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Abstract. Engineered and natural systems often involve irregular and self-similar geometric forms, which
is called fractal geometry. For instance, precision machining produces a visually flat surface, while which
looks like a rough mountain in the nanometer scale under the microscope. Human heart consists of a
fractal network of muscle cells, Purkinje fibers, arteries and veins. Cardiac electrical activity exhibits highly
nonlinear and fractal behaviors. Although space-time dynamics occur on the fractal geometry, e.g., chemical
etching on the surface of machined parts and electrical conduction in the heart, most of existing works
modeled space-time dynamics (e.g., reaction, diffusion and propagation) on the Euclidean geometry (e.g.,
flat planes and rectangular volumes). This brings inaccurate approximation of real-world dynamics, due to
sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we developed novel
methods and tools for the numerical simulation and pattern recognition of spatiotemporal dynamics on
fractal surfaces of complex systems, which include (1) characterization and modeling of fractal geometry,
(2) fractal-based simulation and modeling of spatiotemporal dynamics, (3) recognizing and quantifying
spatiotemporal patterns. Experimental results show that the proposed methods outperform traditional
modeling approaches based on the Euclidean geometry, and provide effective tools to model and characterize
space-time dynamics on fractal surfaces of complex systems.

1 Introduction
Numerical simulation plays an important role in describ-
ing complex phenomena, predicting system behaviors and
optimizing control actions to improve the performance of
system operations. However, many natural phenomena oc-
cur on complex engineered and natural objects that show
irregular and self-similar geometric forms, namely fractal
geometry. For instance, chemical etching is a space-time
process on the surface of silicon wafer [1]. Also, electri-
cal waves propagates on the 2-D tissues of cardiac my-
ocytes [2]. Spatiotemporal simulation provides a better
understanding of space-time phenomena and further leads
to significant economic and societal impacts. It may be
noted that heart disease is responsible for 1 in every 4
deaths in the United States, amounting to an annual loss
of $448.5 billion [3]. Simulation-based optimization of car-
diac treatments will help improve the quality of healthcare
services, reduce healthcare costs and promote the health
of our society.

However, most of previous simulation models were de-
veloped for space-time dynamics (e.g., reaction, diffusion
and propagation) on the Euclidean geometry, e.g., flat
planes and rectangular volumes. Traditional simulation
models consider finite-difference schemes for space-time
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computation on finely spaced grids in 3-D spatial di-
mensions. This brings inaccurate approximation of real-
world dynamics on complex surfaces, due to the sensi-
tive dependence of nonlinear dynamical systems on initial
conditions. It is well known that many engineered and nat-
ural objects show fractal behaviors. For instance, moun-
tain terrain exhibits self-similar geometry across spatial
scales. Heartbeat time series shows self-similar patterns
across temporal scales [4]. Also, human heart consists of
a fractal network of muscle cells, Purkinje fibers, arteries
and veins [5]. In the literature, fractal dimension is com-
monly used to characterize and model the complexity of a
fractal object or time series. Fractal dimension describes
the self-similar behaviors across spatial or temporal scales
and is a quantitative measure of the complexity of fractal
patterns. As the complexity of objects increases, a single
fractal dimension may not be sufficient for system char-
acterization, but rather multi-fractal spectrums are used.
Note that very little has been done to investigate the sim-
ulation model of spatiotemporal dynamics (e.g., cardiac
electrical excitation and conduction) on the fractal geom-
etry. There is an urgent need to investigate the modeling
differences between fractal and Euclidean geometry and
further develop effective simulation models of space-time
dynamics on complex and irregular surfaces.
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On the other hand, dimensionality reduction is
an effective method to project high-dimensional data
into the low-dimensional space, which is widely used
in data analysis. However, little has been done to
leverage dimensionality-reduction techniques to develop
computationally-efficient simulation models of space-time
dynamics on fractal surfaces. Notably, high-dimensional
fractal surfaces can be isometrically mapped onto a
low-dimensional one. As such, space-time simulation of
system dynamics can be efficiently conducted in the
low-dimensional space, which can then be one-to-one pro-
jected onto the original fractal surface. Nonetheless, tra-
ditional dimensionality-reduction techniques, e.g., prin-
cipal component analysis (PCA) and multidimensional
scaling (MDS), only preserve the data structure lying
on a linear subspace of high-dimensional objects. For in-
stance, PCA identifies a low-dimensional surface that best
preserves the data variance as measured in the high-
dimensional surface. Classical MDS finds an embedding
that preserves inter-point distances, which is equivalent to
PCA when those distances are Euclidean. However, fractal
surfaces in the high-dimensional space have essential non-
linear structures that pose significant difficulties to PCA
and MDS methods. In other words, both PCA and MDS
fail to reconstruct true degrees of freedom of fractal sur-
faces. Notably, isometric feature mapping (ISOMAP) is an
extended version of PCA and MDS that handles nonlin-
ear surfaces by preserving geodesic manifold distances [6].
Therefore, we propose to investigate isometric-graphing-
based simulation models of space-time dynamics on fractal
surfaces.

Furthermore, running simulation model of reaction-
diffusion dynamics on fractal surfaces gives rise to spa-
tiotemporal data {Y (s, t) : s ∈ R ⊂ Rd, t ∈ T } (see
Fig. 1), where the dependence of spatial domain R on
time T symbolizes the condition where the spatial do-
main changes over time [7–9]. The next step is to extract
useful information from spatiotemporal data. Tradition-
ally, space-time indexed data is analyzed in two ways:
(i) spatially-varying time series model Y (s, t) = Ys(t),
which separates the temporal analysis for each spatial
location; (ii) temporally-varying spatial model Y (s, t) =
Yt(s), which separates spatial analysis for each time point.
The first model Ys(t) shows specific interests in time-
dependent patterns for each spatial location. The second
model Yt(s) focuses more on space-dependent patterns
for each time point. However, both approaches are con-
ditional methods studying either the space given time or
time given space, and are limited in capturing space-time
correlations [10].

This paper presents a new approach to simulate spa-
tiotemporal dynamics of spiral wave formation and tur-
bulent patterns on fractal surfaces. This present approach
involves four key steps, namely, (i) fractal surface simula-
tion; (ii) isometric graphing for surface characterization;
(iii) dimensionality reduction for reaction-diffusion mod-
eling and (iv) spatiotemporal pattern recognition. First,
fractal surfaces generated by random midpoint displace-
ment algorithm in step (i) are characterized by isometric

Fig. 1. Spatiotemporal data of reaction-diffusion dynamics.

graph approach to extract geodesic distances (i.e., rough
estimation of each data point’s neighbor on the surface).
Second, we simulate and model reaction-diffusion dynam-
ics on the two-dimensional isometric graph, including spi-
ral formation and turbulent patterns. Then, spatiotem-
poral dynamics are one-to-one projected onto the original
fractal surfaces. Third, reaction-diffusion dynamics are in-
vestigated on the 3-D heart model to simulate spatiotem-
poral propagation and conduction of cardiac electrical
activity. Finally, we develop new methods to quantify spa-
tiotemporal patterns on irregular surfaces and investigate
how fractal characteristics change these patterns.

This paper is organized as follows: Section 2 presents
the research background. Section 3 introduces the re-
search methodology. Section 4 shows the first case study
– Fitzhugh-Nagumo (FHN) model. Section 5 presents the
second one – whole heart modeling, and Section 6 dis-
cusses and concludes this investigation.

2 Research background

2.1 Fractal characterization and modeling

Euclidean geometric objects are comprised of lines, planes,
cubes, cylinders, spheres with integer dimensions, 1, 2,
or 3. However, there are many irregular objects that do not
conform to Euclidean geometry. Mandelbrot firstly intro-
duced fractal as “A rough or fragmented geometric shape
that can be subdivided in parts, each of which is (at least
approximately) a reduced/size copy of the whole” [11].
Note that fractals are not limited to spatial patterns, but
can also describe the processes in time. Most of existing
works focused on the following two aspects:

(i) Characterization of fractal dimension: the fractal di-
mension is a statistical measure describing how the
patterns change with the scale at which it is measured.
Monofractal refers to the homogeneous self-similarity
across scales, characterized by a single fractal dimen-
sion. Examples of monofractal dimension used for sys-
tem characterization include physiology [12], gait dy-
namics [13], and geology [14]. However, multifractal
signals or objects require an infinite number of in-
dices (i.e., singularity spectrum) to characterize their
scaling properties. Example applications of multifrac-
tal spectrum include heart rate variability [4], ECG
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signals [15], financial markets [16] and material sci-
ences [17]. Note that box counting method is widely
used to characterize the fractal dimension [11,18]. In
the multifractal case, the probability, P , of a num-
ber of measures appearing in a box, i, varies with the
box size, ε, according to scaling exponents, αi, which

changes over the set, as αi∝ log Pi,ε

log ε−1 . In contrast, the

scaling exponent does not change meaningfully over
the set for monofractals.

(ii) Modeling the fractal object or process: fractals are
usually modeled with an iterative or recursive con-
struction or algorithm. Examples of fractal models to
generate rough surfaces include shear displacement
algorithm [19], diamond-square algorithm [20], and
Fourier filtering algorithms [21]. These algorithms are
widely used in computer games or movies (e.g., star
trek II) to simulate realistic mountains or landscapes.
In addition, structure function method, i.e., the ran-
dom cascade model was utilized to simulate multi-
fractal self-similar behaviors in the heart rate dynam-
ics [22,23]. Heart rate time series r(t) are modeled as a

product of J cascade components: rJ (t) =
∏J

j=1 ωj(t)

and ωj(t) = 1+ξj , where ξj , j= 1, . . . ,J are indepen-
dent Gaussian variables with 〈ξj〉 = 0 and 〈ξiξj〉 =
δijσ

2
j , where δij is the Kronecker delta.

However, fractal literature focuses on either the extraction
of fractal dimensions for system characterization, or the
modeling of fractal geometry. Few, if any, previous studies
investigated the simulation model of spatiotemporal dy-
namics (e.g., cardiac electrical propagation and conduc-
tion) on fractal geometry. Further, modeling differences
between fractal and Euclidean geometry have not been
fully investigated before. It is critical to investigate how
fractal characteristics impact the patterns of spatiotem-
poral dynamics on irregular surfaces.

2.2 Dimensionality reduction

Both simulated and real-world spatiotemporal dynam-
ics bring the proliferation of big data, which is high-
dimensional and difficult to visualize and interpret. In or-
der to explore meaningful patterns underlying big data,
many previous works developed the methods and tools
for dimensionality reduction. Examples of dimensionality
reduction approaches include principal component anal-
ysis (PCA) [24], multidimensional scaling (MDS) [25],
self-organizing map (SOM) [26] and isometric feature
mapping (ISOMAP) [6]. PCA uses an orthogonal transfor-
mation to find the projected data that captures the princi-
pal variations in the original high-dimensional space. Clas-
sical MDS transforms the high-dimensional vectors into
a low-dimensional embedding that preserves Euclidean
distances. Note that the PCA and MDS methods only
characterize linear subspaces in the high-dimensional
data. However, SOM neural network automatically or-
ganizes a low-dimensional map according to the inher-
ent structures in the high-dimensional data. Furthermore,
isometric graphing extends the MDS by preserving
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Fig. 2. Flow chart of research methodology.

geodesic manifold distances, which better characterize
the degrees of freedom that underlie complex natural
observations.

However, most of previous studies focused on the re-
duction of high-dimensional data and then the extrac-
tion of useful information from the low-dimensional data.
Few previous approaches considered the construction of
simulation models in the low-dimensional space, and fur-
ther investigated the projection onto the original high-
dimensional space. This will be an original contribution
of the present paper that is expected to bring compu-
tationally efficient simulation models, and potentially be
transplanted to other simulation domains.

3 Research methodology

This present paper studies the numerical simulation of
spatiotemporal reaction-diffusion dynamics on irregular
surfaces that are generated from the fractal geometry, as
opposed to traditional surfaces in the Euclidean geome-
try. Few, if any, previous investigations have focused on
numerical simulation of fractal surfaces in the reduced-
dimension space and further characterized the spatiotem-
poral dynamic patterns on the fractal surfaces. As shown
in Figure 2, this present paper is embodied by four core
components focusing on numerical simulation on fractal
surfaces, including fractal surface simulation, isometric
graphing, reaction-diffusion modeling, and spatiotemporal
pattern recognition. All four components are eventually
integrated together to develop better simulation models
on fractal surfaces and better understanding of spatiotem-
poral phenomena in real-world complex systems.

3.1 Fractal surface simulation

Fractals objects have irregular geometric forms, and can-
not be well described using topological dimensions. How-
ever, fractal objects often look similar regardless of the
magnification, which is so-called self-similar behaviors.
Many real-world objects exhibit self-similarity, e.g., scrib-
bles, dust, ocean waves, or clouds. If one zooms in or
out the fractal set, there is a similar appearance in the
geometric shape. Hence, fractal dimension is introduced
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Initialization:  
// Start with an square with pixel values at four corners drawn from a Gaussian 
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While  desired iterations 
Center point: 

// The center is the average of its four neighbors plus a random value  
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// The edge point is the average of its neighbors plus a random value  

generated from a Gaussian distribution , where . 

End 

Calculate the fractal dimension: 
// The simulated fractal surface is monofractal and the fractal dimension D  is 

determined as . D

Fig. 3. Random midpoint displacement algorithm for the gen-
eration of fractal surfaces.

to describe such “infinitely complex” fractal objects (or
shape). It is worth mentioning that fractal dimension is
not topological, and needs not to be an integer. Fractal
sets have theoretical dimensions that exceed their topo-
logical dimensions.

As self-similarity across scales is a typical characteris-
tic of fractals, fractal dimension measures the changes of
coverings with respect to the scaling factor. It also char-
acterizes the space-filling capacity of a fractal object. In
the literature, the box-counting method is widely used to
estimate the relationship between scaling and covering so
as to estimate the fractal dimension of an irregular ob-
ject [27]. The basic idea is to cover a fractal set with mea-
sure elements (e.g., box) in different scales and examine
how the number of boxes changes with respect to the scal-
ing factor. If N(a) is the number of boxes that are needed
to cover a fractal object at the scale a, then the fractal
dimension DF specifies how N(a) changes with respect to

the scaling factor a as: N(a) ∝(1/a)
DF . In general, the

box-counting method defines the fractal dimension as

DF := lim
a→0

ln N(a)

ln(1/a)
.

In order to model space-time dynamics on irregular sur-
faces, we will first need to generate the fractals. This
present investigation utilizes the random midpoint dis-
placement method [20] to generate various types of frac-
tal surfaces. Figure 3 shows the detailed steps of the algo-
rithm, which starts with a square with pixel values at four
corners (green triangles in Fig. 4a) drawn from a Gaussian
distribution N(µ, σ2), where µ = 0 and σ = 1. Then, we
recursively generate the center points and edge points at
each step until the stopping criterion is satisfied. The frac-
tal surface generated is monofractal and its fractal dimen-
sion DF can be uniquely determined by the parameters
(i.e., Hurst exponent H) used in the algorithm.

Three key steps in this recursive algorithm (i.e., center
points, edge points and determining fractal dimension) to
generate fractal surfaces are described as follows:

Recursive placement of the center point : for each
square, a center point (e.g., red dot Fig. 4a) is placed
in the middle of X-Y plane, and its height is the average

(a) (b) (c)

Fig. 4. Recursive steps to generate fractal surfaces; (a) the first
iteration, (b) the second iteration, and (c) the fifth iteration.

of its four corners (i.e., green triangles in Fig. 4a) plus a
random value δi generated from a Gaussian distribution
N(µ, σ2

i ). Notably, the variance σ2
i of random perturbation

in the ith iteration is also recursively modified to obtain
a fractal Brownian motion (fBm) surface as

σ2
i =

1

22H(i+1)
σ2 (1)

where H(0 �H� 1) is the Hurst exponent. Then, this pro-
cess is iteratively repeated for each subsquare. Figure 4b
shows the second iteration to place four center points (i.e.,
4 red dots). Each subsquare is formed by 4 corner points
(i.e., green triangles) in Figure 4b. The heights of center
points are the average of four corners in each subsquare
plus a random perturbation. It may be noted that the first
iteration has the biggest influence to the shape of the sim-
ulated surface (i.e., large-scale effects), while the following
iterations have smaller influence (i.e., small-scale details).

Recursive placement of edge points : the position of
an edge point is in the middle of 2 corner points. The
heights of edge points (blue rectangles in Fig. 4a) are
calculated as the average of neighbors plus a random
perturbation δi generated from a Gaussian distribution
N(µ, σ2

i ). The variance σ2
i is also recursively modified as

shown in equation (1). Figure 4a shows the edge points
(i.e., 4 blue rectangles) whose heights are calculated as
the average of three nearest neighbors. This algorithm
leads to nonstationary steps that iteratively generate the
fractal surface. Figure 4c shows a fractal surface gen-
erated from the algorithm with 33 × 33 locations, i.e.,
si = (xi,yi,zi) , i = 1, 2, . . . , 1069, at the fifth iteration. It
may be noted that the surface color represents the height.
The hotter color indicates a higher surface, and the cooler
color represents a lower surface.

Determine the fractal dimension: the fractal surface
provides a better approximation of real-world geomet-
ric objects and landscape. Next, the Hurst exponent H
uniquely determines the fractal dimension of generated
surfaces in the random midpoint displacement algorithm.
The singularity spectrum D(H) provides a statistical dis-
tribution of Hurst exponents H(s) at the locations s

such that H (s)= H, i.e., D (H) = DF ({s: H (s)= H}),
where DF is the fractal dimension. As shown in Figure 3,
the algorithm iteratively generates random perturbations
on the fBm surface and all the locations s have a sin-
gle Hurst exponent H (also see Eq. (1)). As such, the
fractal dimension DF of fBm surfaces is determined as
DF = 3 − H . For example, if the Hurst exponent H is
0.05 in equation (1), then the fractal dimension DF of fBm
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(a) (b)

Fig. 5. Euclidean distance (blue dash line) and geodesic dis-
tance (red solid line) between two locations on the fractal sur-
face. (b) Isometric graph in the 2-dimensional plane that pre-
serves the geodesic distance on the 3-D fractal surface.

surfaces will be 2.95. If the Hurst exponent H is 0.95 in
equation (1), then the fractal dimension DF of fBm sur-
faces will be 2.05. In this investigation, we will generate
different types of fractal surfaces with the fractal dimen-
sions from 2.05 to 2.95, step size 0.05 to study how fractal
characteristics impact spatiotemporal dynamic patterns
on complex surfaces.

3.2 Isometric graphing for surface characterization

The fractal surface simulation process is nonlinear and
nonstationary, which significantly challenges the charac-
terization of geometric structures and surface patterns.
In this present investigation, we introduce the isometric
graphing approach [6] to extract inherent geodesic prop-
erties of the high-dimensional surface. As shown in Fig-
ure 5a, the Euclidean distance between two locations is
represented by the blue dash line, and their geodesic dis-
tance is shown as red solid line. It may be noted that
geodesic distance is the true distance for the reaction-
diffusion dynamics (or electrical conduction) to travel be-
tween two locations instead of the Euclidean distance. As
such, it is imperative to characterize and quantify the in-
trinsic geometry for reaction-diffusion modeling on the
fractal surface. We obtain nonlinear and nonstationary
characteristics of fractal surfaces asymptotically by cap-
turing geodesic manifold distances between all the loca-
tions. These geodesic distances are further utilized to con-
struct the low-dimensional embedding of fractal surfaces.
The proposed approach not only captures the degrees of
freedom of fractal surfaces, but also efficiently yields glob-
ally optimal solutions for dimensionality reduction. This
greatly facilitates the numerical simulation of reaction-
diffusion dynamics in the reduced dimension that will be
detailed in Section 3.3.

The key steps in the isometric graphing algorithm to
characterize the fractal surface and construct the low-
dimensional embedding are described as follows:

(1) Build the graph of k nearest neighbours

Define the k-nearest neighbor graph of the fractal surface
by connecting each location si to its k nearest neighbors

sj , j ∈ {k nearest neighbors of i}. It may be noted that
the choice of value k is based on empirical knowledge of
the subjects of studies and should be effective and suffi-
cient to preserve the local geometry. Then we compute the
distance between locations si and sj as d (i, j), i.e.,

d (i, j) = ‖si − sj‖ =
(

(xi − xj)
2+(yi − yj)

2+(zi − zj)
2
)

1

2

.

Otherwise, spatial locations si and sj are disconnected.

(2) Compute the shortest path between two locations dG (i, j)
on the surface

First, we initialize dG (i, j) = d (i, j) if locations si

and sj are connected in the k-nearest neighbor graph;
dG (i, j) = ∞ otherwise. Then, we utilized the Dijkstra’s
algorithm [28] to compute the shortest path between any
two locations. For each k = 1, . . . , N , all entries dG (i, j)
are replaced by min{dG (i, j) , dG (i, k)+dG (k, j)}. The fi-
nal matrix DG = {dG (i, j)} will contain the distance of
the shortest path between any two locations on the fractal
surface.

(3) Construct low-dimensional embedding

Here, the objective is to derive the isometric graph in
the 2-dimensional plane that preserves the shortest dis-
tance matrix DG on the 3-D fractal surface. It may be
noted that we are reducing the dimension, while preserv-
ing the inherent geodesic properties of fractal surfaces. Let
s̃i and s̃j denote the locations in the isometric graph in the
2-dimensional plane. Then, the objective function is for-
mulated as:

min
∑

i<j

( ‖s̃i − s̃j‖ − dG (i,j) ); i, j ∈ [1,N ] (2)

where ‖·‖ is the Euclidean norm. To solve this opti-
mization problem, the Gram matrix M is firstly recon-
structed from the N × N shortest distance matrix DG:

M = − 1
2QD

(2)
G Q, where the centering matrix Q =

{δij−1/N}N
i,j=1, δij is the Kronecker delta. The D

(2)
G is

a squared matrix and each element is
{

d2
G (i,j)

}N

i,j=1
(i.e.,

the squares of dG (i,j) in the matrix D
(2)
G ). The element

Mij in matrix M is:

M (i,j) = −1

2

[

d2
G (i,j) − 1

N

N
∑

k=1

d2
G (i,k)

− 1

N

N
∑

k=1

d2
G (k,j) +

1

N2

N
∑

g=1

N
∑

h=1

d2
G (h,g)

]

. (3)

It is known that the Gram matrix M is defined as the
scalar product M = S̃S̃T , where the matrix S̃ mini-
mizes the aforementioned objective function. The Gram



Page 6 of 16 Eur. Phys. J. B (2016) 89: 181

matrix M can be further decomposed as: M = V ΛV T =

V
√

Λ
√

ΛV
T
, where V = [v1, v2, . . . , vD′ ] is a matrix of

eigenvectors and Λ = diag(λ1, λ2, . . . , λD′) is a diagonal
matrix of eigenvalues. Then, the matrix of feature vectors
is obtained as: S̃ = V

√
Λ. In this present investigation,

the reduced dimensionality D
′

is 2 because we derive the
isometric graph in the 2-dimensional plane from the 3-D
fractal surface

As shown in Figure 5, the simulated fractal surface
(Fig. 5a) is converted into a isometric graph in the
two-dimensional plane (Fig. 5b), i.e., s̃i = (xi,yi) , i =
1, 2, . . . , N . The isometric graph preserves the shortest
path matrix of geodesic distances DG, thereby preserv-
ing the inherent geodesic properties of fractal surfaces.
The gray nodes represent all N spatial locations, and
the gray lines show the connections between each pair of
neighboring locations (with K = 4 nearest neighbors and
N = 1089 data points). Moreover, the geodetic distance
of two locations in Figure 5a is embedded in the isomet-
ric graph in the two-dimensional plane (see the red solid
line in Fig. 5b), where the blue solid line in Figure 5b
represents a Euclidean approximation to the true geode-
tic distance. Therefore, the proposed approach of isomet-
ric graphing algorithm not only characterizes the inherent
geodesic structure of fractal surfaces, but also provides an
optimal solution for dimensionality reduction that facil-
itates the numerical simulation of reaction-diffusion dy-
namics in the reduced dimension (see next Sect. 3.3).

3.3 Reaction-diffusion modeling in the reduced
dimension

Next, we simulate and model reaction-diffusion dynamics
on the two-dimensional isometric graph (see Fig. 5b). This
present investigation utilized a two-component reaction-
diffusion model on a bounded domain Ω (i.e., isometric
graph) with concentration variables u, v and nonlinear re-
action expressions f, g as

∂u

∂t
= f (u,v) + D1∇2u,

∂v

∂t
= g (u,v) + D2∇2v, (4)

where D1 and D2 are the diffusion constants of concentra-

tion variables u and v, ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 is the Laplacian

operator in the two-dimensional space. We discretize the
reaction-diffusion model at the time index t = 1, 2, . . . , T
and locations i = 1, 2, . . . , N as

(

ut
i − ut−1

i

)

/δt = f
(

ut−1
i ,vt−1

i

)

+ D1∇2ut
i,

(

vt
i − vt−1

i

)

/δt = g
(

ut−1
i ,vt−1

i

)

+ D2∇2vt
i . (5)

Then the reaction-diffusion model can be rewritten as
follows:

(

1−D1δt∇2
)

ut
i = ut−1

i +δtf
(

ut−1
i ,vt−1

i

)

,

(

1−D2δt∇2
)

vt
i = vt−1

i +δtg
(

ut−1
i ,vt−1

i

)

. (6)

(b)(a) 

Fig. 6. Illustrations of the domain Ω with (a) regular grids
and (b) irregular grids.

The matrix form of differential equations will become

⎛

⎝

B1 0

0 B2

⎞

⎠

(

U
t

V
t

)

=

⎛

⎜

⎝

U
t−1+δt·F

V
t−1+δt·G

⎞

⎟

⎠
, (7)

where U
t = [ut

1, . . . , u
t
N ]

T
and V

t = [vt
1, . . . , v

t
N ]

T
,

{F }i = f(ut−1
i , vt−1

i ) and {G}i = g(ut−1
i , vt−1

i ) for i =
1, 2, . . . , N , δt is the time step, B1 and B2 are the matri-
ces of constant coefficients pertinent to the domain Ω and
diffusion constants D1, D2:

B1 = I −D1δt ·

⎡

⎢

⎣

∇
2
u1

...
∇

2
uN

⎤

⎥

⎦
, B2 = I −D2δt ·

⎡

⎢

⎣

∇
2
v1

...
∇

2
vN

⎤

⎥

⎦
, (8)

where I is the identity matrix of size N , ∇
2
ui

and ∇
2
vi

are scalars of size 1 × N , denoting the Laplacian opera-

tor of ui and vi respectively, i.e., ∇
2
ui

· U
t = ∇

2u
t

i and

∇
2
vi
· V t = ∇

2v
t

i. Hence, concentration variables U
t and

V
t at time step t can be solved through the linear equa-

tions A · x = b, where A =

(

B1 0
0 B2

)

is a constant ma-

trix and b =

(

U
t−1+δt·F

V
t−1+δt·G

)

that are from the concentra-

tion variables U
t−1 and V

t−1 at the previous time step
t − 1. Here, the square matrix A can be decomposed as
A = LU through LU factorization, where L is a lower tri-
angular matrix and U is an upper triangular matrix. The
linear equation A · x = b can be solved by forward and
backward substitution [29].

However, it is necessary to formulate the matrices B1

and B2 for the specific domain Ω and diffusion constants
D1, D2. As shown in Figure 6a, the discrete Laplacian
operator at different locations, i.e., corner, edge and mid-
dle, in the regular grid structure can be written as the
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five-point central difference approximation

Corner:

∇2ut
m−1,n−1 =

ut
m,n−1 + ut

m−1,n − 2ut
m−1,n−1

(δx)2
,

Edge:

∇2ut
m−1,n =

ut
m−1,n−1 + ut

m,n + ut
m−1,n+1 − 3ut

m−1,n

(δx)
2 ,

Middle:

∇2ut
m,n =

ut
m+1,n+ut

m−1,n + ut
m,n+1 + ut

m,n−1 − 4ut
m,n

(δx)
2 ,

(9)

where δx is the differences between two adjacent grid
points for both x and y directions. Similarly, ∇2vt

m,n can
be obtained by substituting v for u in equation (9). For a
N = J × J regular grid, equation (8) can be written as

B1 = IN − D1δt

(δx)
2 ·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

E IJ

IJ C IJ

IJ C IJ

. . .
. . .

. . .
IJ C IJ

IJ C IJ

IJ E

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

where IJ is the identity matrix of size J , E and C are
J × J matrices as

E =

⎡

⎢

⎢

⎢

⎢

⎣

−2 1
1 −3 1

. . .
. . .

. . .
1 −3 1

1 −2

⎤

⎥

⎥

⎥

⎥

⎦

, C =

⎡

⎢

⎢

⎢

⎢

⎣

−3 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −3

⎤

⎥

⎥

⎥

⎥

⎦

.

(11)
However, isometric graph in the two-dimensional domain
Ω has irregular grid structures. As shown in Figure 6b, the

domain Ω = {Γl}L
l=1 involves non-overlapping closed tri-

angles Γl, where triangles must intersect along a common
edge, a common vertex, or not at all. The five-point central
difference approximation in equation (9) is not applicable
for the irregular grid. Hence, we introduce the finite ele-
ment method (FEM) to develop approximate solutions for
the matrices B1 and B2.

Let φ1, φ2, . . . , φN be the basis functions satisfying
φi (s̃j) = δij , where s̃j , j = 1, 2, . . . , N are locations
(triangle vertices) in the domain Ω and δij is the Kro-
necker delta function, i.e., δij = 1 when i = j, otherwise,
δij = 0. Then concentration variables u and v can be
rewritten as a linear combination of the basis functions,

i.e., u (s̃) =
∑N

i=1 uiφi (s̃). The Laplacian operator of ui

is derived as

∇2ui = −
N
∑

j=1

uj ·
(∫

Ω

φi (s̃) dΩ

)−1

×
(∫

Ω

∇φi (s̃) ·∇φj (s̃) dΩ

)

= ∇
2
ui

· U , (12)
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Fig. 7. Reaction-diffusion modeling on the (a) isometric graph
and (b) fractal surface.

where U = [u1, u2, . . . , uN ]T . The detailed derivation of
equation (12) is in Appendix A.

If we define the diagonal lumped mass matrix as

M = [Mii]
N
i=1 =

[∫

Ω

φidΩ

]N

i=1

(13)

and the symmetric stiffness matrix as

K = [Kij ]
N
i,j=1 =

[∫

Ω

∇φi·∇φjdΩ

]N

i,j=1

. (14)

Then we have
⎡

⎢

⎣

∇
2
u1

...
∇

2
uN

⎤

⎥

⎦
= −M

−1
K,

and
⎡

⎢

⎣

∇
2
v1

...
∇

2
vN

⎤

⎥

⎦
= −M

−1
K

according to equation (12). The practical calculation of
matrices M and K is given in Appendix B. Therefore,
the matrices B1 and B2 can be approximated as

B1 = I + D1δt·M−1
K, B2 = I + D2δt·M−1

K. (15)

To this end, we can utilize the LU factorization to solve
the equation (7) and simulate reaction-diffusion dynam-
ics on the isometric graph with irregular grid structures.

Figure 7a shows the U
t = [ut

1, . . . , u
t
N ]

T
at each location

s̃i= (xi, yi), i = 1, 2, . . . , N at a specific time index t on
the isometric graph. Note that geodesic distances between
spatial locations are preserved and these locations have
the one-to-one correspondence from the isometric graph to
the fractal surface. Therefore, reaction-diffusion variables
U

t are then one-to-one mapped onto the fractal surface
at locations si = (xi,yi,zi) (see Fig. 4b). It may be noted
that wave patterns are shown to be irregular and chaotic
while they are mapped onto the high-dimensional fractal
surface.

3.4 Spatiotemporal pattern recognition

New reaction-diffusion model in the reduced dimension
provides an effective tool to simulate spatiotemporal dy-
namics on fractal surfaces, e.g., propagation and conduc-
tion of cardiac electrical activity. Next, it is imperative
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Fig. 8. Spatiotemporal dynamics on the fractal surface at different time indices.

to quantify such spatiotemporal patterns on irregular sur-
faces and investigate how fractal characteristics change
these patterns. In this present paper, we propose mani-
fold learning to extract low-dimensional basis for describ-
ing space-time dynamics in the high-dimensional space.
This attractive technique leverages similarity or dissimi-
larity in the spatiotemporal data to make inference about
system dynamics that are otherwise not apparent in the
high-dimensional space. Manifold learning not only facil-
itates the visualization of high-dimensional dynamics but
also provides statistical quantifiers of spatiotemporal pat-
terns on fractal surfaces. Let Y (si,t) , t = 1, . . . , T denote
the spatiotemporal data, where si is the spatial location
(xi,yi,zi) , i = 1, . . . , N , for N locations and T is the to-
tal number of snapshots forming an ensemble with time
index t (see Fig. 8). The similarity or dissimilarity in the
spatiotemporal data is quantified by the distance matrix
DT between different time indices.

DT (l,m) =

[

N
∑

i=1

(Y (si,tl)−Y (si,tm))
2

]1/2

, (16)

where DT (l,m) is a hyper-distance denoting the spatial
dissimilarity between two snapshots Y (si,tl), Y (si,tm)
with time indexes tl, tm, respectively.

The hyper-distance matrix DT quantifies the dissim-
ilarity of spatial data over time. However, it cannot be
directly used as statistical quantifiers of spatiotemporal
patterns. Therefore, we propose to treat spatial data at a
specific time point, e.g., Y (s,tl), as nodes in the network
and DT as the edge weight between nodes (i.e., adjacency
matrix). Very little work has been done to derive the net-
work structure from the hyper-distance matrix DT . This
is a new means to visualize high-dimensional dynamics in
the low-dimensional network. In addition, traditional net-
work statistics provide new and effective ways to quan-
tify spatiotemporal patterns on the fractal surface. This
present investigation is an extension from our previous
works in self-organizing topology of recurrence networks
and variable clustering [30,31].

Hence, network structure will be derived from the
hyper-distance matrix DT through the self-organizing pro-
cess. Let G = {V , E} be the directed and weighted net-
work, where V is the set of nodes and E is the set of edges.
We utilized the spring-electrical model to assign two forces
(i.e., attractive and repulsive forces) between nodes. The

repulsive force is defined as

fr (l,m)= − 1

‖zl − zm‖2 eDT (l,m) (17)

where zl and zm are the locations of network nodes l
and m. It may be noted that the repulsive force is pro-
portional to the distance between two points. This is be-
cause a large repulsive force is expected to separate the
two points when they have a large distance. The attrac-
tive force is defined as

fa (l,m) = ‖zl − zm‖2
e−DT (l,m), l↔m. (18)

The attractive force only exists between two connected
nodes and is inversely proportional to the distance be-
tween them, because a bigger attractive force will pull two
nodes closer when they have a smaller distance. The com-
bined force on a node l is the summation of all repulsive
forces and attractive forces on the node:

f (l, z) =
∑

l �=m

− eDT (l,m)

‖zl − zm‖3 (zl − zm)

+
∑

l↔m

‖zl − zm‖ (zl − zm)e−DT (l,m) (19)

where zl−zm is the force-directional vector, which is sep-
arated from fr (l,m) and fa (l,m) to define the direction
of combined force f (l,z).

The objective of self-organizing process is to optimize
spatial locations of network nodes by minimizing the to-
tal network energy as: Minz{

∑

l=1,...,T f2(l,z)}. As a re-
sult, the structure of the network is steady with the min-
imal energy. This, in turn, derives a unique geometry
from the hyper-distance matrix DT . Furthermore, net-
work statistics provide new and effective means to quan-
tify spatiotemporal patterns on the fractal surface. Con-
sider the weighted network G formed by the set of vertices

{zl}T
l=1. Let d(zl, zm) denote the shortest path between

nodes l and m, which is calculated using the Dijkstra’s al-
gorithm [28]. If we assume d (zl,zm)= 0 for disconnected
nodes l and m, the average path length lG is

lG =
1

T (T−1)

∑

l �=m

d(zl,zm). (20)

This average path length lG describes the average distance
among all nodes in a weighted network. This measure
can be used to compare networks with different ranges
of weights.
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4 Case study 1 – Fitzhugh-Nagumo (FHN)
model

In this present investigation, we illustrated and evaluated
the proposed methodology for numerical simulation of spi-
ral wave dynamics and turbulent pattern on fractal sur-
faces. First, we studied the differences of reaction-diffusion
dynamics on regular and fractal surfaces. Second, we var-
ied the fractal dimension to generate different types of
fractal surfaces. Then we investigated how fractal charac-
teristics change spatiotemporal dynamic patterns on com-
plex surfaces. Experimental design is detailed as follows.

4.1 Experimental design

In order to simulate spatiotemporal dynamics, we uti-
lized nonlinear reaction-diffusion model, i.e., Fitzhugh-
Nagumo (FHN) model [32], which is widely used to simu-
late cardiac electrical conduction on 2-dimensional tissues.
Equation (4) is a general formulation of reaction-diffusion
model. In this present paper, we specify the functions f
and g in FHN kinetic model equation (4) as

f (u,v) = c1u (1−u) (u − a) − c2uv

g(u, v) = b(u − dv) (21)

If we substitute equation (21) into equation (4), the FHN
model becomes

∂u

∂t
= c1u (1−u) (u − a) − c2uv + D1∇2u

∂v

∂t
= b (u − dv) + D2∇2v (22)

where D1 = 1, D2 = 0, a = 0.13, b = 0.013, c1 = 0.26,
c2 = 0.1, d = 1.0 (also see Sect. 3.3), u is the membrane
voltage, and v is the recovery variable. It may be noted
that membrane voltage u is the dynamic variable used to
simulate the electrical propagation and conduction on the
fractal surfaces.

In addition to differentiating reaction-diffusion dynam-
ics on regular and fractal surfaces, we generate differ-
ent types of fractal surfaces with a variety of fractal
dimensions (i.e., from 2.05 to 2.95, step size 0.05) to
study how fractal characteristics change spatiotemporal
dynamic patterns on complex surfaces (see Fig. 9). For
each fractal dimension, we generated 10 replicates of sur-
faces so as to obtain the statistical distribution of model-
ing performance. Two stimulation protocols were used to
generate spiral waves: (1) S1 protocol: A basic stimulation
(S1) is applied at the center of a 33× 33 grid for 20 time
steps. (2) S1-S2 protocol: After the S1 stimulation, a sec-
ond premature stimulation (S2) is applied after 4000 time
steps and lasts for 500 time steps at 3 grid points away
from the center. These two protocols generate two differ-
ent types of spiral waves on the fractal surfaces.

Stimulation Protocols

S1 

S1-S2 

Performance 

Evaluation 

Fractal Dimensions

2.95

2.1

2.05

…

Fig. 9. Experimental design for reaction-diffusion modeling on
fractal surfaces.

4.2 Spatiotemporal simulation on regular and fractal
surfaces

As shown in Figure 10, we simulate the spiral formation
and turbulent patterns on both regular and fractal sur-
faces. Figures 10a–10d show 2-D snapshots at different
time indices of space-time dynamic variable u with spiral
formation (which rotates over time) on the regular surface.
It may be noted that reaction-diffusion dynamics on the
regular surface exhibits the formation of spiral waves and
periodic patterns. The reaction-diffusion dynamics starts
with a semicircular arc amid the surface (see Fig. 10a), and
then diffuses to the edges of the surface (see Fig. 10b). The
membrane voltage vanishes at the top of the surface but
re-circulate at the bottom (see Fig. 10c), and finally re-
forms a semicircle in the middle (see Fig. 10d). As a result,
spiral waves periodically rotate on the regular surface.

On the other hand, Figures 10e–10h show reaction-
diffusion dynamics on the fractal surface. It may be noted
that spatiotemporal patterns in these snapshots are differ-
ent due to the geometric complexity of the fractal surface.
Although there are similar patterns as the regular surface,
semicircular arcs show distinct patterns in the middle of
the surface (see Fig. 10h). The width and length of spiral
waves are different. After a sufficiently long time period,
spiral wave patterns become more chaotic on the fractal
surface that are vastly different from periodic patterns on
the regular surface.

4.3 Spatiotemporal pattern recognition

In addition, we investigated how fractal characteristics of
a surface impact the spatiotemporal patterns. Figure 11a
shows an example of simulated fractal surfaces with the
fractal dimension DF = 2.05. As the fractal dimension is
close to dimension 2, the simulated fractal surface is flat
and similar to 2-D regular surface. We used the S1 stim-
ulation protocol to generate reaction-diffusion dynamics
on the fractal surface. Figure 11b is the 3-dimensional
topology of self-organizing network. Each green node in
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Fig. 10. Snapshots of reaction-diffusion dynamical patterns at different time indices on the regular surface (a)–(d), and the
fractal surface (e)–(h).
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Fig. 11. A simulated fractal surface with fractal dimension DF = 2.05. (b) 3-dimensional topology of self-organizing network.
(c)-(f) Frames of spatiotemporal patterns on the fractal surface (S1 protocol). Note: Each green node in the network is mapped
back to its associated frame.
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Fig. 12. As Figure 11 for fractal dimension DF = 2.95.

the network is pertinent to a frame of spatiotemporal im-
ages (e.g., Figs. 11c–11f). The movement of nodes along
the network trajectory reveals the frame-to-frame differ-
ences of spatiotemporal patterns on the fractal surface.
The nodes corresponding to Figures 11c and 11f are very
close in the network, because Figure 11c is the basic stim-
ulation (S1) at the beginning and Figure 11f is pertinent
to the vanish waves at the end. Figures 11d and 11e yield
smooth waves in the simulation because the fractal di-
mension 2.05 is close to dimension 2 (i.e., a regular 2-D
surface).

On the other hand, Figure 12 shows the results from
the surface with fractal dimension DF = 2.95. Because the
fractal dimension is away from dimension 2 (i.e., a regu-
lar 2-D surface), the simulated fractal surface is uneven
and irregular. As a result, spatiotemporal dynamic pat-
terns in Figures 12c–12f are varied from Figures 11c–11f,
although the same S1 protocol is used. Although the net-
work trajectory in Figure 12b is visually similar to Fig-
ure 11b, there are differences in the beginning and end of
the network trajectory. However, Figures 11 and 12 are
only visual representations of spatiotemporal dynamics in
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Fig. 13. The network statistics of average path length lG for
spatiotemporal dynamics (S1 protocol) on complex surfaces
with various fractal dimensions.

the low-dimensional networks. It is necessary to further
characterize and quantify dynamical properties of the un-
derlying processes.

Figure 13 shows the distribution of network statistics,
i.e., average path length lG with respect to the variations
of fractal dimensions. Notably, we generated 10 replicate
surfaces for each fractal dimension. We took the logarithm
of two network statistics as shown in the y-axis of the
plot (see Fig. 12). Figure 13 shows a decreasing trend of
the average path length lG when the fractal dimension
is increased from 2.05 to 2.95. As the fractal dimension
gets bigger, the variance of the average path length lG
is also increasing. This is due to the fact that replicate
surfaces for a bigger fractal dimension often have large
variations. Our experiments evaluated a number of com-
monly used network measures, e.g., node degree, link den-
sity, average path length, diameter and clustering coeffi-
cient. It was found that the measure of average path length
yields higher correlation with the fractal dimension. This
is mainly because fractal dimension impacts the roughness
and irregularity of surfaces, thereby impacting the aver-
age distances among all nodes in the weighted network.
We further calculated the median path length in order
to further corroborate the relationship between the path
length and fractal dimension. The results showed a similar
trend for the variations of the median path length when
the fractal dimension is increasing.

In addition to the S1 protocol, we have also investi-
gated reaction-diffusion dynamics with the S1-S2 stim-
ulation protocol, i.e., a premature stimulation (S2) af-
ter the basic stimulation (S1). The fractal surfaces used
are the same as in Figure 11a (DF = 2.05) and Fig-
ure 12a (DF = 2.95). However, S1-S2 protocol gener-
ates spiral waves that are more complex on the surfaces.
Note that the premature stimulation (S2) is applied at
the location that is 3 grid points away from the center
(see Fig. 14b). As such, a semicircular arc appears in the
middle of the surface (see Fig. 14c). This semicircular arc
continues to propagate after the basic stimulation (S1)
vanishes at the boundary (see Fig. 14d). However, the
semicircular arc will not completely vanish at the bound-
ary. Instead, it will rotate back to the surface to form
continuous or self-circulating “spiral waves” on the sur-
face (see Figs. 14e–14g). It is worth mentioning that the

network trajectory (see Fig. 14a) is vastly different from
the one with the S1 protocol in Figure 11b.

Figure 15 shows simulation results of S1-S2 protocol
on the complex surface with fractal dimensions DF = 2.95
(i.e., the same surface in Fig. 12a). Although Figures 15b–
15g are taken at exactly the same time indices as Fig-
ures 14b–14g, wave patterns are significantly different with
the same S1-S2 protocol. Note that the path of network
trajectory in Figure 15a is varied from Figure 14a, par-
ticular in the end of network trajectory. Finally, we also
calculated the distribution of network statistics for S1-
S2 protocol, i.e., average path length lG, when the frac-
tal dimension is increased from 2.05 to 2.95. As show in
Figure 16, average path length is decreasing monotoni-
cally with the increasing fractal dimension. The variance
of network statistics is increasing as the fractal dimension
gets bigger. The consistent results in Figures 13 and 16
show that network statistic of average path length lG ef-
fectively characterize the complexity of reaction-diffusion
dynamics on fractal surfaces. As such, the approach of
self-organizing network provides an effective tool for pat-
tern recognition of spatiotemporal dynamics on the fractal
surfaces.

5 Case study 2 – whole heart modeling

5.1 Materials and experimental design

Furthermore, we studied the nonlinear modeling of spi-
ral formation and turbulent patterns on a whole heart.
Note that a healthy heart has near-periodic electrical im-
pulses, while cardiac arrhythmia has rapid, disorganized
and irregular electrical impulses. Specifically, this study
focuses on the numerical simulation of electrical activities
for healthy controls and arrhythmias. Recently, computer
simulation of electrical conduction and propagation on a
human heart is receiving increasing attentions, because it
overcomes many practical and ethical limitations in real-
world biomedical experiments. In addition, computer sim-
ulation offers greater flexibility for biomedical scientists to
test their hypothesis and develop new hypotheses for car-
diovascular research and knowledge discovery.

Cardiac electrical activity is a series of complex
biochemical-mechanical reactions, which involves orches-
trated transportation of large amounts of ions through
various biological channels. Electrical activity will also
propagate from cell to cell through the entire heart to
maintain the vital living organism. In the literature, cel-
lular automata and reaction-diffusion models were widely
used to model cardiac electrical propagation and conduc-
tion processes [33–36]. A cellular automaton is a discrete
model with a regular grid of cells, each has a finite number
of states. Every cell has the same updating rule based on
its neighboring states. Because of its simplicity and supe-
rior computational speed, cellular automata was popular
in whole heart simulation. However, simplistic assump-
tions and rules are limited in their ability to model car-
diac electrical activity, especially on the irregular surfaces.
Reaction-diffusion models describe how dynamic variables
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Fig. 14. (a) 3-dimensional topology of self-organizing network. (b)–(g) Frames of spatiotemporal patterns with the S1–S2
protocol on the surface with fractal dimension DF = 2.05 in Figure 11a. Note: Each green node in the network is mapped back
to its associated frame.
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Fig. 15. As Figure 14 for fractal dimension DF = 2.95.

Fig. 16. The network statistic of average path length lG for
spatiotemporal dynamics (S1-S2 protocol) on complex surfaces
with various fractal dimensions.

change the distribution in space and time under two pro-
cesses, i.e., (1) reaction process : dynamic variables are in-
teracting with each other for conversion, and (2) diffusion
process : dynamic variables spread out in space. Although
reaction-diffusion models provide more realistic simula-
tion of electrical activity through the whole heart, they
are more difficult to model on irregular surfaces and more
computationally expensive than cellular automata.

This present investigation provides a practical solution
to simulate electrical propagation and conduction through
the heart. However, a significant challenges resides in
the representation of complex geometry of the heart.
This representation must not only characterize geometric
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Fig. 17. Whole heart models: (a) colored components of the
human heart, (b) finite element meshes, (c) electrical conduc-
tion on the surface of the human heart.

complexities but also yield sufficient resolution to cap-
ture activation wavefronts and cell-to-cell propagation
dynamics. As shown in Figure 17, this present investiga-
tion utilized an anatomically realistic heart geometry for
reaction-diffusion modeling of cardiac electrical activity.
However, traditional finite-difference methods (FDM) are
effective on regular surfaces with orthogonal and regular
grids by discretizing the diffusion tensor in the domain.
The complex geometry and high dimensionality of heart
(see Fig. 17b) pose great challenges for FDMs. Therefore,
we proposed reaction-diffusion modeling in the reduced
dimension (see Sect. 3.3) that is designed and developed
for irregular grids of fractal surfaces. This new method-
ology will be demonstrated and evaluated for numerical
simulation of space-time electrical dynamics on the com-
plex geometry of a 3-D heart (see Fig. 17c).
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Fig. 18. Spatiotemporal dynamics of electrical conduction at different time indices on the 3-D heart that is healthy (a)–(f), or
is with cardiac arrhythmia (g)–(l).

Fig. 19. Self-organizing topology of low-dimensional networks derived from spatiotemporal electrical conduction and propaga-
tion of (a) a healthy heart and (b) a heart with arrhythmia.

5.2 Spatiotemporal dynamics of electrical conduction
on the 3-D heart surface

Further, we investigated the excitation and propagation
of cardiac electrical activity on the 3-D heart surface.
Because of the complexity of heart geometry, we lever-
aged the proposed methodology to address the issues of
irregular node spacing, complex boundaries, and region-
ally dependent conductivities in the 3-D heart model. As
shown in Figure 18, the propagation and conduction of
electrical activity were simulated and compared between a
healthy heart (see Figs. 18a–18f) and a heart with arrhyth-
mia (see Figs. 18g–18l). It may be noted that the healthy
heart yields regular and periodic electrical impulses. In the
healthy heart, electrical activity is near-periodically paced
by the sinoatrial node in the right atrium in each cardiac
cycle (see Fig. 18a). Cardiac electric activity propagates
throughout the whole heart (see Figs. 18b–18e) and even-
tually vanishes (see Fig. 18f), then the next cycle starts.

However, electrical excitation does not begin from the
sinoatrial node in the simulation of cardiac arrhythmia. In-
stead, cardiac cycle initiates from another site of the right
atrium or muscle cells in the nearby pulmonary veins. As
such, the rapid and disorganized electrical impulses occur
around atria (see Figs. 18g–18l). As shown in Figure 18,
electrical conduction is different between the healthy heart
and the arrhythmia one. The snapshots in Figures 18g–18l
are taken at the same time indices as Figures 18a–18f.
However, traveling patterns of spatiotemporal electrical

activity are different. It may be noted that space-time pat-
terns in the arrhythmia heart are more disorganized than
the healthy heart. In addition, electrical waves can rotate
and self-circulate in the arrhythmia heart without the sec-
ond stimulus. As such, this causes the heart to fibrillate
(commonly known as atrial fibrillations) (see Fig. 18l).
Next section will further details the pattern recognition of
space-time electrical activities in the whole heart between
healthy control and cardiac arrhythmia.

5.3 Spatiotemporal pattern recognition

Figure 18 shows the frames of electrical conduction on
the 3-D heart surface over time. As aforementioned, we
utilized a hyper-distance matrix DT to quantify the frame-
to-frame dissimilarity. Each frame, e.g., Y (s,tl), is treated
as nodes in a network and DT as the edge weight between
nodes (i.e., adjacency matrix). Then, a self-organizing ap-
proach is used to derive a stable network topology by
iteratively minimizing the energy of the network. Fig-
ure 19 shows geometric structures of low-dimensional
networks derived from spatiotemporal dynamics of the
healthy heart (Figs. 18a–18f) and a heart with arrhythmia
(Figs. 18g–18l).

As shown in Figure 19a, network structure of the
healthy heart shows a regular and periodic pattern. How-
ever, network topology of the arrhythmia heart is disorga-
nized and irregular (see Fig. 19b). As such, the proposed
approach of self-organizing network provides a new means
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to visualize spatiotemporal dynamics in low-dimensional
networks, thereby facilitating the characterization and
quantification of dynamical properties of the underlying
complex processes.

6 Conclusions

Numerical simulation provides a better understanding of
complex phenomena, and thereby enables the prediction
of system behaviors and optimal control of system opera-
tions. However, many engineered and natural systems in-
volve irregular and self-similar geometric forms (i.e., frac-
tal geometry). Very little has been done to investigate the
simulation model of spatiotemporal dynamics (e.g., car-
diac electrical excitation and conduction) on the fractal
geometry. Most of previous simulation models were devel-
oped for space-time dynamics (e.g., reaction, diffusion and
propagation) on the Euclidean geometry, e.g., flat planes
and rectangular volumes. This brings inaccurate approxi-
mation of real-world dynamics on fractal surfaces, due to
the sensitive dependence of nonlinear dynamical systems
on initial conditions. There is an urgent need to investigate
the modeling differences between fractal and Euclidean ge-
ometry. This present paper developed a suite of methods
and tools for numerical simulation of spatiotemporal dy-
namics on fractal surfaces, including fractal surface sim-
ulation, isometric graphing for surface characterization,
dimensionality reduction for reaction-diffusion modeling
and spatiotemporal pattern recognition.

We illustrated and evaluated the proposed methodol-
ogy for numerical simulation of spatiotemporal dynam-
ics on fractal surfaces. First, we compared the differences
of reaction-diffusion dynamics on regular and fractal sur-
faces. As the geometric complexity of the fractal surface is
much higher, spatiotemporal patterns on the fractal sur-
face are vastly different from periodic patterns on the reg-
ular surface. Second, we generated different types of fractal
surfaces to investigate how fractal characteristics change
spatiotemporal dynamic patterns on complex surfaces. We
leveraged manifold learning to extract low-dimensional
basis for describing space-time dynamics on the fractal
surface. Each frame is treated as a network node. We
utilized a self-organizing approach to derive the network
topology from a hyper-distance matrix DT of the frame-
to-frame dissimilarity between nodes (i.e., adjacency ma-
trix). We showed that the distribution of network statis-
tics, i.e., average path length lG, yields a decreasing trend
when the fractal dimension is increased from 2.05 to 2.95.
The decreasing trend is consistent for two different types
of spatiotemporal dynamics from S1 and S1-S2 proto-
cols. This experiment showed that self-organizing network
provides an effective tool for pattern recognition of spa-
tiotemporal dynamics on the fractal surfaces. In addition,
network statistics such as average path length lG effective
characterize the complexity of reaction-diffusion dynamics
on fractal surfaces.

Further, we developed the whole-heart simulation
model to investigate the excitation and propagation of
cardiac electrical activity between a healthy heart and a

heart with arrhythmia. The proposed simulation method-
ology effectively addresses the complexity of heart geom-
etry such as irregular node spacing, complex boundaries,
and regionally dependent conductivities. Experimental re-
sults showed that space-time patterns in the arrhythmia
heart are more disorganized than the healthy heart. In ad-
dition, electrical waves can rotate and self-circulate in the
arrhythmia heart without the second stimulus. This re-
search demonstrated that the proposed methodology out-
performs traditional modeling approaches based on the
Euclidean geometry, and provide effective tools to model
and characterize space-time dynamics on fractal surfaces
of complex systems.

Finally, it may be noted that this present investiga-
tion focuses on the space-time dynamics on the fractal
surface, thus is applicable for real-world case studies such
as wild fire on the mountains, heat transfer on the sheet
metal, electrical waves on 2-D tissues. However, new mod-
els are necessary to investigate space-time dynamics be-
yond the surface, e.g., pollution that impacts the deep sea
and shores. In addition, if the fractal surface is fine-grained
with a large number of nodes, the computational complex-
ity will significantly increase. There are 1069 nodes in the
fractal surface and 3648 nodes in the heart surface in this
present paper. Therefore, the computation can be read-
ily handled by a laptop computer. In general, the com-
putational complexity depends on both surface properties
and simulation time, i.e., O

(

N2
)

+ O(T 2), where N is
number of total nodes and T is the number of time steps.
Our ongoing investigation makes an attempt to extend the
methodology to simulate space-time dynamics in the 3-D
heart with 728 321 nodes [35]. As a result, real-time com-
puting and visualization become a significant challenge.
Therefore, massive parallel computing can be leveraged
for large-scale simulation. Last but not least, algorithmic
stability is critical to the self-organizing network construc-
tion and may depend on the sampling-time of space-time
dynamics. However, this present investigation does not en-
counter stability issues in two representative sets of sim-
ulation studies. In the future work, this topic of stability
will be further studied analytically and experimentally.
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dation (CMMI-1646660, CMMI-1617148, CMMI-1619648, and
IOS-1146882). The authors also thank Harold and Inge Marcus
Career Professorship (HY) for additional financial support.

Appendix A

Corollary: The Laplacian operator of ui in the domain
Ω with the triangular mesh is

∇2ui = −
N
∑

j=1

uj ·
(∫

Ω

φi (s̃) dΩ

)−1

×
(∫

Ω

∇φi (s̃) ·∇φj (s̃) dΩ

)

= ∇
2
ui

· U

where U = [u1, u2, . . . ,uN ]T .
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Proof : If Φ,u∈H(Ω), where H(Ω) = {f : Ω → R,
∫

Ω
f2dΩ < ∞} is a function space that all the functions

are bounded (i.e., quadratic integrable). The Chain rule
from calculus gives that

∇ (Φ∇u)= ∇Φ∇u+Φ∇2u. (A.1)

Furthermore, using Gauss’s theorem on ∇ (Φ · ∇u) we
have

∫

Ω

∇ (Φ · ∇u)dΩ =

∫

∂Ω

(Φ · ∇u) ·�ndS (A.2)

where dΩ = dx · dy is a surface element in Ω, �n is the unit
normal direction pointing outward at the boundary ∂Ω
with line element dS. Then, we integrate equation (A.1)
on both sides and apply equation (A.2) to get

∫

Ω

∇ (Φ · ∇u)dΩ =

∫

Ω

Φ·∇2udΩ +

∫

Ω

∇Φ · ∇udΩ

=

∫

∂Ω

(Φ · ∇u) ·�ndS. (A.3)

Moreover, in our presented research, we assume that
the derivatives of concentration variables u and v van-
ish at the boundary, i.e., ∇u= ∇v= 0 at ∂Ω. Therefore
∫

∂Ω
(Φ · ∇u) ·�ndS = 0 and equation (A.3) becomes to

∫

Ω

Φ∇2udΩ = −
∫

Ω

∇Φ∇udΩ. (A.4)

Let Φ (s̃) = φi (s̃), then equation (A.4) can be rewritten as

∫

Ω

φi (s̃) ·∇2u (s̃) dΩ = −
∫

Ω

∇φi (s̃) ·∇u (s̃) dΩ

= −
∫

Ω

∇φi (s̃) ·∇

⎛

⎝

N
∑

j=1

ujφj (s̃)

⎞

⎠ dΩ

= −
N
∑

j=1

uj ·
(∫

Ω

∇φi (s̃) ·∇φj (s̃) dΩ

)

. (A.5)

It may be noted that φi (s̃j) = 0 for all j �= i. Then, ∇2ui

from equation (A.5) becomes

∇2ui = −
N
∑

j=1

uj ·
(∫

Ω

φi (s̃) dΩ

)−1

×
(∫

Ω

∇φi (s̃) ·∇φj (s̃) dΩ

)

= ∇2
ui

· U (A.6)

where U = [u1, u2, . . . , uN ]
T
.

Appendix B

Numerical calculation of the diagonal lumped mass ma-

trix, M = [Mii]
N
i=1 =

[∫

Ω
φidΩ

]N

i=1
, and the symmetric

stiffness matrix, K = [Kij ]
N
i,j=1 =

[∫

Ω ∇φi∇φjdΩ
]N

i,j=1
.

First, the integration on domain Ω is approximated
by the sum of integrations on each nonoverlap triangu-

lation Γl, i.e., Mii =
∫

Ω
φidΩ =

∑L
l=1

∫

Γl
φidΩ and

Kij =
∫

Ω
∇φi∇φjdΩ =

∑L
l=1

∫

Γl
∇φi∇φjdΩ.

Second, we illustrate the integration of a triangle Γl

with vertices s̃i= (xi, yi), s̃j= (xj , yj) and s̃k= (xk, yk) as
shown in Figure 6b. First, the basis function φi (·) associ-
ated with vertex s̃i can be expressed as

φi (s̃) =
ψjk(s̃)

ψjk(s̃i)
, (B.1)

where ψjk(s̃) = (x − xk) (yj − yk) − (y − yk) (xj − xk),
and the basis functions for vertices s̃j and s̃k are defined
analogously. Therefore, we have elements of two N × N
sparse matrices M (Γl) = Sparse {Mpp (Γl)}p=i,j,k and

K (Γl) = Sparse {Kpq (Γl)}p,q=i,j,k as

Mpp (Γl) =

∫

Γl

φpdΩ =
|Γl|
3

, p = i, j, k

Kpq (Γl) =

∫

Γl

∇φp∇φqdΩ= ∇φp∇φq |Γl| , p, q = i, j, k

(B.2)

where |Γl| = |xjyk − xkyj − xiyk + xkyi + xiyj − xjyi| /2
is the area of the triangle Γl. And elementary calculations
yield

∇φk·∇φi =
(yj − yi) (yk − yj) − (xi − xj) (xj − xk)

ψji(s̃k)ψkj(s̃i)
,

(B.3)
with similar expressions obtained for ∇φk∇φj , ∇φi∇φj ,

|∇φi|2, |∇φk|2 and |∇φj |2.
Finally, the matrices M and K can be obtained by

summing matrices through all triangles {Γl}L
l=1 as M =

∑L
l=1 M(Γl) and K =

∑L
l=1 K(Γl).
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