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Abstract—Electrocardiographic imaging (ECGI) has become 

an important medical diagnosis tool that assists scientists to 

noninvasively investigate cardiac electric activity. Many 

previous works have studied the inverse and forward ECG 

problems to understand how to reconstruct the cardiac electric 

activity from the body potential distribution. However, the 

inverse ECG problem is highly ill-conditioned and very 

sensitive to errors and noises. Thus, there is a need to study the 

sensitivity of inverse and forward ECG problems. In this paper, 

we investigated effects of mesh resolution on the accuracy of 

inverse and forward ECG problems. First, we employed the 

boundary element method to calculate the relationship between 

potential distributions on the body and heart surfaces and 

developed an algorithm to solve inverse and forward ECG 

problems. Second, we implemented the algorithm to solve the 

ECG problems in both a concentric spherical geometry and a 

realistic torso-heart geometry. Third, we evaluated the relative 

error between our solution and the analytical solution under 

the condition of different mesh resolutions. Experimental 

results explicitly show that the relative error in the inverse 

solution decreased from 30% to 17% when the mesh elements 

triangulating the two spheres increased from 24 to 400 in the 

concentric spherical geometry, and that decreased from 26% to 

16% when the mesh elements triangulating the heart surface 

increased from 136 to 546 in the realistic torso-heart geometry. 

Keywords—ECG Inverse Problem, ECG Forward Problem, 

Boundary Element Method, Regularization, Mesh Resolution 

I. INTRODUCTION 

Electrocardiographic imaging (ECGI) has emerged as a 

promising medical technology that empowers scientists to 

noninvasively investigate cardiac electric activities. Inverse 

and forward ECG problems are the theoretical background 

of ECGI. In the inverse ECG problem, electric potentials on 

the heart surface are estimated from the potential distribution 

on the torso surface, while in the forward ECG problem, the 

electric potentials on the body surface are computed from 

the potential distribution on the heart surface. The inverse 

and forward ECG methods have been proposed to diagnose 

the pathophysiological activity of the heart in many previous 

works. For example, the inverse electrocardiography has 

been implemented to image the cardiac potential distribution 

and it showed great potential to noninvasively detect the 

extent and location of myocardial infarction [1].  
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However, the inverse ECG problem is highly ill-

conditioned and very sensitive to errors and noises. Thus, it’s 

challenging to precisely diagnose cardiac diseases based on 

the inverse model. In inverse and forward ECG problems, the 

key is to solve the tranfer matrix that characterizes the 

relationship between potential distributions on the heart and 

body surfaces. Solving the transfer matrix
 
involves tackling 

the Laplace’s equation in a source-free homogeneous volume 

conductor whose boundary is formed by the body and heart 

surfaces, which results in complicated surface integrations 

[2]. These integrations are only solvable in a tractable 

geometry such as a set of concentric spheres. To solve them 

in a realistic torso-heart geometry, boundary element method 

(BEM) has been widely employed [3] [4]. In this method, the 

torso and heart surfaces are discretized into meshes, and the 

integrals can be subdivided into a series of numerical 

integrations over mesh elements. The accuracy of numerical 

solutions is correlated with the mesh resolution in BEM. For 

that reason, there is an urgent need to study how mesh 

resolution impacts the accuracy of inverse and forward 

solutions of ECG problems.  

The objective of this paper is to investigate effects of 

mesh resolution on the accuracy of inverse and forward 

solutions for ECG problems. First, we employed BEM to 

calculate the transfer matrix and developed an algorithm to 

solve the inverse and forward ECG problems. Second, we 

implemented the algorithm into both a concentric spherical 

geometry and a realistic torso-heart geometry. Finally, we 

investigated the model accuracy under different mesh 

resolutions. Experimental results showed that the accuracy 

of our solutions improves as the mesh resolution increases. 

The organization of this paper is as follows: Section II 

describes the research methodology of our inverse and 

forward models; Section III presents the model 

implementation and experimental design; Section IV 

illustrates the experimental results under different mesh 

resolutions; Section VI concludes our study. 

II. RESEARCH METHODOLOGY 

In this section, we will first present the boundary element 

solution of the transfer matrix that characterizes the 

relationship between electric potentials on the body and 

heart surfaces. Second, we will introduce the methods based 

on the transfer matrix to solve the inverse and forward ECG 

problems. Specifically, Tikhonov zero-order regularization, 

which is employed in the highly ill-conditioned inverse 

problem, will be introduced. 
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triangular elements. In the forward simulation, the potential �� on the inner sphere is known by assumption and given 

by Eq.  (8). Then, we calculated the potential ��  on the 

outer sphere by �� = ����� . On the contrary, in the 

inverse simulation, ��  on the outer sphere is known by 

assumption and given by Eq. (9). By utilizing Eq. (7) we 

estimated �� on the inner sphere. 

B. Experiment in a Realistic Torso-heart Geometry  

The algorithm is then implemented to solve the inverse 

ECG problem in a realistic torso-heart geometry, as shown 

in Fig. 2. The body-surface potential maps (BSPMs) are 

provided by the 2007 PhysioNet/Computers in Cardiology 

Challenge [8]. The BSPMs, denoted as �� , come from 

interpolating the original body-surface ECGs recorded at 

120 anatomical locations on the torso to 352 locations 

corresponding to the standard Dalhousie torso projected on 

the new customized torso geometry [1]. In this case, �� are 

provided, and by utilizing Eq. (7), we estimated the 

potentials �� on the heart surface. 

 
 

C. Performance Metrics 

Both the forward and inverse solutions were compared 

with analytical results that are directly computed or with real 

measured data. The accuracy is evaluated by mean squared 

error (MSE), relative error (RE) and correlation coefficient 

(CC) between the true potentials and estimated results. The 

three performance metrics are defined as follows:  

��� = 1
�∑(����� − ��)2

�

�=1
 

 

(11) 

�� = ‖�⃗⃗⃗��� − �⃗⃗⃗‖
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�� = �[(�⃗⃗⃗��� − �(�⃗⃗⃗���))(�⃗⃗⃗ − �(�⃗⃗⃗))]
‖(�⃗⃗⃗��� − �(�⃗⃗⃗���)‖‖�⃗⃗⃗ − �(�⃗⃗⃗)‖  

 

(13) 

where �⃗⃗⃗���  represents the electric potentials estimated by 

our inverse and forward models, and �⃗⃗⃗  denotes the true 

results. Function �(�)  represents the expectation or the 

average of � , and ‖∙‖  represents L2-norm. The MSE 

characterizes the overall deviation, RE measures the 

deviation percentage, and CC is a measure of the spatial 

differences between the estimator and what is estimated. 

IV. RESULTS 

A. Experimental Results of the Forward Model in the 

Concentric Spherical Geometry 

In the forward simulation, the estimated potentials �⃗⃗⃗�_��� 
on the outer sphere are compared with the analytical 

potentials �⃗⃗⃗� . Table.1 shows the true electric potentials at 

seven different locations on the outer sphere and the 

estimated results when ��  and ��  are triangulated with 60 

elements (� = 60) and 240 elements (� = 240). It can be 

noted that the estimated results are closer to true values 

when � = 240 than those when � = 60. 

TABLE I.  FORWARD RESULTS IN TWO-SPHERE SIMULATION 

Coordinates �� ��_���(N=60) ��_���(N=240) 

(0,0,1) 1.061 1.222 1.114 

(-0.5,0,0.866) 1.449 1.586 1.475 

(-0.433,0.75,0.5) -0.725 -0.790 -0.737 

(-1,0,0) 0.388 0.466 0.397 

(0.433,-0.75,-0.5) 0.725 0.781 0.764 

(0.5,0,-0.866) -1.449 -1.654 -1.513 

(0,0,-1) -1.061 -1.219 -1.108 

Fig. 3 shows the variations of MSE, RE, CC with the 

number of triangles in the forward simulation with the 

concentric spherical geometry. The number of triangles � 

discretizing ��  and ��  takes the values: 24, 60, 112, 180, 

264, 364, 480, 612 and 760. Note that MSE (Fig. 3(a)) and 

RE (Fig. 3(b)) decrease, and CC (Fig. 3(c)) increases as � 

increases. All the three performance metrics converge when � > 400: MSE approaches zero; RE is less than 3% and 

converges to 1%; CC goes to 1. 

 
 

 

B. Experimental Results of the Inverse Model in the 

Concentric Spherical Geometry 

In the inverse simulation, Tikhonov zero-order 

regularization was adopted to solve the electrical potentials �� on the inner sphere. The regularization parameter � is set 

to be 0.148 when � = 60 , and 0.116 when � = 240 

according to the L-curve study, as shown in Fig.4. 

  
 

 

The estimated potentials �⃗⃗⃗�_���  on the epicardial surface 

is compared with the true potentials �⃗⃗⃗�. Table.2 shows the 

true electric potentials and the estimated results at seven 

different locations on the inner sphere under two different 

mesh resolutions. Again, it can be noted that the estimated 

results are closer to the true values when � = 240  than 

those when � = 60.  

The variations of MSE, RE, CC with number of triangles 

in the inverse simulation with the concentric spherical 

geometry are shown in Fig. 5. Similar to the forward 
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Fig. 2: (a) Interpolated  (b) Discretized torso-heart geometry 

Fig. 3: The variation of (a) MSE (b) RE (c) CC with the number of 

triangles in the forward simulation of a concentric spherical geometry. 

Fig. 4: L-curve plots when ��  and ��  are triangulated with (a) 60 

triangles; (b) 240 triangles. 
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simulation, the number of triangles � discretizing �� and �� 

takes the values: 24, 60, 112, 180, 264, 364, 480, 612 and 

760. Note that MSE (Fig. 3(a)) and RE (Fig. 3(b)) decrease, 

and CC (Fig. 3(c)) firstly increases and then oscillates 

around 0.986 as � increases. The performance metrics MSE 

and RE converge when � > 400: MSE converges to 0.01, 

RE approaches 17%. 

TABLE II.  INVERSE RESULTS IN TWO-SPHERE SIMULATION 

Coordinates �� ��_���(N=60) ��_���(N=240) 

(0,0,1) 1.267 1.040 1.171 

(-0.5,0,0.866) 0.464 0.204 0.448 

(-0.433,0.75,0.5) 1.035 1.002 0.918 

(-1,0,0) -1.267 -1.136 -1.248 

(0.433,-0.75,-0.5) -1.035 -0.544 -0.780 

(0.5,0,-0.866) -0.464 -0.316 -0.277 

(0,0,-1) -1.267 -1.070 -1.241 

 
 

C. Experimental Results of the Inverse Model in a Realistic 

Torso-heart Geometry  

We implemented our inverse model to a realistic torso-

heart geometry and estimated �⃗⃗⃗�_���  on the heart surface 

from �⃗⃗⃗�  acquired on the body surface. After obtaining 

�⃗⃗⃗�_��� , we computed �⃗⃗⃗�_���  on the torso surface by ΦB =RBHΦH , and compared them with the true data �⃗⃗⃗� . The 

number of triangles discretizing the realistic heart surface 

takes the values: 136, 272, 408, 546, 654, 872 and 1092. Fig. 

6 is an illustration of the 3D heart model [9] and the 

triangulated heart surface.  

 
 

 
 

The variations of MSE, RE and CC with number of 

triangles �  discretizing the heart surface in the realistic 

torso-heart geometry are shown in Fig. 7. Note that MSE 

(Fig. 3(a)) and RE (Fig. 3(b)) decrease, and CC (Fig. 3(c)) 

increases as �  increases, which is consistent with our 

simulation results in the concentric spherical geometry. 

Similarly, all the three performance metrics converge when � > 600: MSE approaches 1 × 10−4(��)2, RE approaches 

15%, and CC goes to 0.89. 

V. CONCLUSIONS 

In this paper, we developed an algorithm to solve inverse 

and forward ECG problems by using a transfer matrix. In the 

forward model, electrical potentials on the torso surface can 

be calculated directly by the relationship between potential 

distributions on the two surfaces. In the inverse model, 

Tikhonov zero-order regularization is employed to obtain a 

stable solution for cardiac electric potentials, where the 

regularization parameter is chosen by L-curve method.  

We then implemented our inverse and forward models to 

solve ECG problems in both a concentric spherical geometry 

and a realistic heart-torso geometry, and investigated the 

effect of mesh resolution on model results. Experimental 

results show the accuracy of inverse and forward solutions 

for ECG problems improves as the mesh resolution 

increases. Specifically, the relative error in the inverse 

solution decreased from 30% to 17% when the number of 

mesh elements triangulating the two spheres increased from 

24 to 400 in a concentric spherical geometry, and that 

decreased from 26% to 16% when the number of mesh 

elements triangulating the heart surface increased from 136 

to 546 in the realistic torso-heart geometry. 
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Fig. 5: The variation of (a) MSE (b) RE (c) CC with the number of 

triangles in the inverse simulation of a concentric spherical geometry. 

Fig. 6: (a) Interpolated (b) Meshed (c) Coarsely meshed heart surface. 

Fig. 7: The variation of (a) MSE (b) RE (c) CC when the number of 

triangles increases in a realistic torso-heart geometry. 
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