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Abstract 
 
The experimental results of two centrifuge test replicas of a sloping (saturated-soil) deposit are 
used to assess the predictions of the (open source) software OpenSees. The discrepancy between 
recorded and computed acceleration time histories is expressed as a unique aggregate of three 
measures associated with shape, phase and frequency-shift.  This decomposition sheds light on 
the level of consistency between computed and recorded soil accelerations and the likely source 
of inaccuracies in the used model prediction.  
 
 
INTRODUCTION 
 
Granular soil liquefaction is a pervasive and costly problem during earthquakes. Significant 
liquefaction damage was observed during all recent major events, such as for instance the 2011 
Christchurch, 1995 Hyogoken-Nambu and 1989 Loma Prieta earthquakes.  Liquefaction (of a 
saturated granular soil) occurs when the pore water pressure reaches levels comparable to the 
confining stresses and leads to large strains and flow failure. Intensive efforts have been 
undertaken over the past thirty years by researchers towards the development of constitutive and 
numerical modeling tools to predict the dynamic response and liquefaction of granular soils (e.g., 
Elgamal et al. 2003; Dafalias and Manzari 2004). Significant advances were achieved, and 
current models are refined and sophisticated. However, the usefulness and applicability of these 
models remain limited without validation testing and assessment. The validation exercise 
requires a comparison between blind predictions and trusted experimental data sets (Manzari, et 
al. 2014), and the availability of metrics to quantify the outcome of this comparison.  

A number of metrics have been used by researchers to assess discrepancies among 
dynamic time histories (e.g., accelerations), including vector norms, average residual and 
standard deviation, coefficient of correlation and cross-correlation, Sprague and Geers metric 
(Geers 1984), Russell’s error measure (Russell 1997), normalized integral square error, root 
mean square error and the goodness-of-fit score (Anderson 2004). Dissimilarities were also 
assessed using Dynamic Time Warping (Sarin et al. 2010).  The benefits and shortcomings of 
these different measures were briefly discussed by Goswami et al. (2017).  This paper relies on a 
newly developed set of measures that quantify the phase, shape and frequency-shift 
discrepancies between recorded and predicted accelerations of a soil system response. 
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NUMERICAL PREDICTION 

A numerical simulation of the conducted centrifuge tests was performed using the (open source) 
OpenSees code (Mazzoni et al. 2006). A two-phase elastic-plastic and pressure dependent model 
was employed to idealize the soil constitutive response (Yang, et al. 2003). The model is based 
on a multi-yield-surface plasticity formulation that incorporates soil liquefaction effects. The soil 
shear stiffness and dilatancy (shear-induced volume contraction or dilation) parameters were 
calibrated using the results of a series of soil sample tests. The simulations were conducted 
utilizing a two dimensional plane strain finite element analysis (consisting of 320 nine-node 
quadrilateral elements). The employed finite element model was subjected to the target input 
acceleration (Figure 2). Qualitatively, the obtained (simulated) response showed a strong 
consistency with the recorded accelerations at RPI and UCD (Zeghal, et al. 2017). For instance, 
clear dilative acceleration spikes were predicted in the downslope direction at the deposit 
shallow depths in agreement with the recorded responses. Nevertheless, theses spikes had 
amplitudes and occurred at time instances that were not fully consistent with the tests.    

Performance and Discrepancy Quantification.  Assessment of the similarities and differences 
in achieved input and target motions and in recorded and computed accelerations is fundamental 
to address the objectives of a validation exercise. A qualitative assessment, such as the one 
described above, is not sufficiently informative. Metrics are needed to quantify and qualify the 
consistency and discrepancy among the experimental replica results and numerical predictions.     

The discrepancy ݀௜௝ between two acceleration time histories 	ܽ௜ = ܽ௜(ݐ) and ௝ܽ = ௝ܽ(ݐ) 
(in which ݐ is time) over a time window of length W may be quantified using a mean square 
deviation (MSD): 																																																													݀௜௝ = ׬ ൫௔೔ି௔ೕ൯మௗ௧ೈబଶ(׬ ௔೔మௗ௧ା׬ ௔ೕమௗ௧)ೈబೈబ 																																																																			(1) 

This discrepancy is normalized so it varies between 0 and 1. The measure ݀௜௝ can be 
decomposed in terms of three specific fundamental components; namely phase, shape and 
frequency-shift discrepancies:  																																																											݀௜௝ = ݀௜௝௣௛௔௦௘ + ݀௜௝௦௛௔௣௘ + ݀௜௝ிି௦௛௜௙௧																																															    (2) 

The phase component ݀௜௝௣௛௔௦௘ reflects discrepancies due to difference in acceleration phase 

angles. The shape component ݀௜௝௦௛௔௣௘ quantifies the discrepancy associated with the geometrical 

shape (i.e., wave form and amplitude). The frequency shift component ݀௜௝ிି௦௛௜௙௧	evaluates the 
discrepancy dealing with differences in frequency components. Goswami, et al. (2017) provide a 
full description of how to evaluate these different discrepancy measures. The relative values of 
the different metrics,	݀௜௝௣௛௔௦௘, ݀௜௝௦௛௔௣௘and ݀௜௝ி௦௛௜௙௧ can be used as indicators to ascertain the 
discrepancy that prevails. These metrics were verified using simple synthetic signals with 
prescribed discrepancies and were found to be effective (discrepancy) quantification tools (the 
verification analysis is not presented herein because of space limitations and is discussed in 
Goswami et al. 2017). 

An analysis was first conducted to assess the discrepancies among the target and 
achieved input motions at RPI and UCD. The computed total discrepancies ݀௜௝ (Figure 3) had 

low values varying from 0.02 to 0.06 and reinforce the basic qualitative visual appraisal of 
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Figure 2. The largest total discrepancy ݀௜௝ was between UCD input motion and the target and 

was due mostly to shape dissimilarities.  
The discrepancies among predicted and recorded accelerations were found to increase in 

magnitude from the base to the surface of the deposit.  At high depths, the total discrepancies 
were all of the order of 0.1, as shown in Figure 3 for the 2.5 m depth location along the central 
array. At this location, the discrepancy between the predicted and recorded motions was 
practically equal to the discrepancy between the recorded soil accelerations at RPI and UCD. 
Most of the discrepancy was associated with phase and may possibly indicate an inconsistency 
among the damping mechanisms of the actual soil deposits and the computational model. The 
discrepancies reached relatively large values near the surface, in spite of the relative good 
consistency between the input motions and the target. Nevertheless, the discrepancy between the 
recorded accelerations at RPI and UCD is lower than the discrepancies between the model 
prediction and each one the recorded motions. At this depth, there is a significant contribution 
associated with a frequency-shift in addition to a (larger) phase discrepancy. This frequency-shift 
discrepancy is due to the acceleration spikes of the predicted motion that occurred at time 
instants that are different from those of the recorded motions. In contrast, the shape discrepancies 
were relatively low at all depths. 

Overall, the obtained results show that the model predictions provide reasonable 
estimates of the acceleration amplitudes.  These predictions appeared to be affected by the 
employed damping and dilation mechanisms leading to relatively large phase and frequency-shift 
discrepancies at shallow depths.  Further research is underway to confirm these findings. 
 
CONCLUSIONS 

This article presented an overview of the international collaborative effort to validate soil 
liquefaction models through LEAP (or Liquefaction Experiments and Analysis Projects). Two 
centrifuge tests and associated numerical prediction of a 2015 LEAP were briefly discussed. A 
new approach was used to assess the discrepancies among recorded and predicted acceleration 
time histories. The mean squared deviation of two specific histories is decomposed in terms of 
phase, shape and frequency components. These components showed that RPI and UCD 
centrifuge test results are rather consistent and that the conducted simulation predicts 
accelerations that have a larger discrepancy in phase and frequency-shift than in shape 
(especially for locations close to the surface).  
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