not an easy task to visually discern the

patterns for 3 groups. But it may be noted that LBBB group yields the

biggest difference from the other two groups. A new method to

construct the patient dissimilarity network is urgently needed.

In addition, the dissimilarity matrix cannot be directly used for the

purpose of decision making because it records the subject-to-subject

dissimilarity instead of predictors for each subject. Such a dissimilarity

matrix is a critical component for unsupervised clustering as opposed

to supervised classification. Therefore, we propose a new idea to treat

patients as nodes in the network and dissimilarity distance as the

weights of edges. As a result, we will be able to visualize the clustering

or grouping of 93 patients in the network if the network is self-

organized according to the edge weights. Spatial coordinates of nodes

(or patients) can be used as locators (or features) to assist in the clinical

decision making.

3.2. Self-organizing visualization of healthy vs. LBBB subjects

Fig. 7 shows the scatter plot of nodes of 31 healthy and 31 LBBB

subjects in the 3D space. The X-, Y-, Z- scales provide the magnitudes

and locations of nodes. The proposed self-organizing algorithm auto-

matically organizes the spatial locations of network nodes based on the

edge weights in the patient-to-patient dissimilarity matrix. The edges

between nodes are not drawn in the network, because a large number

of edges will cover the scatter plot. First, 93 nodes are randomly

distributed in the 3D network (see the animation in Fig. 7). It takes

approximately 260 iterations (~37 s) for the self-organizing algorithms

to reach the stable structure of the network. The performance results

and computing time are shown in the animation video that is available

at (https://youtu.be/8Kbp3bXL16k). The stable structure means that

Fig. 6. Color mapping plot of dissimilarity matrix of healthy, LBBB, and MI subjects.

Fig. 7. The 3D scatter plot of node coordinates of healthy (blue squares) and LBBB (red

triangles) subjects in the self-organizing network. The animation video is available in this

link: https://youtu.be/8Kbp3bXL16k.
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the spatial locations of nodes converges and do not vary anymore in the

3D space. The iterative variations of the structure of self-organizing

networks are shown in the animation link of Fig. 7. It is remarkable

that healthy and LBBB subjects yield two distinct clusters in this self-

organizing network. This demonstrates that the self-organizing

algorithm effectively enables and assists (i) the derivation of stable

network structure according to the edge weights (i.e., dissimilarity

among patients); (ii) the clustering of patients whose electrical activity

akin to each other in the 3D space; (iii) the extraction of pertinent

information about cardiac electrical activity in the form of spatial

coordinates of network nodes. This algorithm is not only capable of

visualizing patients with similar patterns of QRS loops in the 3D space,

but also provides a new way to assist in the clinical decision making.

3.3. Self-organizing visualization of LBBB vs. MI anterior septal

subjects

Fig. 8 shows the scatter plot of nodes of 31 LBBB and 31 MI

anterior septal subjects in the 3D space. It may be noted that the self-

organizing process drives the nodes to automatically cluster according

to edge weights (i.e., dissimilarity measures). The 31 LBBB and 31 MI

anterior septal subjects yield two distinct clusters when the self-

organizing process reaches the stable phase. It is worth mentioning

that this self-organizing process is not a supervised classification

method, but rather a visualization method to represent pattern

similarities and dissimilarities of 3D QRS loops. As such, we can

visually discern the patient-to-patient closeness of VCG patterns.

3.4. Self-organizing visualization of healthy, LBBB and MI anterior

septal subjects

Furthermore, Fig. 9(a) shows the scatter plot of nodes of 31 healthy,

31 LBBB and 31 MI anterior septal subjects in the 3D space. The self-

organization of 3D QRS patterns shows three distinct groups, which are

derived on the basis of dissimilarity matrix among patients. There is

only one healthy subject falling into the MI anterior septal group. It

takes approximately 470 iterations (~97 s) for the self-organizing

algorithms to reach the stable structure of the 93-patients network.

The performance results and computing time are shown in the

animation video that is available at (https://youtu.be/

RKpVpVlHTGM). It may be noted that 97 s includes the visualization

and animation. The computing time without animation is about 19.2 s

for 3 groups of 93 patients.

Fig. 9(b) shows the iterative variations of network energy for the

self-organizing process. Note that the algorithm drives the network

energy to keep decreasing and stays stable after 200 iterations. Such

experimental results show that (i) each cardiac condition shares

similarities of cardiac electrical activity within its own group, but yields

bigger dissimilarities from other groups; (ii) such pattern similarities

and dissimilarities could be leveraged to visualize the clustering of

subjects. However, the proposed self-organizing algorithm enables the

pattern matching of VCG signals for visualizing the distribution of

subjects and cardiac conditions.

3.5. Convergence of self-organizing visualization

The self-organizing process derives a stable structure of the network

by preserving the patient-to-patient edge weights (i.e., dissimilarity

matrix), thereby grouping homogeneous patients into sub-network

clusters. This self-organizing process will converge if the incremental

decrease of network energy E∆ is smaller than a threshold ε (i.e.,

E ε∆ < ), where E E k E k∆ = ( )− ( + 1) is the iterative difference of energy

drop and ε = 0.00001 is the threshold to detect the stable period in the

variations of network energy. At each step, the spatial location of node i

will move along the direction of combined force sf i α γ( , , , ) for a

magnitude ϑ. Note that the algorithmic convergence is influenced by

system parameters α γ, , ϑ. The literature showed that the variations of

parameters α γ, in the attractive and repulsive forces will not change

the final structure of network but yield an isomorphic structure only in

difference scales [16,17]. However, the magnitude ϑ greatly impacts

the speed of convergence in the self-organizing algorithm. If the

magnitude ϑ is too large, the convergence speed is fast but the final

structure of the network will not be stable. If the magnitude ϑ is too

small, the convergence speed is slow. Therefore, we propose three

adaptive schemes to update the magnitude of move step for network

nodes: (1) If the network energy continues to decrease for 5 iterations,

the magnitude ϑ will be increased to ϑ/0. 9; ii) If the network energy

Fig. 8. The 3D scatter plot of node coordinates of LBBB (red triangles) and MI anterior

septal (magenta diamond) subjects in the network. The animation video is available in

this link: https://youtu.be/y3OEGdEhpgY.

Fig. 9. (a) The 3D scatter plot of node coordinates of healthy, LBBB and MI anterior

septal subjects in the self-organizing network. The animation video is available in this

link: https://youtu.be/RKpVpVlHTGM; (b) The iterative variations of network energy for

the self-organizing process.
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increases in one iteration, the magnitude ϑ will be decreased to

0. 9 × ϑ; iii) otherwise, the magnitude stays the same.

3.6. Supervised classification vs. self-organizing visualization

The proposed self-organizing methodology is significantly different

from traditional classification approaches. The present study focuses

on unsupervised learning (or pattern visualization) instead of super-

vised classification. Unsupervised learning is different from supervised

classification because there is no training, validation or test dataset.

Supervised classification starts with a training data set. The observa-

tions in a training data set are known as training cases. The variables

are separated to input predictors and target responses. The purpose of

the training data is to generate a classification model that is a concise

representation of the association between input predictors and target

responses. The predictions made by the classification model on testing

data are based on the associations learned from the training data. As

shown in Fig. 10, the training data is used to construct a model that

associates input predictors to target responses. If there are only two

categories of cardiac conditions, the predictions are related to a

categorical target variable (i.e., category A or B). In addition, cross

validation is often utilized to improve the generalization of classifica-

tion models that avoid the bias and “overfitting” problems in the

learning of association rules. For example, K-fold cross validation

partitioned the entire dataset into K disjoint and equalized folds, in

which K-1 folds are used as the training dataset and the remaining 1

fold is for testing. This process is repeated K times until each of the K

folds is used once for testing [14]. Supervised classification uses three

performance measures, i.e., accuracy, sensitivity, and specificity. The

accuracy is the ratio of subjects correctly identified in the testing set.

Sensitivity measures the proportion of positives which are correctly

identified as such, while the specificity measures the proportion of

negatives correctly identified.

However, this investigation presents a new unsupervised approach,

named self-organizing network, to group patients based on pattern

similarities in QRS loops of 3D VCG. First, the entire dataset is not

separated into training and testing sets. Instead, the self-organizing

algorithm is developed to discover the patterns hidden in the entire

dataset and then represent patients by a number of clusters based on

pattern similarities. The self-organizing visualization is greatly distin-

guished from traditional supervised classification. However, such self-

organizing clustering is also useful as a step in predictive modeling. For

example, patients can be clustered into homogeneous groups based on

pattern similarities and dissimilarities. Then a predictive model can be

built to predict the cluster membership based on the pattern of QRS

loops of a new patient.

4. Discussion

4.1. Predictive values of self-organizing pattern matching

The present study focuses on the 3D pattern dissimilarity of VCG

signals and the self-organizing approach to match 3D CVG patterns for

the construction of patient dissimilarity network. When nodes are self-

organized to preserve the patient-to-patient dissimilarities, spatial

locations of network nodes are optimized to cluster patients into

homogeneous groups. As a result, each node's location in the network

is analogous to the locator of each patient in the disease groups. Node

locations provide invaluable information that can be used as input

variables by the classification model to predict cardiac conditions. In

this present study, Fig. 7 shows that healthy and LBBB subjects are

clustered into distinct groups that can be easily separated with a linear

hyperplane with 100% accuracy. Similarly, Fig. 8 shows that LBBB and

MI anterior septal subjects are also easily separable with a linear

hyperplane with 100% accuracy. Note that sophisticated classification

models are not necessary because two clusters are visually separable. In

addition, Fig. 9 shows that three categories of healthy, LBBB and MI

anterior septal subjects are also shown in 3 different clusters. There is

only one healthy subject falling into the MI anterior septal group.

Experimental results showed that healthy, LBBB and MI anterior septal

subjects are discernible using 3D QRS vector loops because the QRS

segment is closely pertinent to ailments in ventricular depolarization

such as LBBB and ventricular septal MI. However, if the objective is to

predict disorders in atrial depolarization or repolarization, it may be

necessary to perform pattern matching of the vector loops of P wave

instead of QRS in 3-lead VCG.

Further, this present study considered the offline data of 3-lead

VCGs from the database. The developed algorithms are also applicable

for the online pattern matching and self-organization of 3-lead VCGs.

As shown in Fig. 11, when a new patient is wearing a portable VCG

recorder, 3-lead VCG recording will be collected in real time. In the

practice, each new patient can also enter the clinics for cardiovascular

diagnostics. As such, the new patient's pattern dissimilarity will be

measured against the database of N patients. Then, a new row and

column will be obtained in the dissimilarity matrix, and a new node will

be embedded in the high-dimensional network. Finally, classification

models can be developed to predict cardiac conditions with node

coordinates. Fig. 11 shows the general framework to integrate pre-

dictive modeling with self-organizing pattern matching for on-line

prediction of cardiac conditions using 3-lead VCGs. The success of such

clinical decision support systems depends to a great extent on the

available VCG patterns in the database, as well as the computational

efficiency of self-organizing algorithms when facing a large number of

Fig. 10. The framework to learn the supervised classification model.

Fig. 11. The framework to integrate predictive modeling with self-organizing pattern

matching.
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patients in the database.

4.2. Pattern matching of multi-lead electrocardiograms

This investigation focuses on the pattern matching of QRS loops in

3-lead VCG, but the algorithm for dissimilarity measure is generally

applicable to multi-lead electrocardiograms. However, it may not be

necessary to perform pattern matching of 12-lead ECG. Many previous

works showed that 12-lead ECG can be derived from 3-lead VCG with a

linear transformation matrix (i.e., Dower transform). Over 90% of ECG

energy can be represented in the 3-dimensional VCG subspace [18].

Dower transform between 12-lead ECG and 3-lead VCG was demon-

strated to preserve clinically useful information pertinent to space-time

cardiac electrical activity. Note that 12-lead ECG systems are designed

to provide multi-directional views of space-time cardiac electrical

activity, while 3-lead VCG views cardiac electrical activity along 3

orthogonal planes of the body, namely, frontal, transverse, and sagittal

[19]. As 12-lead ECG has higher dimensionality than 3-lead VCG, this

often causes the “curse of dimensionality” in computer analysis. The 3-

lead VCG avoids the information loss in 1-lead ECG and overcomes the

dimensionality issue in 12-lead ECG [20]. Hence, we propose to use the

3-lead VCG in this present investigation for the pattern match of QRS

loops.

This present investigation synthesized 3-lead VCG from 12-lead

ECG with the inverse Dower transform. First, we pre-process the 12-

lead ECG printout from GE MUSE Cardiology Information System to

obtain the digitized 12 ECG data. Second, 12-lead ECG is transformed

to 3-lead VCG with the inverse Dower matrix. Finally, 3-lead VCG is

utilized for pattern matching and self-organizing visualization. Hence,

this paper provides a viable solution for pattern analysis of VCG with

the existing 12-lead ECG system, as opposed to purchasing a new set of

VCG systems (e.g., Frank orthogonal lead system). On the other hand,

this present study shows strong potentials and does not preclude the

use of Frank lead system for pattern matching of 3-lead VCGs.

4.3. Implications for big data and large-scale computing challenges

Although the present investigation is a pilot study with 93 patients,

there are strong implications for large-scale learning of patient groups.

It may be noted that pervasive sensing and mobile computing

generates big data in the era of Internet of Things (IoT). For example,

our prior work developed an IOT system, named Mobile and E-network

Smart Health (MESH), integrating mobile ECG sensing with network

analytics for smart cardiac monitoring [21]. The presence of big data

will indeed provide an unprecedented opportunity. However, there are

also great challenges on the computation of dissimilarity measures for

a large number of patients and the construction of a large-scale self-

organizing network.

Thanks to the next-generation technology of cloud computing,

which is a promising and viable solution for big data analytics. The

big data challenges can be addressed by leveraging distributed comput-

ing resources and accelerating information processing through them.

For instance, parallel computing with distributed computers or mobile

phones in the internet will assist in the large-scale computation

problem. The increasing availability of smartphones empowers the

collection of ECG/VCG signals using extremely portable sensing

devices. The proposed self-organizing network algorithms have great

potentials to be integrated with mobile cloud computing to construct a

large-scale patient dissimilarity network. The patients will possess a

unique location in the network. Sub-network communities are homo-

geneous disease groups.

In the future, we foresee that the large-scale medical IoT system will

be composed of many networked agents at different scales such as ECG

sensors, mobile devices, cardiac patients, physicians, emergency cen-

ters and hospitals around the world. Such an IoT system enables

physicians and cardiologists to access patients’ data anytime and

anywhere through authorized mobile devices, such as smartphones

and tablets. Real-time computation and continual update of patients’

conditions in the large-scale IOT system will help make early identi-

fication of cardiac diseases and deliver timely treatments to life-

threatening disorders.

5. Conclusions

We propose a novel system which identifies pattern differences in

3D VCG loops and uses an automated iterative algorithm to character-

ize the dissimilarity between electrocardiographic patterns. Very little

has been done to perform self-organizing visualization of pattern

dissimilarity between VCG signals and derive the patient dissimilarity

network. This study represents 93 patients as nodes in a 3-dimensional

network. Nodes are iteratively relocated by the developed self-organiz-

ing algorithm to preserve the patient-to-patient dissimilarity matrix.

Upon the network convergence, node locations of 93 patients auto-

matically emerge into 3 distinct areas of healthy control, LBBB and MI

(anterior septal). Self-organizing pattern matching of VCG QRS loops is

a data-driven method that effectively groups patients whose ailments in

ventricular depolarization are akin to each other. The proposed new

approach of self-organizing network is shown to effectively differentiate

the variations of 3D patterns of VCG signals and provide patient-to-

patient dissimilarity information that cannot be otherwise achieved

through the parameters extracted in the time domain. Although

medical professionals perform ECG diagnoses every day. However, it

is often difficult to visually inspect a large number of ECGs to check the

pattern dissimilarity. Most importantly, the visualization of the close-

ness of signal patterns from multiple patients in the space is conducive

to better understand the disease mechanisms (conduction pathway) in

addition to diagnostic values. This study provides a new approach to

enable the visualization of such information, as opposed to a black-box

classification model (difficult to interpret). The clinical utility in future

applications of a large-scale patient dissimilarity network will lead to

more insights into cardiac pathophysiology.
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