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ARTICLE INFO ABSTRACT

QRS morphology is commonly used in the electrocardiographic diagnosis of ventricular depolarization such as
left bundle branch block (LBBB) and ventricular septal infarction. We investigated whether pattern matching of
QRS loops in the 3-dimensional vectorcardiogram (VCG) will improve the grouping of patients whose space-
time electrical activity akin to each other, thereby assisting in clinical decision making. First, pattern
dissimilarity of VCG QRS loops is qualitatively measured and characterized among patients, resulting in a
93x93 distance matrix of patient-to-patient dissimilarity. Each patient is then represented as a node in the
network (or a star in the galaxy), but node locations are optimized to preserve the dissimilarity matrix. The
optimization is achieved with a self-organizing algorithm that iteratively minimizes the network energy.
Experimental results showed that patients’ locations converge as the representation error reaches a stable
phase. The convergence is independent of initial locations of network nodes. Most importantly, 93 patients are
automatically organized into 3 clusters of healthy control, LBBB, and infarction. Spatial coordinates of nodes (or
patients) are evidently novel predictors that can be used in the computer-assisted detection of cardiac disorders.
Self-organizing pattern matching is shown to have strong potentials for large-scale unsupervised learning of
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patient groups.

1. Introduction

The Electrocardiogram remains the most commonly performed
cardiac test, which is essential to the diagnosis and management of a
large number of cardiac pathologies. Given the large number of ECG
acquired daily, computerized interpretation of tracings can be extre-
mely time-saving and conducive to clinical decision support [1]. For
this reason, automated computer programs have nowadays become a
fixed feature in the great majority of commercially available ECG
devices. As the computer diagnostic accuracy of interpretation is often
considered too low, the majority of ECGs will be over read by a
qualified physician [2]. The increasing mismatch between competent
cardiologists and the increasing number of ECGs obtained has gener-
ated a number of dissenting opinions [3,4] including Guidelines
recommendations [5] where automated interpretation of ECG is part
of the patients’ initial assessment. Existing ECG algorithms mainly
focus on a time-scale representation of cardiac electrical events
ignoring a large amount of information contained in the spatial
distribution of the ECG. Therefore, there is a need to study new
vectorcardiographic methods to examine the dissimilarity of space-
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time electrical activity in the heart.

Among many cardiac pathologies, left bundle branch block (LBBB)
is an electrocardiographic diagnosis based on QRS patterns such as
time duration, morphology, notching or slurring. Such diagnostic
criteria play important roles in the selection of LBBB patients for
cardiac resynchronization therapy (CRT). It is worth mentioning that
QRS area of 3-lead VCG was recently shown to effectively predict the
CRT responses and equivalently perform as well as the state-of-the-art
ECG definition of LBBB [6]. The effectiveness of VCG for the
optimization of CRT therapy was demonstrated in the experimental
study of canine left bundle branch block hearts [7]. In addition, the
VCG feature of QRS-T area angle was shown to effectively predict
sudden cardiac death after acute coronary syndromes [8]. Note that
ECGs are time-domain projections of 3-dimensional propagation and
conduction of electrical activity of the human heart, while 3-lead VCG
presents the added space-time information. Although 12-lead ECG
presents such spatiotemporal activity along 12 different perspectives,
the loss of spatial information in each temporal ECG tracing under-
mines the complete picture of 3D cardiac electrical activity [9,10].

In addition, the blockage of bundle branches can take place at
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Fig. 1. The ensembles of 3-lead VCG, x y z respectively, from 31 subjects of (a) healthy control, (b) LBBB and (c¢) MI (anterior septal).

different locations of the heart and with complications such as
myocardial infarction [11]. The spatial locations of blocked branches
or infarcted lesions lead to the variations of ventricular depolarization
and cardiac electrical activity in both space and time. Therefore, there
are variations in the QRS morphology of ECG signals from LBBBs and
myocardial infarctions. As traditional temporal ECG tracings diminish
important spatial information, automated algorithms can be signifi-
cantly influenced by such an information loss. There is a need to extract

useful space-time information from 3-lead VCG and fully exploit the
spatiotemporal knowledge to improve the effectiveness of automated
algorithms for computerized interpretation of tracings.

This paper focuses on the unsupervised visualization of patient
dissimilarity through pattern matching of VCG signals, as opposed to
classification (i.e., supervised learning and training). QRS morphology
is commonly used in the electrocardiographic diagnosis of ventricular
depolarization such as left bundle branch block (LBBB) and ventricular
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Fig. 2. The boxplot of QRS time duration for healthy control, LBBB and MI (anterior
septal).

septal infarction. In this investigation, we hypothesized that pattern
matching between QRS loops in 3D VCG improves the grouping of
patients whose electrical activity akin to each other, thereby assisting in
clinical decision making of LBBB and myocardial infarctions. This is
based on the premise that if two subjects share similar space-time
trajectories and moving paths in QRS loops of 3D VCG, their electrical
activities of ventricular depolarization are also akin to each other. The
first step is to develop quantitative measures of pattern similarity and
dissimilarity between 3D QRS loops, which should combine pertinent
information about the time duration, morphology, notching/slurring,
area of QRS loops. Once the patient-to-patient dissimilarity matrix is
obtained, the second step is to exploit the acquired knowledge of
pattern dissimilarity for optimal clinical decision making. Although 12-
lead ECG is standard practice in the state of the art, time-domain
interpretation often overlooks the electrical activity in the 3D space. As
electrical activity is conducted and propagated in the 3D human heart,
new vectorcardiographic methods are needed to characterize the
pattern variations of space-time electrical activity in the heart and
predict cardiac ailments.

This paper presents new methods to quantitatively measure the
pattern dissimilarity of 3D QRS loops, innovatively represent each
patient as a node in the network that preserves the patient-to-patient
distance matrix, and iteratively self-organize nodes to visualize patient
grouping in the network. Experimental results showed that node
locations converge as the representation error reaches a stable phase.
Spatial coordinates of nodes (or patients) provide a new way to
examine the closeness of signal patterns in the space, which is
conducive to develop a better understanding of the disease mechanisms
(conduction pathway). This pilot study shows strong potentials to
establish a large-scale patient dissimilarity network that will enable
and assist the visualization of VCG pattern similarity, characterization
of VCG pattern variations, cluster subjects with similar cardiac
electrical activity in groups, and further predict cardiac ailments.

2. Materials and methods
2.1. Dataset

The 12-lead ECGs from 93 patients, equally divided among healthy
control, left bundle branch block (LBBB) and antero-septal myocardial
infarction (MI) are retrospectively collected from the GE MUSE
cardiology management information system at the James A. Haley
Veterans’ Hospital. This study is performed according to the protocol
approved by the Institutional Review Board (IRB) of the same hospital.
The dataset is completely de-identified to protect privacy and contains
only the electrocardiographic tracing. The demographic information is
not included in the dataset in this pilot study. The ECGs have been
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reviewed by an experienced Cardiologist and the diagnosis confirmed
based on accepted criteria. Note that 12-lead ECG is commonly used in
the clinical practice and is readily accessible from the MUSE cardiology
information system. However, 3-lead VCG is not generally recorded
and stored in the MUSE system at the James A. Haley Veterans’
Hospital. Although prior work shows the need to customize transfor-
mation matrices (i.e., from 12-lead ECG to 3-lead VCG) for a subject
[12], it is difficult to develop different transformation matrices in the
present study. As such, we pre-process the 12-lead ECG printout from
GE MUSE Cardiology Information System to obtain the digitized 12
ECG data. Then, a generalized Dower transform was used to synthesize
the 3-lead VCG from 12-lead ECG [13]. This brings the flexibility to
utilize readily available ECG data in the current practice and avoid the
investment of new VCG systems.

Initial evaluation of time-domain X, Y, Z ensembles of 3-lead VCG
of the three groups is performed to assess the variations between three
datasets. Differences in QRS time duration, morphology, notching/
slurring among the groups were evaluated. Fig. 1a shows the time-
domain X, Y, Z ensembles of 3-lead VCG from 31 subjects of healthy
control, LBBB, and MI. It may be noted that there are significant
variations within each category of cardiac conditions. Among these
three categories, there are also differences in QRS time duration,
morphology, notching/slurring, area. However, a single parameter is
not sufficient enough to differentiate three categories.

Fig. 2 shows the boxplot of QRS time duration for healthy control,
LBBB and MI. The red line in the middle of boxplot represents the
median, the blue box shows the lower quartile and upper quartile of
data distributions, and the black dash lines represent the most extreme
values within 1.5 times the interquartile range. Outliers are shown as
the red cross in the box plot [14,15]. The box plot shows that QRS time
durations are not normally distributed, but instead yield a skewed
distribution. As such, means and standard deviations are not sufficient
to fully characterize the distribution of QRS time durations. Note that
the mean and standard deviation of QRS time durations are 131.6 +
11.3, 165.2 + 17.8, and 90.2 + 26.9 ms for healthy control, LBBB, and
anterior-septal MI, respectively. Although means are significantly
different, there are overlaps in the box plot of QRS time durations
among three categories. While QRS time duration is one parameter
describing pattern dissimilarity of VCG, it is challenging to design a
composite parameter that integrates the dissimilarity measures of QRS
time duration, morphology, notching/slurring, area.

As shown in Fig. 3, QRS loops of 3D VCG yield different
spatiotemporal paths for healthy control, LBBB, and MI (anterior
septal), including the 3D morphology, area, length (i.e., QRS time

s Normal
Anterior Septal

0.5 4

04

0.5 4

1
0 0.5

Fig. 3. The QRS loops of 3-lead VCG for 3 subjects in the control, LBBB and MI group
respectively.
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Fig. 4. (a) Pattern matching of misaligned ECG signals leads to a bigger dissimilarity for two alike ECG signals; (b) Aligned ECG signals according to electrical activity of heart
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Fig. 5. (a) Dissimilarity matrix among patients; (b) Network embedding to optimize node-to-node distances that preserve the dissimilarity matrix.

duration), angle (i.e., electrical axis). We hypothesized that 3D pattern
matching provides dissimilarity information that cannot be otherwise
achieved through the parameters extracted in the time-domain ECGs.
This is mainly because time-domain ECGs are projections of 3D cardiac
electrical activity. Therefore, we propose to develop a composite
measure of pattern dissimilarity through pattern matching of 3D VCGs.

2.2. Quantitative measure of dissimilarity among VCG waveforms

Fig. 3 shows that there is significant space-time dissimilarity among
QRS loops of 3D VCG of healthy, LBBB and MI-septal subjects. Pattern
matching of 3D QRS loops is a new way to identify various types of
disorders in the ventricular depolarization. As shown in Fig. 4, two
ECG signals are often misaligned because of heart rate variability,
phase shift, and discrete sampling. Fig. 4a shows that a bigger
dissimilarity will be resulted for two alike ECG signals if time indices
are not properly aligned. It is imperative to align the ECG signals in
terms of cardiac electrical activity (see Fig. 4b). In other words, such an
alignment is critical to compare the corresponding electrical activity of
heart chambers. For example, we should compare ventricular depolar-
ization (i.e., QRS loops) for two subjects (or cycles), as opposed to an
incorrect comparison between atrial depolarization (P loop) and
ventricular depolarization (QRS loop).

In this investigation, we developed a new warping approach to align
3D VCG vector loops from two subjects and then measure the pattern
dissimilarity between them [14]. Note that the alignment of QRS loops
in both space and time is critical to compare the electrical activity of
ventricular depolarization. If there are two 3D VCG QRS loops
fv:(t),t =1, ...,N, and };(t),t =1, ...,N,, their dissimilarity measure is
calculated as Z( 1o17)€path IE:(Z,-) - z(tj)H by the alignment parh. We used
the dynamic programming (DP) method to search the optimal path that
connect (1, 1) to (N, N,) in the 2-dimensional lattice. The algorithm
starts at the initial condition: D(1,1) = d(1, 1) = [[y; () = ¥, (1))l and the

search window | #;, — ;1 < r, and then searches forward iteratively as:

D(t,, tj—1)+d(t,-, 1)
D(z, tp=min| D(6;=1, 1= 1)+d(1;, 1;)
D(ti—l,tj)+d(ti, t) 1)

Finally, the dissimilarity measure of two 3D QRS loops is calculated

TN N, )

Note that Mand N, are the length of }: and }; that are corresponding
to the time durations of QRS loops. The distance measure
d(t, ;) = ||};(t,-) —};(tj)ll captures the morphology, notching/slurring,
and area of QRS loops along the alignment path.

2.3. Self-organizing network of VCG QRS waveforms

Furthermore, we propose to treat patients as nodes in the network
and dissimilarity distance between 3D VCG waveforms as the weights
of edges. As shown in Fig. 5a, patient-to-patient dissimilarity matrix
provides information pertinent to the pattern variations of 3D VCG
QRS loops among patients. It may be noted that each patient's
dissimilarity to himself or herself is 0 and dissimilarity measures to
all other patients are captured in the matrix. Fig. 5b shows a network of
nodes with the dissimilarity distances as the weights of the edges.
Ideally, this analysis should optimize the locations of nodes in the
network so that node-to-node distances preserve the patient-to-patient
dissimilarity measures in the matrix of Fig. 5a.

Based on our previous work on self-organizing networks [16,17],
we derive the self-organizing network of patients. Let G={V, E, W} be
the directed and weighted network, where V is the set of nodes, E is the
set of edges, and W is the set of weights (i.e., dissimilarity measure) on
each edge. We utilized the spring-electrical model to assign two forces,
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i.e., attractive and repulsive forces between nodes. As this network is
fully connected, repulsive and attractive forces exist between any pair
of nodes (i.e., patients). The repulsive force is defined as

N 1 b

G R ®)
where o regulates the amplitude of repulsive force, s(i) and s(j) are
spatial locations of node i and nodej. The repulsive force is propor-
tional to the edge weight between two nodes (i.e., dissimilarity),
because a bigger repulsive force is expected to separate two nodes
when they have a bigger weight (i.e., bigger dissimilarity). The
attractive force is defined as

4
£ ) = lIs@)=sG) P, wi, j) # 0 @

where y is the natural spring force. The attractive force is inversely
proportional to edge weight between two nodes (i.e., dissimilarity),
because a bigger attractive force will pull two nodes closer when they
have a smaller weight (i.e., smaller dissimilarity). The combined force
on a node i is the summation of all repulsive forces and attractive forces
on the node:

)] v
is,a,y)=), — ———(s(i) — s(j WGl ls(i) — s()l
f.s a.p) % i = s s('»+,-§-e D ls(@) = sG)
I(s(0) — s() (5)

where i & j means node i and node; are linked, s(i)—s(j) is the force-
directional vector, which is separated from f.(i, j) and f, (i, j) to define
the direction of combined force f(i, s, a, y). The self-organizing
process minimizes the total energy of the network as follows:

Min{Energy(s, a, y)} = Mins{Zfz(i, s, a, y)}

ieN

(6)

As a result, the self-organizing process optimizes spatial locations of
network nodes that preserve the edge weights between nodes (i.e.,
dissimilarity distances between patients). Note that if the parameters
a, y are varied, the relative locations of nodes will not change
significantly but a similar topology in different scales. See details on
the optimization algorithms in our previous work [16,17]. As the
network energy converges, nodes are self-organized in the 3D space
and yield a unique topology. Such a self-organizing process drives
nodes in the 3D space to preserve the patient-to-patient dissimilarity
measures. Our hypothesis is that pattern matching between QRS loops
in 3D VCG improves the grouping of patients whose space-time
electrical activity akin to each other. This hypothesis will be tested
using the dataset of QRS loops of 3D VCG from 93 patients in three
categories, namely healthy control, LBBB and MI (anterior septal) that
will be detailed in the next section.

3. Results
3.1. Dissimilarity matrix among VCG waveforms

Fig. 6 shows the dissimilarity matrix of 93 patients in 3 categories
of healthy, LBBB, and MI subjects. The dissimilarity measure is
mapped onto a color scale. The small distances are in blue colors with
a gradual transition to the large distances in red colors. Note that the
dissimilarity matrix is symmetric with on-diagonal squares represent-
ing the within-group dissimilarities and off-diagonal squares repre-
senting the dissimilarities across groups. As shown in Fig. 6, within-
group distances are smaller than across-group distances. The on-
diagonal squares are mainly in blue colors, while off-diagonal squares
show light blue and red colors. From the color mapping visualization of
the dissimilarity matrix, it is not an easy task to visually discern the
patterns for 3 groups. But it may be noted that LBBB group yields the
biggest difference from the other two groups. A new method to
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Fig. 6. Color mapping plot of dissimilarity matrix of healthy, LBBB, and MI subjects.

construct the patient dissimilarity network is urgently needed.

In addition, the dissimilarity matrix cannot be directly used for the
purpose of decision making because it records the subject-to-subject
dissimilarity instead of predictors for each subject. Such a dissimilarity
matrix is a critical component for unsupervised clustering as opposed
to supervised classification. Therefore, we propose a new idea to treat
patients as nodes in the network and dissimilarity distance as the
weights of edges. As a result, we will be able to visualize the clustering
or grouping of 93 patients in the network if the network is self-
organized according to the edge weights. Spatial coordinates of nodes
(or patients) can be used as locators (or features) to assist in the clinical
decision making.

3.2. Self-organizing visualization of healthy vs. LBBB subjects

Fig. 7 shows the scatter plot of nodes of 31 healthy and 31 LBBB
subjects in the 3D space. The X-, Y-, Z- scales provide the magnitudes
and locations of nodes. The proposed self-organizing algorithm auto-
matically organizes the spatial locations of network nodes based on the
edge weights in the patient-to-patient dissimilarity matrix. The edges
between nodes are not drawn in the network, because a large number
of edges will cover the scatter plot. First, 93 nodes are randomly
distributed in the 3D network (see the animation in Fig. 7). It takes
approximately 260 iterations (~37 s) for the self-organizing algorithms
to reach the stable structure of the network. The performance results
and computing time are shown in the animation video that is available
at (https://youtu.be/8Kbp3bXL16k). The stable structure means that
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Fig. 7. The 3D scatter plot of node coordinates of healthy (blue squares) and LBBB (red
triangles) subjects in the self-organizing network. The animation video is available in this
link: https://youtu.be/8Kbp3bXL16k.
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Fig. 8. The 3D scatter plot of node coordinates of LBBB (red triangles) and MI anterior
septal (magenta diamond) subjects in the network. The animation video is available in
this link: https://youtu.be/y30OEGdEhpgY.

the spatial locations of nodes converges and do not vary anymore in the
3D space. The iterative variations of the structure of self-organizing
networks are shown in the animation link of Fig. 7. It is remarkable
that healthy and LBBB subjects yield two distinct clusters in this self-
organizing network. This demonstrates that the self-organizing
algorithm effectively enables and assists (i) the derivation of stable
network structure according to the edge weights (i.e., dissimilarity
among patients); (ii) the clustering of patients whose electrical activity
akin to each other in the 3D space; (iii) the extraction of pertinent
information about cardiac electrical activity in the form of spatial
coordinates of network nodes. This algorithm is not only capable of
visualizing patients with similar patterns of QRS loops in the 3D space,
but also provides a new way to assist in the clinical decision making.

3.3. Self-organizing visualization of LBBB vs. MI anterior septal
subjects

Fig. 8 shows the scatter plot of nodes of 31 LBBB and 31 MI
anterior septal subjects in the 3D space. It may be noted that the self-
organizing process drives the nodes to automatically cluster according
to edge weights (i.e., dissimilarity measures). The 31 LBBB and 31 MI
anterior septal subjects yield two distinct clusters when the self-
organizing process reaches the stable phase. It is worth mentioning
that this self-organizing process is not a supervised classification
method, but rather a visualization method to represent pattern
similarities and dissimilarities of 3D QRS loops. As such, we can
visually discern the patient-to-patient closeness of VCG patterns.

3.4. Self-organizing visualization of healthy, LBBB and MI anterior
septal subjects

Furthermore, Fig. 9(a) shows the scatter plot of nodes of 31 healthy,
31 LBBB and 31 MI anterior septal subjects in the 3D space. The self-
organization of 3D QRS patterns shows three distinct groups, which are
derived on the basis of dissimilarity matrix among patients. There is
only one healthy subject falling into the MI anterior septal group. It
takes approximately 470 iterations (~97s) for the self-organizing
algorithms to reach the stable structure of the 93-patients network.
The performance results and computing time are shown in the
animation video that is available at (https://youtu.be/
RKpVpVIHTGM). It may be noted that 97 s includes the visualization
and animation. The computing time without animation is about 19.2 s
for 3 groups of 93 patients.

Fig. 9(b) shows the iterative variations of network energy for the
self-organizing process. Note that the algorithm drives the network
energy to keep decreasing and stays stable after 200 iterations. Such
experimental results show that (i) each cardiac condition shares
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Fig. 9. (a) The 3D scatter plot of node coordinates of healthy, LBBB and MI anterior
septal subjects in the self-organizing network. The animation video is available in this
link: https://youtu.be/RKpVpVIHTGM; (b) The iterative variations of network energy for
the self-organizing process.

similarities of cardiac electrical activity within its own group, but yields
bigger dissimilarities from other groups; (ii) such pattern similarities
and dissimilarities could be leveraged to visualize the clustering of
subjects. However, the proposed self-organizing algorithm enables the
pattern matching of VCG signals for visualizing the distribution of
subjects and cardiac conditions.

3.5. Convergence of self-organizing visualization

The self-organizing process derives a stable structure of the network
by preserving the patient-to-patient edge weights (i.e., dissimilarity
matrix), thereby grouping homogeneous patients into sub-network
clusters. This self-organizing process will converge if the incremental
decrease of network energy AE is smaller than a threshold ¢ (i.e.,
AE < €), where AE = E(k)—E(k + 1) is the iterative difference of energy
drop and e = 0.00001 is the threshold to detect the stable period in the
variations of network energy. At each step, the spatial location of node i
will move along the direction of combined force f(i,s,a, y) for a
magnitude 9. Note that the algorithmic convergence is influenced by
system parameters a, y, 9. The literature showed that the variations of
parameters a, y in the attractive and repulsive forces will not change
the final structure of network but yield an isomorphic structure only in
difference scales [16,17]. However, the magnitude 9§ greatly impacts
the speed of convergence in the self-organizing algorithm. If the
magnitude 9 is too large, the convergence speed is fast but the final
structure of the network will not be stable. If the magnitude 9 is too
small, the convergence speed is slow. Therefore, we propose three
adaptive schemes to update the magnitude of move step for network
nodes: (1) If the network energy continues to decrease for 5 iterations,
the magnitude 9 will be increased to 8/0. 9; ii) If the network energy
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increases in one iteration, the magnitude 8 will be decreased to
0. 9 x 9; iii) otherwise, the magnitude stays the same.

3.6. Supervised classification vs. self-organizing visualization

The proposed self-organizing methodology is significantly different
from traditional classification approaches. The present study focuses
on unsupervised learning (or pattern visualization) instead of super-
vised classification. Unsupervised learning is different from supervised
classification because there is no training, validation or test dataset.
Supervised classification starts with a training data set. The observa-
tions in a training data set are known as training cases. The variables
are separated to input predictors and target responses. The purpose of
the training data is to generate a classification model that is a concise
representation of the association between input predictors and target
responses. The predictions made by the classification model on testing
data are based on the associations learned from the training data. As
shown in Fig. 10, the training data is used to construct a model that
associates input predictors to target responses. If there are only two
categories of cardiac conditions, the predictions are related to a
categorical target variable (i.e., category A or B). In addition, cross
validation is often utilized to improve the generalization of classifica-
tion models that avoid the bias and “overfitting” problems in the
learning of association rules. For example, K-fold cross validation
partitioned the entire dataset into K disjoint and equalized folds, in
which K-1 folds are used as the training dataset and the remaining 1
fold is for testing. This process is repeated K times until each of the K
folds is used once for testing [14]. Supervised classification uses three
performance measures, i.e., accuracy, sensitivity, and specificity. The
accuracy is the ratio of subjects correctly identified in the testing set.
Sensitivity measures the proportion of positives which are correctly
identified as such, while the specificity measures the proportion of
negatives correctly identified.

However, this investigation presents a new unsupervised approach,
named self-organizing network, to group patients based on pattern
similarities in QRS loops of 3D VCG. First, the entire dataset is not
separated into training and testing sets. Instead, the self-organizing
algorithm is developed to discover the patterns hidden in the entire
dataset and then represent patients by a number of clusters based on
pattern similarities. The self-organizing visualization is greatly distin-
guished from traditional supervised classification. However, such self-
organizing clustering is also useful as a step in predictive modeling. For
example, patients can be clustered into homogeneous groups based on
pattern similarities and dissimilarities. Then a predictive model can be
built to predict the cluster membership based on the pattern of QRS
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loops of a new patient.

4. Discussion
4.1. Predictive values of self-organizing pattern matching

The present study focuses on the 3D pattern dissimilarity of VCG
signals and the self-organizing approach to match 3D CVG patterns for
the construction of patient dissimilarity network. When nodes are self-
organized to preserve the patient-to-patient dissimilarities, spatial
locations of network nodes are optimized to cluster patients into
homogeneous groups. As a result, each node's location in the network
is analogous to the locator of each patient in the disease groups. Node
locations provide invaluable information that can be used as input
variables by the classification model to predict cardiac conditions. In
this present study, Fig. 7 shows that healthy and LBBB subjects are
clustered into distinct groups that can be easily separated with a linear
hyperplane with 100% accuracy. Similarly, Fig. 8 shows that LBBB and
MI anterior septal subjects are also easily separable with a linear
hyperplane with 100% accuracy. Note that sophisticated classification
models are not necessary because two clusters are visually separable. In
addition, Fig. 9 shows that three categories of healthy, LBBB and MI
anterior septal subjects are also shown in 3 different clusters. There is
only one healthy subject falling into the MI anterior septal group.
Experimental results showed that healthy, LBBB and MI anterior septal
subjects are discernible using 3D QRS vector loops because the QRS
segment is closely pertinent to ailments in ventricular depolarization
such as LBBB and ventricular septal MI. However, if the objective is to
predict disorders in atrial depolarization or repolarization, it may be
necessary to perform pattern matching of the vector loops of P wave
instead of QRS in 3-lead VCG.

Further, this present study considered the offline data of 3-lead
VCGs from the database. The developed algorithms are also applicable
for the online pattern matching and self-organization of 3-lead VCGs.
As shown in Fig. 11, when a new patient is wearing a portable VCG
recorder, 3-lead VCG recording will be collected in real time. In the
practice, each new patient can also enter the clinics for cardiovascular
diagnostics. As such, the new patient's pattern dissimilarity will be
measured against the database of N patients. Then, a new row and
column will be obtained in the dissimilarity matrix, and a new node will
be embedded in the high-dimensional network. Finally, classification
models can be developed to predict cardiac conditions with node
coordinates. Fig. 11 shows the general framework to integrate pre-
dictive modeling with self-organizing pattern matching for on-line
prediction of cardiac conditions using 3-lead VCGs. The success of such
clinical decision support systems depends to a great extent on the
available VCG patterns in the database, as well as the computational
efficiency of self-organizing algorithms when facing a large number of
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(N patients)
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C :> Pattern
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3-lead VCG
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{—| Node Info. <:.:]
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Fig. 11. The framework to integrate predictive modeling with self-organizing pattern
matching.
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patients in the database.
4.2. Pattern matching of multi-lead electrocardiograms

This investigation focuses on the pattern matching of QRS loops in
3-lead VCG, but the algorithm for dissimilarity measure is generally
applicable to multi-lead electrocardiograms. However, it may not be
necessary to perform pattern matching of 12-lead ECG. Many previous
works showed that 12-lead ECG can be derived from 3-lead VCG with a
linear transformation matrix (i.e., Dower transform). Over 90% of ECG
energy can be represented in the 3-dimensional VCG subspace [18].
Dower transform between 12-lead ECG and 3-lead VCG was demon-
strated to preserve clinically useful information pertinent to space-time
cardiac electrical activity. Note that 12-lead ECG systems are designed
to provide multi-directional views of space-time cardiac electrical
activity, while 3-lead VCG views cardiac electrical activity along 3
orthogonal planes of the body, namely, frontal, transverse, and sagittal
[19]. As 12-lead ECG has higher dimensionality than 3-lead VCG, this
often causes the “curse of dimensionality” in computer analysis. The 3-
lead VCG avoids the information loss in 1-lead ECG and overcomes the
dimensionality issue in 12-lead ECG [20]. Hence, we propose to use the
3-lead VCG in this present investigation for the pattern match of QRS
loops.

This present investigation synthesized 3-lead VCG from 12-lead
ECG with the inverse Dower transform. First, we pre-process the 12-
lead ECG printout from GE MUSE Cardiology Information System to
obtain the digitized 12 ECG data. Second, 12-lead ECG is transformed
to 3-lead VCG with the inverse Dower matrix. Finally, 3-lead VCG is
utilized for pattern matching and self-organizing visualization. Hence,
this paper provides a viable solution for pattern analysis of VCG with
the existing 12-lead ECG system, as opposed to purchasing a new set of
VCG systems (e.g., Frank orthogonal lead system). On the other hand,
this present study shows strong potentials and does not preclude the
use of Frank lead system for pattern matching of 3-lead VCGs.

4.3. Implications for big data and large-scale computing challenges

Although the present investigation is a pilot study with 93 patients,
there are strong implications for large-scale learning of patient groups.
It may be noted that pervasive sensing and mobile computing
generates big data in the era of Internet of Things (IoT). For example,
our prior work developed an IOT system, named Mobile and E-network
Smart Health (MESH), integrating mobile ECG sensing with network
analytics for smart cardiac monitoring [21]. The presence of big data
will indeed provide an unprecedented opportunity. However, there are
also great challenges on the computation of dissimilarity measures for
a large number of patients and the construction of a large-scale self-
organizing network.

Thanks to the next-generation technology of cloud computing,
which is a promising and viable solution for big data analytics. The
big data challenges can be addressed by leveraging distributed comput-
ing resources and accelerating information processing through them.
For instance, parallel computing with distributed computers or mobile
phones in the internet will assist in the large-scale computation
problem. The increasing availability of smartphones empowers the
collection of ECG/VCG signals using extremely portable sensing
devices. The proposed self-organizing network algorithms have great
potentials to be integrated with mobile cloud computing to construct a
large-scale patient dissimilarity network. The patients will possess a
unique location in the network. Sub-network communities are homo-
geneous disease groups.

In the future, we foresee that the large-scale medical IoT system will
be composed of many networked agents at different scales such as ECG
sensors, mobile devices, cardiac patients, physicians, emergency cen-
ters and hospitals around the world. Such an IoT system enables
physicians and cardiologists to access patients’ data anytime and
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anywhere through authorized mobile devices, such as smartphones
and tablets. Real-time computation and continual update of patients’
conditions in the large-scale IOT system will help make early identi-
fication of cardiac diseases and deliver timely treatments to life-
threatening disorders.

5. Conclusions

We propose a novel system which identifies pattern differences in
3D VCG loops and uses an automated iterative algorithm to character-
ize the dissimilarity between electrocardiographic patterns. Very little
has been done to perform self-organizing visualization of pattern
dissimilarity between VCG signals and derive the patient dissimilarity
network. This study represents 93 patients as nodes in a 3-dimensional
network. Nodes are iteratively relocated by the developed self-organiz-
ing algorithm to preserve the patient-to-patient dissimilarity matrix.
Upon the network convergence, node locations of 93 patients auto-
matically emerge into 3 distinct areas of healthy control, LBBB and MI
(anterior septal). Self-organizing pattern matching of VCG QRS loops is
a data-driven method that effectively groups patients whose ailments in
ventricular depolarization are akin to each other. The proposed new
approach of self-organizing network is shown to effectively differentiate
the variations of 3D patterns of VCG signals and provide patient-to-
patient dissimilarity information that cannot be otherwise achieved
through the parameters extracted in the time domain. Although
medical professionals perform ECG diagnoses every day. However, it
is often difficult to visually inspect a large number of ECGs to check the
pattern dissimilarity. Most importantly, the visualization of the close-
ness of signal patterns from multiple patients in the space is conducive
to better understand the disease mechanisms (conduction pathway) in
addition to diagnostic values. This study provides a new approach to
enable the visualization of such information, as opposed to a black-box
classification model (difficult to interpret). The clinical utility in future
applications of a large-scale patient dissimilarity network will lead to
more insights into cardiac pathophysiology.
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