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Abstract—Electrocardiographic imaging (ECGI) has become
an important medical diagnosis tool that assists scientists to
noninvasively investigate cardiac electric activity. Many
previous works have studied the inverse and forward ECG
problems to understand how to reconstruct the cardiac electric
activity from the body potential distribution. However, the
inverse ECG problem is highly ill-conditioned and very
sensitive to errors and noises. Thus, there is a need to study the
sensitivity of inverse and forward ECG problems. In this paper,
we investigated effects of mesh resolution on the accuracy of
inverse and forward ECG problems. First, we employed the
boundary element method to calculate the relationship between
potential distributions on the body and heart surfaces and
developed an algorithm to solve inverse and forward ECG
problems. Second, we implemented the algorithm to solve the
ECG problems in both a concentric spherical geometry and a
realistic torso-heart geometry. Third, we evaluated the relative
error between our solution and the analytical solution under
the condition of different mesh resolutions. Experimental
results explicitly show that the relative error in the inverse
solution decreased from 30% to 17% when the mesh elements
triangulating the two spheres increased from 24 to 400 in the
concentric spherical geometry, and that decreased from 26% to
16% when the mesh elements triangulating the heart surface
increased from 136 to 546 in the realistic torso-heart geometry.
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I. INTRODUCTION

Electrocardiographic imaging (ECGI) has emerged as a
promising medical technology that empowers scientists to
noninvasively investigate cardiac electric activities. Inverse
and forward ECG problems are the theoretical background
of ECGIL. In the inverse ECG problem, electric potentials on
the heart surface are estimated from the potential distribution
on the torso surface, while in the forward ECG problem, the
electric potentials on the body surface are computed from
the potential distribution on the heart surface. The inverse
and forward ECG methods have been proposed to diagnose
the pathophysiological activity of the heart in many previous
works. For example, the inverse electrocardiography has
been implemented to image the cardiac potential distribution
and it showed great potential to noninvasively detect the
extent and location of myocardial infarction [1].

This work is supported in part by the National Science Foundation
(CMMI-1617148, CMMI-1619648, and I0S-1146882).

Bing Yao, Shenli Pei and Hui Yang* are with the Complex System
Monitoring, Modeling and Analysis Laboratory, The Pennsylvania State
University, University Park, PA 16802 USA (*corresponding author:
huy25@psu.edu)

978-1-4577-0220-4/16/$31.00 ©2016 IEEE

However, the inverse ECG problem is highly ill-
conditioned and very sensitive to errors and noises. Thus, it’s
challenging to precisely diagnose cardiac diseases based on
the inverse model. In inverse and forward ECG problems, the
key is to solve the tranfer matrix that characterizes the
relationship between potential distributions on the heart and
body surfaces. Solving the transfer matrix involves tackling
the Laplace’s equation in a source-free homogeneous volume
conductor whose boundary is formed by the body and heart
surfaces, which results in complicated surface integrations
[2]. These integrations are only solvable in a tractable
geometry such as a set of concentric spheres. To solve them
in a realistic torso-heart geometry, boundary element method
(BEM) has been widely employed [3] [4]. In this method, the
torso and heart surfaces are discretized into meshes, and the
integrals can be subdivided into a series of numerical
integrations over mesh elements. The accuracy of numerical
solutions is correlated with the mesh resolution in BEM. For
that reason, there is an urgent need to study how mesh
resolution impacts the accuracy of inverse and forward
solutions of ECG problems.

The objective of this paper is to investigate effects of
mesh resolution on the accuracy of inverse and forward
solutions for ECG problems. First, we employed BEM to
calculate the transfer matrix and developed an algorithm to
solve the inverse and forward ECG problems. Second, we
implemented the algorithm into both a concentric spherical
geometry and a realistic torso-heart geometry. Finally, we
investigated the model accuracy under different mesh
resolutions. Experimental results showed that the accuracy
of our solutions improves as the mesh resolution increases.

The organization of this paper is as follows: Section II
describes the research methodology of our inverse and
forward models; Section III presents the model
implementation and experimental design; Section IV
illustrates the experimental results under different mesh
resolutions; Section VI concludes our study.

II. RESEARCH METHODOLOGY

In this section, we will first present the boundary element
solution of the transfer matrix that characterizes the
relationship between electric potentials on the body and
heart surfaces. Second, we will introduce the methods based
on the transfer matrix to solve the inverse and forward ECG
problems. Specifically, Tikhonov zero-order regularization,
which is employed in the highly ill-conditioned inverse
problem, will be introduced.
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A. Boundary Element Solution of the Transfer Matrix in
Inverse and Forward ECG problems

We modeled the human body as a source-free
homogeneous volume conductor whose boundary is formed
by the body and heart surfaces Sg and S;. The relationship
between electric potentials on Sy and Sy can be represented
by @5 = Rgy Py, where Rgy is the transfer matrix, and @5
and @y represent the potentials on Sz and Sy, respectively.

Calculating Ry is the key point to solve the inverse and
forward ECG problems. Divergence theorem and Green’s
Second Identity are employed to obtain Rgy [2]. Suppose a
volume V < R® is compact and has a piecewise smooth
boundary S; if F is a continuously differentiable vector field
defined on a neighborhood of V , then according to
Divergence theorem we have

ﬂf(v-ﬁ)av:#(ﬁ-ﬁ)ds M)

where 71 is the unit normal vector of S pointing outward. If @
and ¥ are both twice continuously differentiable on V, and
choose F = V¥ — PV according to Eq. (1), Green’s
second identity follows immediately
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Let @ be electric potentials and ¥ = % . Given that Sz and Sy

are piecewise smooth, and the facts that V2® = 0 between
the two surfaces, and V& = 0 on S, according to Eq. (2)
electric potentials on Sz and Sy are
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where df)gy denotes the solid angle subtended at a location
on S; by a mesh element on Sy. We then employed BEM to
solve the integrals above. The torso and heart surfaces are
discretized by triangular elements. Thus, each term in
equation (3a) and (3b) can be discretized as:

Agp®p + Apy®y + MpyNy = 0 (4a)

Agp®p + Apy®y + MpyNy = 0 (4b)
The matrices, A’s and M’s depend entirely on the torso-heart
geometry, where Aggp, Agy, and Mgy denote the geometry
coefficient matrices in which the observing locations are on
the body surface, while Ayg, Ayy, and My correspond to
the matrices, where the observer stands on the heart surface.
Ny contains the normal components of V& . Combining
equations (4a) and (4b), we obtained the transfer matrix:

Rpy = (App — MpyMpiAyp) ™ (MpuMphAuy — Apn)  (5)
which is then employed to compute and estimate the body
and cardiac potential distributions in forward and inverse
ECG problems.

(3a)

(3b)

B. Tikhonov Zero-order Regularization

In the forward ECG problem, electric potentials @ on
the heart surface are given, and we can directly compute
electric potentials @5 on the torso surface by @5 = RpyPy-

However, in the inverse problem, although electric potentials
@5 on the torso surface are provided, it’s very complex to
solve @y, directly, as Rgy may not be a square matrix and
it’s always highly ill-conditioned. Therefore, Tikhonov zero-
order regularization [5] is adopted to obtain a stable solution
for @ in this paper.
Tikhonov zero-order regularization can be formulated as
the solution of the following objective function:
Py = aTgrgLn{](¢H) = |Rpu®y — @52 + 222417} (6)

where ||*|| represents L2-norm, and A is regularization
parameter chosen by L-curve method [6], as shown in Fig. 4.
The L-curve plot displays the trade-off between the fit to the
given data and size of a regularized solution, as A varies. The
regularization parameter, A, is often chosen to be the one that
amounts to the corner of the L-curve plot. Taking the
derivative of J(®y) with respect to @y and setting it to zero,
gives the estimate of the inverse solution:

@y = (REyRpu + 2D 7' Ry ®p (7)
where I is the identity matrix. Based on Eq. (7) and given the
regularization parameter A, we can estimate the cardiac
potential distribution @5 in the inverse ECG problem.

III. EXPERIMENTAL DESIGN

In this section, we implemented the algorithm developed
in section II in both a concentric spherical geometry and a
realistic torso-heart geometry. First, we solved the forward
and inverse ECG problems in a concentric spherical
geometry. Second, we employed our inverse model to
estimate the cardiac potential distribution in a realistic torso-
heart geometry. Third, three performance metrics are defined
to characterize the accuracy of our model.

S/
SN

Fig. 1: (a) Radii and conductivity of the inner and outer spheres.
Interpolated (b) and discretized (c) concentric spherical geometry.

A.  Experiment in a Concentric Spherical geometry

The concentric spherical geometry studied here is shown
in Fig. 1. The inner sphere behaves like the heart surface Sy,
and the outer sphere represents the torso surface Sp. A
current dipole-moment p was placed at the common center
of Sy and Sg. Assume the conductivity outside Sp is zero
and that inside Spis o . Then the electrical potentials
produced by the current dipole at different observing
locations on S and Sg [7] are
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where, 1, and 1y are the radii of S and Sp, and 7 and 7%
are the unit vectors from the center to the location i on Sy
and Sg, respectively.

In the simulation, we set p = (10,10,10), 0 =1, 714 =
1.0, 5 = 1.5, and discretized Sy and Sy with two sets of
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triangular elements. In the forward simulation, the potential
@y on the inner sphere is known by assumption and given
by Eq. (8). Then, we calculated the potential @5 on the
outer sphere by @p = Rgy®y . On the contrary, in the
inverse simulation, @5 on the outer sphere is known by
assumption and given by Eq. (9). By utilizing Eq. (7) we
estimated @y on the inner sphere.

B. Experiment in a Realistic Torso-heart Geometry

The algorithm is then implemented to solve the inverse
ECG problem in a realistic torso-heart geometry, as shown
in Fig. 2. The body-surface potential maps (BSPMs) are
provided by the 2007 PhysioNet/Computers in Cardiology
Challenge [8]. The BSPMs, denoted as @z, come from
interpolating the original body-surface ECGs recorded at
120 anatomical locations on the torso to 352 locations
corresponding to the standard Dalhousie torso projected on
the new customized torso geometry [1]. In this case, @5 are
provided, and by utilizing Eq. (7), we estimated the
potentials @y on the heart surface.

@ iy VA 2

Fig. 2: (a) Interpolated (b) Discretized torso-heart geometry

C. Performance Metrics

Both the forward and inverse solutions were compared
with analytical results that are directly computed or with real
measured data. The accuracy is evaluated by mean squared
error (MSE), relative error (RE) and correlation coefficient
(CC) between the true potentials and estimated results. The
three performance metrics are defined as follows:

N
1 es
MSE ZN;(q)i b —@)? 11
pi 2 17 -] >
B el (12)
_E[(@*t -~ E(@*))(® - E(9))]
(13)

l@est — E@en]l| - E@)|
where @t represents the electric potentials estimated by
our inverse and forward models, and @ denotes the true
results. Function E(x) represents the expectation or the
average of x, and ||| represents L2-norm. The MSE
characterizes the overall deviation, RE measures the
deviation percentage, and CC is a measure of the spatial
differences between the estimator and what is estimated.

IV. RESULTS

A. Experimental Results of the Forward Model in the
Concentric Spherical Geometry

In the forward simulation, the estimated potentials 5B_est
on the outer sphere are compared with the analytical

potentials 53. Table.l shows the true electric potentials at
seven different locations on the outer sphere and the

estimated results when Sy and Sp are triangulated with 60
elements (N = 60) and 240 elements (N = 240). It can be
noted that the estimated results are closer to true values
when N = 240 than those when N = 60.

TABLE L FORWARD RESULTS IN TWO-SPHERE SIMULATION
Coordinates Dy D 5t(N=60)  Dp o (N=240)
(0,0,1) 1.061 1.222 1.114
(-0.5,0,0.866) 1.449 1.586 1.475
(-0.433,0.75,0.5) -0.725 -0.790 -0.737
(-1,0,0) 0.388 0.466 0.397
(0.433,-0.75,-0.5) 0.725 0.781 0.764
(0.5,0,-0.866) -1.449 -1.654 -1.513
(0,0,-1) -1.061 -1.219 -1.108

Fig. 3 shows the variations of MSE, RE, CC with the
number of triangles in the forward simulation with the
concentric spherical geometry. The number of triangles N
discretizing Sy and Sy takes the values: 24, 60, 112, 180,
264, 364, 480, 612 and 760. Note that MSE (Fig. 3(a)) and
RE (Fig. 3(b)) decrease, and CC (Fig. 3(c)) increases as N
increases. All the three performance metrics converge when
N > 400: MSE approaches zero; RE is less than 3% and
converges to 1%; CC goes to 1.
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Fig. 3: The variation of (a) MSE (b) RE (c) CC with the number of
triangles in the forward simulation of a concentric spherical geometry.

B.  Experimental Results of the Inverse Model in the
Concentric Spherical Geometry

In the inverse simulation, Tikhonov =zero-order
regularization was adopted to solve the electrical potentials
@, on the inner sphere. The regularization parameter A is set
to be 0.148 when N =60, and 0.116 when N = 240
according to the L-curve study, as shown in Fig.4.

a0 200
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o o
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10}l - r=0.148 50 2=0.116
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Fig. 4: L-curve plots when Sy and Sy are triangulated with (a) 60
triangles; (b) 240 triangles.

The estimated potentials 5H,est on the epicardial surface

is compared with the true potentials 5,,. Table.2 shows the
true electric potentials and the estimated results at seven
different locations on the inner sphere under two different
mesh resolutions. Again, it can be noted that the estimated
results are closer to the true values when N = 240 than
those when N = 60.

The variations of MSE, RE, CC with number of triangles
in the inverse simulation with the concentric spherical
geometry are shown in Fig. 5. Similar to the forward
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simulation, the number of triangles N discretizing S and Sp
takes the values: 24, 60, 112, 180, 264, 364, 480, 612 and
760. Note that MSE (Fig. 3(a)) and RE (Fig. 3(b)) decrease,
and CC (Fig. 3(c)) firstly increases and then oscillates
around 0.986 as N increases. The performance metrics MSE
and RE converge when N > 400: MSE converges to 0.01,
RE approaches 17%.

TABLE II INVERSE RESULTS IN TWO-SPHERE SIMULATION
Coordinates Dy Dy ost(N=60) Dy o (N=240)
(0,0,1) 1.267 1.040 1.171
(-0.5,0,0.866) 0.464 0.204 0.448
(-0.433,0.75,0.5) 1.035 1.002 0.918
(-1,0,0) -1.267 -1.136 -1.248
(0.433,-0.75,-0.5) -1.035 -0.544 -0.780
(0.5,0,-0.866) -0.464 -0.316 -0.277
(0,0,-1) -1.267 -1.070 -1.241
0.1 0.3
0.28 0.988
0.08 0.26 0.986 4
w 0.24
T
0.04 0.2
018 0.98
0.02 016 0.978
(@ 200 4'30 600 (b) 200 4’30 600 (c) 200 400 600

N
Fig. 5: The variation of (a) MSE (b) RE (c) CC with the number of
triangles in the inverse simulation of a concentric spherical geometry.

C. Experimental Results of the Inverse Model in a Realistic
Torso-heart Geometry
We implemented our inverse model to a realistic torso-
heart geometry and estimated 5,, _est On the heart surface
from <DB acquired on the body surface. After obtaining
(DH _est» W€ computed <I>B _est On the torso surface by by =

Rgy®y, and compared them with the true data CDB. The
number of triangles discretizing the realistic heart surface
takes the values: 136, 272, 408, 546, 654, 872 and 1092. Fig.
6 is an illustration of the 3D heart model [9] and the
triangulated heart surface.

(a) (b} (€)

Fig. 6: (a) Interpolated (b) Meshed (c) Coarsely meshed heart surface.
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Fig. 7: The variation of (a) MSE (b) RE (c) CC when the number of

triangles increases in a realistic torso-heart geometry.

The variations of MSE, RE and CC with number of
triangles N discretizing the heart surface in the realistic
torso-heart geometry are shown in Fig. 7. Note that MSE
(Fig. 3(a)) and RE (Fig. 3(b)) decrease, and CC (Fig. 3(c))
increases as N increases, which is consistent with our
simulation results in the concentric spherical geometry.
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Similarly, all the three performance metrics converge when
N > 600: MSE approaches 1 X 10~*(mV)?2, RE approaches
15%, and CC goes to 0.89.

V. CONCLUSIONS

In this paper, we developed an algorithm to solve inverse
and forward ECG problems by using a transfer matrix. In the
forward model, electrical potentials on the torso surface can
be calculated directly by the relationship between potential
distributions on the two surfaces. In the inverse model,
Tikhonov zero-order regularization is employed to obtain a
stable solution for cardiac electric potentials, where the
regularization parameter is chosen by L-curve method.

We then implemented our inverse and forward models to
solve ECG problems in both a concentric spherical geometry
and a realistic heart-torso geometry, and investigated the
effect of mesh resolution on model results. Experimental
results show the accuracy of inverse and forward solutions
for ECG problems improves as the mesh resolution
increases. Specifically, the relative error in the inverse
solution decreased from 30% to 17% when the number of
mesh elements triangulating the two spheres increased from
24 to 400 in a concentric spherical geometry, and that
decreased from 26% to 16% when the number of mesh
elements triangulating the heart surface increased from 136
to 546 in the realistic torso-heart geometry.
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