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Abstract—Rapid advancements of sensing and mobile
technology provide an unprecedented opportunity to empower
smart and connected healthcare. Realizing the full potential of
connected care depends, however, to a great extent on the
capability of data analytics. Our previous study proposed a next-
generation mobile health system, namely, the Internet of Heart
(IoH). The IoH embeds patients into a dynamic network, where
the distance between network nodes is determined by the
dissimilarity of patients’ conditions. Dynamics of the network
reveal the change of clinical status of patients. However, it poses
a great challenge for real-time recognition of disease patterns
when a considerably large number of patients are involved in the
IoH. In this present investigation, we develop a novel scheme to
optimize the network in a parallel, distributed manner, thereby
improving the efficiency of computation. First, a stochastic
gradient descent approach is designed to embed patients with
similar conditions into a local network. Second, local networks
are optimally pieced together to obtain a global network. As
opposed to directly embed all patients into one network, the
proposed scheme distributes the network optimization into
multiple processors for parallel computing. This, in turn, enables
the IoH to handle large amount of patients and timely recognize
disease patterns in the early stage. Experimental results
demonstrated the effectiveness of the proposed scheme, e.g., it
achieves 80-fold faster than conventional algorithms for
optimizing a network with 20000 patients. The developed scheme
is effective and efficient for realizing smart connected healthcare
in large-scale IoH contexts.

1. INTRODUCTION

In the past decade, rapid advancements of sensing and
mobile technology have fueled increasing interests in mobile
health (mHealth). The prevalence of wearable bio-sensors and
portable medical devices makes it possible and affordable to
remotely monitor patients’ conditions and provide timely
feedback. Furthermore, mHealth attempts to create connected
care defined as a national wide data gathering and exchange,
as well as an efficient communication between patients and
caregivers. As opposed to traditional isolated care, highly-
connected care ecosystem consists of doctors, patients,
devices, databases and other entities. Caregivers are able to
gain rapid access to patients’ complete information for early
diagnosis and timely medical intervention. Meanwhile, it
motivates individual patients to collect data themselves and
become active participants in their own care. The smart
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connected healthcare provides a data-rich environment for
efficient medical decision making, enables personalized
patient-centered care, and diminishes care disparities.

Realizing the full potential of connected care depends,
nevertheless, to a great extent on the capability of data
analytics. It may be noted that cardiac diseases are the leading
cause of death worldwide. In 2012, nearly 30% of global
deaths (17.5 million) were due to cardiac diseases. Optimal
management and treatment of cardiac diseases call for early
identification and timely delivery of life-saving therapies.
However, existing products and services of cardiac mHealth
are limited in their ability to automatically detect cardiac
diseases in the early stage. Most of them focus on one-lead
electrocardiogram (ECG) and simple characteristics, e.g.,
heart rate, which lacks the diagnostic power to identify
complex cardiac disorders. Some of them transmit acquired
ECG signals to cardiologists for manually analysis. Despite
the overwhelming workload, early signs of cardiac diseases
are difficult to be uncovered by only measuring amplitude and
duration of the ECG cycles.

Our previous research has proposed a new cardiac mHealth
system, namely, the Internet of Hearts (IoH) [1] to assist the
diagnosis of cardiac diseases and promote new levels of
communication and collaboration between patients and
cardiologists. The IoH incorporates wearable sensing, mobile
technology and cloud computing for continuous cardiac
monitoring and disease pattern recognition. Patients are
embedded into a network, where the distance between network
nodes preserves the dissimilarity of patients’ conditions. As
such, the change of a patient’s cardiac conditions can be
revealed by network dynamics. The IoH enables (7) continuous
monitoring of multi-channel cardiac signals; (i) real-time
management and compact representation of multi-sensor
signals; (iii) big data analytics in large-scale IoT contexts.
These components are integrated to realize patient-centered
care and smart management of cardiac health.

Notably, continuous monitoring of an individual patient
generates large volumes of data when performed in hours,
days, months and years. Such big data not only provides a
wealth of opportunities to promote patient-centered,
personalized care, but also poses significant challenges for
analytics and management. There lacks enabling tools to
quickly extract information pertinent to the underlying cardiac
disorders and provide timely feedbacks. Furthermore, the
number of patients in the IoH is growing. The goal of IoH is
to embody patients all across the world into a network to
empower smart telehealth and preventive medicine. It is
extremely expensive to optimize the network structure when it
consists of billions of nodes. Thus, there is an urgent need to
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increase the computational efficiency of the IoH to handle
large volumes of data.

In this study, a novel scheme is introduced to parallel
process large volumes of data in the IoH. Specifically, we
decompose the large-scale problem of network optimization
into local ones and resolved them in a parallel manner. First, a
stochastic gradient descent approach is designed to embed
patients with similar conditions into a local network. Positions
of network nodes within a neighboring region are tuned to
achieve the optimal structure of a local network. Second, local
networks are optimally pieced together to obtain a global
network. Notably, the proposed scheme enables the
implementation of parallel computing on a multitude of
processors. Our contributions in this present investigation are
highlighted as follows:

1) Reducing computational complexity: We developed a
stochastic gradient descent approach to significantly
reduce the computational complexity on a single
processor, i.e., from O (N3) to O (N).

2) Parallelization: We proposed a parallel scheme to scale
up the network optimization by simultaneously utilizing
multiple processors, which achieves 80-fold faster than
conventional algorithms for embedding 20000 patients.

The remainder of this paper is organized as follows:
Section II introduces the background. Section III presents
research methodology. Section IV shows a case study and
experimental results. Section V discusses and concludes this
investigation.

II. BACKGROUND OF PARALLEL COMPUTING

Traditionally, computing tasks are executed in a serial
manner (see Fig. 1a). Serial computing is efficient when the
given data set is small. However, it is impractical to process
large volume of data. For example, information is extracted
from millions of online documents during a web mining
research. Serial computing has been shown to be ineffective
for such large and complex problem. Therefore, researchers
are seeking a way to scale up the algorithm and utilize more
computing resources to collaboratively complete a task.
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Fig. 1. (a) Serial computing vs. (b) Parallel computing.

Rapid advancements of information technology have
catalyzed the incredibly fast growth in computing power. In

particular, parallel computing has been employed to harness
multiple processing units to solve a problem. The basic idea of
parallel computing is to break the overall computing task into
multiple sub-tasks, which are independent to each other. Each
sub-task is then assigned to an individual processor (see Fig.
1b). As such, each processor can execute its part of the
algorithm simultaneously with the others, which critically
reduces the computing time compared with serial computing,.
With the availability of multi-core CPUs and cloud computing
technology, parallel computing can be readily achieved by
deploying strategies such as multi-threaded and single-
instruction-multiple-data. Nowadays, parallelism has been
widely used in manufacturing, genetics research, search
engine, financial modeling and computer vision.

III. RESEARCH METHODOLOGY

A. Overview of the Internet of Hearts

As shown in Fig. 2, the IoH embodies a number of
networked components such as ECG sensors, mobile devices,
patients, physicians, emergence centers and hospitals. The
wearable ECG device records patients’ cardiac activity 24/7
and it is seamlessly connected to the smartphone via
Bluetooth. After pre-processing (e.g., denoising), collected
data are transmitted to the cloud via 4G network. Analytics
models are running on the cloud to uncover hidden cardiac
patterns and detect early signs of cardiac events. The IoH
enables one-to-one and one-to-many communications
between patients and cardiologists. Cardiologists are able to
access patients’ data, review analytical results and
communicate with patients and other cardiologists anytime
and anywhere. In addition, emergency centers and hospitals
are integral components of the IoH. If a patient’s condition is
highly risky, emergency centers will be instantly notified.

Fig. 2. The architecture of the Internet of Hearts (IoH).

Analytics models in the IoH were developed in our
previous studies [2-4]. First, adaptive basis functions are
designed to iteratively represent patients’ space-time
vectorcardiogram (VCG) signals. Only a limited number of
parameters are needed to represent large amount of VCGs,
while fully preserving the diagnostic information. Such sparse
representation facilitates data compression and extraction of
pertinent features. Further, a dynamic network model is
developed for real-time recognition of disease patterns.
Dissimilarities among functional recordings from N patients
are measured by the spatiotemporal warping. To this end, an
NXN warping matrix is obtained, in which each element
stores the warping distance between i and j” patients. Then,
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the warping matrix is optimally embedded into a high-
dimensional network. The distance between network nodes
preserves the warping distance of corresponding patients. In
this way, the location (i.e., high-dimensional coordinates) of
a network node reveals diagnostic information of the patient.
Cardiologists can easily monitor the change of a patient’s
cardiac condition by tracking the trajectory of corresponding
node in the dynamic network.

B. Stochastic Gradient Descent for Network Embedding

Traditional algorithms, e.g., classical multidimensional
scaling (MDS) and scaling by majorizing of a complicated
function (SMACOF) [5] are limited in their capability to
handle big data. For example, the computational complexity of
classical MDS is O (N 3), due to the double centering operation
and eigen-decomposition. The computational complexity of
the SMACOF is O (N?), because the Guttman transform
consists of a multiplication between an NXN matrix and an
N L matrix (L is the dimensional of the network). As such, it
is not cost-effective to implement classical MDS or SMACOF
for large-scale network optimization (e.g., in the IoH).

TABLE I. DEVELOPED APPROACH FOR NETWORK EMBEDDING

1: K — total number of training iterations;

o Create index sequence by randomly permuting the set O = {1, 2,
T, N}

3: Initialize locations of nodes in the high-dimensional space;

4:fork=1:K

5: forn=1:N

6 Choose index of the fixed network node i = O (n);

7: Update the location of all other nodes x;(j # i) by Eq. (5);

8 end

9: end

In this research, a stochastic gradient descent approach is
developed for optimally projecting large numbers of patients
into a network, while maintaining a low computational
complexity. Table I summarizes the proposed approach. Let
8;; denotes the dissimilarity between i and j** functional
recordings obtained from spatiotemporal warping, and x; and
x; denote locations of i and j%nodes in the high-
dimensional network. The quadratic objective function S can
be formulated as:

1 2
s=50 > (lx=xl-6,) r(lx-xl.2) )
i j#i
where I'(:) is a bounded and monotonically decreasing
function to favor the local topology in the network. Here, I"(+)
is selected as an exponential function:

r(||x; - x].| A) = e (llxi=xll/ 2) Q)
and A is a user defined parameter. Minimization of Eq. (1) with
respected to x;’s is achieved by a stochastic gradient descent
approach. Specifically, the objective function S can be
rewritten as a summation of partial costs generated from
adjusting individual network node i, i.e., S = %ZiSi. In each
iteration, a node 7 is randomly chosen and its location in the
high-dimensional network (e.g., x;) is fixed. All other nodes
X;(j # i) are updated based on the following rule:

as;
Xj < x; — a(t)a—x; Vj#i 3)

where the learning rate a(t) is a monotonically deceasing
function with the form a(t) = a,/(1 + t). According to the
chain rule, Eq. (3) can be rewritten as:

9s;_ lxi— x|

xX;i < x; —a(t Vj#i 4)
T ) I
Similar to [6], let’s ignore the derivative of the exponential
function in Eq. (2). Since el = A , the update rule of
ax; [lxi -]
Eq. (3) can be written as:
lx: = %] =6

xj P xj — a(t) i e(_”xi_xj”/ /1) (xj — xl.) (5)
[l — x;
The approach iterates until the maximum number of learning
iterations is reached. Notably, the computational complexity

for each iteration is only O (N).

C. Parallel Computing for Optimizing Large-scale Network

As mentioned in Section I, it is impractical to optimize the
large-scale IoH network on a single processor. It is worth
mentioning that we construct the network by considering the
warping distance between each pair of patients. This is similar
to the localization problem in large-scale wireless sensor
network, where exact locations are known for a limited
number of sensors. For the majority of sensors, only local
information (distance between a sensor to its neighbors) is
available. In the literature, distributed localization is developed
to address this problem, which first configures local networks
and then merges them together. It has been shown that
distributed localization provides the best solution in terms of
efficiency and accuracy for locating large amount of sensors.

It is noteworthy that the distance between x; and x; in the
high-dimensional network preserves the warping distance. As
shown in Fig. 3, patients with similar conditions in the IoH are
tightly connected and form small local networks. On the
contrary, connections among patients with different cardiac
conditions (e.g., myocardial infarction and hypertension) are
indeed loose. Thus, local networks are approximately
independent to each other. This enables the decomposition of
a global network into local ones for parallel computing. In this
study, patients with similar conditions (i.e., small warping
distances) are embedded into a local network by the stochastic
gradient descent approach. Notably, local network embedding
is simultaneously computed using multiple processors, which
significantly reduces the computation time.
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Fig. 3. Illustration of parallel computing for a large scale network.
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Further, local networks are merged sequentially to form a
global network. First, we select a local network with largest
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number of patients as the core map. Then the core map is
extended by absorbing networks with shared nodes (i.c.,
gateway nodes). Each time, a local network with the maximum
number of gateway nodes is selected and merged into the core
map. Eventually the core map covers all patients. Notably, a
gateway node has both intra and inter-group connections and
it has coordinates in =2 local networks (See Fig. 3). By
scaling, rotating and translating, coordinates of gateway
nodes between the local network and the core map are first
matched. Then, the same transformation is applied to the rest
of the local network and merge it into the core map.

IV. EXPERIMENTS AND RESULTS

Experiments are designed to evaluate performances of the
developed methodology. As shown in Fig. 4, stochastic
gradient descent is more efficient than traditional eigen-
decomposition for network embedding on a single processor.
Here, computation time is calculated for an individual
iteration of stochastic approach. Notably, the eigen-
decomposition is not suited for large data set due to its O (N 3)
complexity. However, stochastic approach reduces the
computational complexity to O (N) in each iteration, which
occupies less CPU resource and memory.
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Fig. 4. Computation time of stochastic gradient descent approach and Eigen-

decomposition approach on a single processor.
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Fig. 5. Computation time of the developed parallel computing scheme and
traditional serial computing.

Further, the performance of proposed scheme is compared
with traditional serial computing. Here, stochastic gradient
descent is deployed in both schemes. The entire set of patients
is divided and assigned to 12 CPU cores. As shown in Fig, 5,
two schemes achieve similar performances when the number
of patients are small (e.g, N <1000). However, the
computation time of serial computing increases significantly
when large number of patients are involved. On the contrary,
the computation time of the proposed scheme does not

increase much. It may be noted that the gap between two
curves are enlarged dramatically with the increasing number
of patients. When 3000 patients are embedded, serial
computing is 150s slower than parallel computing, When the
number of patients reaches 20000, serial computing is >2700s
slower than parallel computing. Performances of the parallel
computing scheme with respect to even larger data sets are
evaluated and shown in Table II.

TABLE II. COMPUTATION TIME OF PROPOSED SCHEME WITH
RESPECT TO THE INCREASING NUMBER OF PATEINTS

Number of Patients Computation Time (s)
30000 68.5
40000 119.6
50000 184.8
60000 262.9
70000 350.9
80000 460.4
90000 588.9
100000 718.9

V. DISCUSSION AND CONCLUSIONS

Traditional approaches are limited in their ability to
optimize large-scale network of patients for the early diagnosis
of diseases and timely medical intervention. In this present
paper, we developed a new scheme to parallel process large
volumes of data in the IoH, which has been granted an
international PCT patent [7]. First, we designed a stochastic
gradient descent approach to efficiently embed cardiac
patients into local networks. Then, local networks are
optimally pieced together to obtain the global network.
Experimental results show that the developed scheme
significantly increases the capacity for optimizing large-scale
network of patients. When the number of patients reaches
100000, the developed scheme can process them in around 10
minutes, whereas traditional serial computing has to take
hours. By parallelizing the computation into multiple
processors, the IoH shows strong potentials to handle millions
and billions of patients to improve connected care worldwide.
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