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Abstract

In the past few years, smart mobile devices have become
ubiquitous. Most of these devices have embedded sensors
such as GPS, accelerometer, gyroscope, etc. There is a
growing trend to use these sensors for user identification
and activity recognition. Most prior work, however, con-
tains results on a small number of classifiers, data, or ac-
tivities.

We present a comprehensive evaluation of ten represen-
tative classifiers used in identification on two publicly avail-
able data sets (thus our work is reproducible). Our re-
sults include data obtained from dynamic activities, such
as walking and running; static postures such as sitting and
standing; and an aggregate of activities that combine dy-
namic, static, and postural transitions, such as sit-to-stand
or stand-to-sit. Our identification results on aggregate data
include both labelled and unlabeled activities. Our results
show that the k-Nearest Neighbors algorithm consistently
outperforms other classifiers. We also show that by extract-
ing appropriate features and using appropriate classifiers,
static and aggregate activities can be used for user identifi-
cation.

We posit that this work will serve as a resource and a
benchmark for the selection and evaluation of classification
algorithms for activity based identification on smartphones.

1. Introduction

With the development of mobile technology, in recent

years, mobile devices have become ubiquitous and embed-

ded different kinds of sensors, such as GPS, acceletometer,

gyroscope, fingerprint reader, etc. Because of the small size

and high computation capability of smartphones that have

these embedded sensors, there is a growing research interest

to identify an individual from his or her ordinary activities,

such as walking, running, etc. [7, 18, 11, 5, 13, 4, 15, 8, 10,

6, 17]

Most of the reported work has some shortcomings. For

example, in [8] and [11], only three and two classification

algorithms were evaluated respectively. We present a com-

prehensive evaluation on ten classifiers, which are Random

Forest, Support Vector Machine, Naive Bayes, J48, Neural

Network, k-Nearest Neighbors, Rpart, JRip, Bagging and

AdaBoost. Another deficiency of previous work is that it

addressed a limited number of activities, such as walking

and running. Some recent work [8] extended the activities

to jogging, climbing, etc. However, all of the reported re-

sults only consider dynamic activities. We test and com-

pare ten classification algorithms on a plethora of activi-

ties; these include dynamic activities, such as walking and

running; static postures, such as sitting and standing; and

an aggregate of activities that combine dynamic, static, and

postural transitions, such as sit-to-stand or stand-to-sit. Our

identification results on aggregate data include both labelled

and unlabeled activities.

We test our approach on two different public data sets,

available from the UCI Machine Learning Repository. The

first data set, User Identification from Walking activity
Data Set [1], consists of accelerometer readings of walk-

ing patterns from 22 participants. The second data set,

Smartphone-Based Recognition of Human Activities and
Postural Transitions Data Set [12], contains activity and

postural transition data from 30 volunteers, collected from

accelerometer and gyroscope.

Specifically, our work makes the following contribu-

tions:

1. We provide insights and a comprehensive evaluation of

ten different classifiers on various human activities. To

our knowledge, of the ten classifiers, Rpart, JRip, Bag-

ging, and AdaBoost, have never been studied in user

identification with wearable sensors. For evaluation of

the classifiers, we not only compute overall accuracy,

but also sensitivity and specificity of every user.

2. To our knowledge, static postures for user identifi-

cation have never been studied before. We propose



that by selecting features and classifiers appropriately,

static postures (sitting, standing and lying) can also be

utilized to identify a user accurately. Further, we con-

sider postural transitions in our classification. We com-

bine all activities and transitions together, remove the

activity labels, and find that it is still possible to iden-

tify every user accurately. We believe that this result

adds a significant contribution to research findings in

user identification with wearable sensors.

3. We find that k-Nearest Neighbors achieves high per-

formance in all of the tests in the two data sets. Not

only does the classifier work well for different activ-

ities and transitions, but the algorithm can be highly

accurate with a small set of features.

4. All of our work is based on two different publicly ac-
cessible activity data sets, downloaded from the UCI

Machine Learning Repository. Thus, our results can

be easily reproduced. We post all of our work, includ-

ing the data processing scripts, onto GitHub 1.

The remainder of this paper is organized as follows. We

discuss related work in Section 2, describe the data transfor-

mation and experimental design of two different data sets in

Section 3, demonstrate the evaluation results in Section 4,

give a discussion on results of two data sets in Section 5,

and summarize our conclusions in Section 6.

2. Related Work and Our Work

2.1. Related Work

Traditional gait recognition mainly concerns identifying

or authenticating an individual from his or her style of walk-

ing. According to a survey of biometric gait recognition

presented by Gafurov [3], gait recognition could be cat-

egorized into three types of approaches: machine vision-

based, floor sensor-based, and wearable sensor-based. The

machine vision-based approach is related to using cameras

to capture and record gait information. The silhouette in-

formation of a user is extracted for comparison and analy-

sis. For example, Yam et al. [18] identified a person using

walking and running patterns recorded by cameras. Re-

cently, with the development of virtual games, some re-

searchers are trying to use Microsoft Kinect for user recog-

nition. Kinect can provide information of gait through its

sensors. For example, Preis et al. [11] claimed they obtained

promising results in gait recognition with the help of Kinect.

The second category of gait recognition is related to collect-

ing data of activities through sensors installed on the floor.

This approach could offer footstep profiles of users. For

instance, Middleton et al. [9] designed a sensor consisting

1https://github.com/UserIdentificationBTAS/btas-2016

of 1,536 individual sensors for gait recognition. They ex-

tracted features of stride length, stride cadence, and time on

toe to time on heel ratio, and achieved a recognition rate of

80%. In the last type, the wearable sensor-based approach,

data is collected from sensors worn on user’s body. This is

the area we concentrate on in this paper.

In previous work, there are some studies on the sensors

for user identification. Currently, accelerometers and gyro-

scopes are widely used in this area. Gafurov et al. [5] per-

formed experiments on a data set comprised of 300 walk-

ing sequences from 50 subjects, collected by an accelerom-

eter sensor placed in the trousers pocket. Another work

by Trung et al. [17] was related to user recognition with

walking patterns on a large data set which contained data

from 736 subjects, recorded by an accelerometer and gyro-

scope. More recently, Zhong et al. [19] presented a novel

representation of walking activity data collected from ac-

celerometers and gyroscopes. Additionally, considering the

influence of orientation of devices, Subramanian et al. [16]

proposed an orientation invariant gait matching algorithm,

and achieved high performance.

There is some work discussing the approaches to pro-

cessing data. For example, recently, Sprager et al. [14] gave

a review of approaches used in sensor-based gait recogni-

tion. Considering that raw data collected from sensors is

mainly time series data, most of previous work uses time se-

ries data processing techniques to analyze the sensor-based

data. Kale et al. [7] extracted features from width vectors

and performed the dynamic time-warping (DTW) approach

on three different gait data sets. Chen et al. [2] extended

the algorithm to the dynamic time-warping-delta approach,

and they tested their method on unlabeled data sets. Nickel

et al. [10] implemented the hidden markov model for bio-

metric gait recognition. They claimed that their approach

obtained a false non match rate (FNMR) of 10.42%, and a

false match rate (FMR) of 10.29%. In recent years, some

researchers utilized other machine learning algorithms to

analyze the time series data. Kwapisz et al. [8] proposed

an approach to divide the time series data into 10-second

segments, and to generate feature vectors from every inter-

val.

2.2. How Our Work Differs From Previous Work

The previous work provides insights in the area of user

identification with wearable sensors. However, our work

differs in multiple perspectives. Table 1 shows experimen-

tal conditions and identification approaches from three pa-

pers that are similar to our work. In [15] and [11], only

the walking pattern was considered for user identification.

[8] augmented the activities to walking, jogging, walking

upstairs and walking downstairs. But the activities were

still limited to dynamic activities. While, in our work, we

identify an individual from six basic activities. Not only
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Study # of users # of features sensor(s) sensor location pattern(s) methods(s)

Sprager et al. [15] 6 65 accelerometer hip

slow walking

SVMnormal walking

fast walking

Preis et al. [11] 8 13 Kinect off-body walking

1R

C4.5

Naive Bayes

Kwapisz et al. [8] 36 43 accelerometer leg

walking
J48

jogging

upstairs
Neural Network

downstairs

Our work
30 24

accelerometer
waist

six activities (sitting,

walking, etc.)

ten classifiers (kNN,

AdaBoost, etc.)*gyroscope

18 9 accelerometer chest walking ten classifiers*

Table 1. Summary of experimental conditions and evaluation of three studies similar to our work. For the Walking Pattern Data Set, we

only use samples of 18 users from 22 participants because other four have too few samples. *: The ten classifiers are listed in Figure 1.

dynamic activities are considered, but static postures like

sitting, standing, and lying are also included. More impor-

tantly, we also combine the activity data and transition data

such as stand-to-sit, sit-to-lie together to recognize users. It

is more accurate to utilize this approach to simulate a user’s

daily routine, and is easier to be deployed in practice for

user identification and authentication, because the method

does not require recognition of a specific activity.

Another significant difference is the methods utilized to

train models. In [15], only support vector machine was ex-

ploited. And in [8], the authors performed J48 and Neural

Network. Even though [11] had more classifiers, still only

three algorithms were tested. In contrast, in our work, we

use ten different classification algorithms to identify users,

and we also provide insights and comparative evaluation of

the algorithms. This can be beneficial for other people to

select appropriate approaches for user identification.

One interesting result of our work is that we find that k-

Nearest Neighbors algorithm achieves high accuracy in all

of our tests, and in most of the tests, the accuracy is as high

as 100%. To the best of our knowledge, previous research

has not obtained such accuracy in user identification with

wearable sensors.

3. Data Transformation and Experimental De-
sign

3.1. High Level Design

In this paper, we perform user identification experiments

on two activity data sets. The high level design of our exper-

iment is shown in Figure 1. The Walking Pattern Data Set

was gathered from the accelerometer of an Android smart-

phone in a chest pocket, and the Human Activities and Pos-

tural Tranisitons Data Set was collected from accelerometer

and gyroscope embedded in a smartphone on waist. Usu-

ally, the raw sensor signals are presented in a time series for-

mat, and our approach is to partition them into fixed-width

windows. And for every window, we extract necessary fea-

tures to construct a feature vector. The samples are then

partitioned into a training data set and testing data set for

classification.

3.2. Descriptions of Data Sets

The first data set we performed experiments on is the

Walking Pattern Data Set [1], which could be accessed from

the UCI Machine Learning Repository. This data set con-

tains accelerometer time series data from 22 participants.

The sensor is embedded in an Android smartphone, put in

the chest pocket. The data set only has data of walking pat-

terns, sampled at 52 Hz. We plot graphs of information

from four users in Figure 2. From the figure, we observe

that every user has a unique pattern of walking.

The second data set we studied is the Human Activities

and Postural Transitions Data Set [12], which consists of six

basic activities: three dynamic activities (walking, walking

upstairs, and walking downstairs) and three static postures

(standing, sitting, and lying). The data set also includes

transitions between the static postures, which are stand-to-

sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-

stand. The data is from 30 volunteers, collected by embed-

ded accelerometer and gyroscope worn on every subject’s

waist.

3.3. Data Transformation and Feature Extraction

After the two data sets were obtained, we need to im-

plement data transformation for our experiment. Usually,

the raw data collected from accelerometer and gyroscope

is time series data, making it difficult to directly apply ma-

chine learning algorithms. Our approach is to partition the

data into fixed-width sliding windows. For the Walking Pat-

tern Data Set, we partition data into fixed-width (100 sam-

ples) sliding windows with a 50% overlap. For the Human
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Figure 1. High level design of our experiment.
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Figure 2. X axis accelerometer data in 20 - 25s from four users in

the Walking Pattern Data Set.

Activity and Postural Transitions Data Set, the original con-

tributors have already pre-processed the sensor signals by

noise filter and partitioned the data into fixed-width sliding

windows with a 50% overlap.

After the partition, we extract features from every slid-

ing window. For the Walking Pattern Data Set, we extract

9 features from every window and scale the features to [-1,

1]. The 9 features are the mean values, standard deviations

and median absolute deviations of x, y, and z axis of accel-

eration signals. After the pre-process, we notice that there

are some users having too few samples. For example, User

3 only has 23 samples. Because we have little information

about the users, we remove subjects 3, 5, 16, and 19 from

the data set. So finally, our cleaned data set has samples

from 18 participants. We demonstrate the number of sam-

ples per user in Table 2. Note that the numbers of samples

vary greatly between the individuals. For instance, User 21

only has 62 samples, while, by contrast, User 17 has 440

samples.

ID Count ID Count

1 101 12 96

2 78 13 134

4 140 14 241

6 99 15 74

7 75 17 440

8 70 18 416

9 160 20 339

10 62 21 62

11 113 22 194

Table 2. Number of samples per user in the Walking Pattern Data

Set.

For the Human Activities and Postural Transitions Data

Set, the original contributors constructed a 561-feature vec-

tor for every window. From the features, we extract 24 fea-

tures which are related to mean and standard deviation:

• tBodyAccMean (3): Mean values of x, y, and z axis of

body acceleration signals.

• tBodyAccSTD (3): Standard deviations of x, y, and z

axis of body acceleration signals.

• tGravityAccMean (3): Mean values of x, y and z axis

of gravity acceleration signals.

• tGravityAccSTD (3): Standard deviations of x, y and

z axis of gravity acceleration signals.

• tBodyAccJerkMean (3): Mean values of x, y and z axis

of jerk signals of body acceleration.

• tBodyGyroMean (3): Mean values of x, y, and z axis

of angular velocity.

• tBodyGyroSTD (3): Standard deviations of x, y and z

axis of angular velocity.

• tBodyGyroJerkMean (3): Mean values of x, y and z

axis of jerk signals of angular velocity.
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ID Walk Up Down Sit Stand Lie Total

1 95 53 49 47 55 48 347

2 59 48 47 46 55 49 304

3 58 59 49 52 63 63 344

4 60 52 45 49 56 52 314

5 56 47 47 43 57 51 301

6 57 51 48 56 58 56 326

7 57 51 47 47 54 50 306

8 48 41 38 45 57 55 284

9 52 49 42 53 49 54 299

10 53 47 38 55 46 59 298

11 59 54 46 54 50 58 321

12 50 52 46 56 62 61 327

13 57 55 47 49 60 60 328

14 59 54 45 53 62 48 321

15 54 48 42 61 55 74 334

Table 3. Number of samples of first 15 users for six activities in

the Human Activities and Postural Transitions Data Set.

Activity Count Transition Count

walk 1722 stand-to-sit 70

up 1544 sit-to-stand 33

down 1407 sit-to-lie 107

sit 1801 lie-to-sit 85

stand 1979 stand-to-lie 139

lie 1958 lie-to-stand 84

Total 10411 Total 518

Table 4. Numbers of samples of the activities and transitions in the

Human Activities and Postural Transitions Data Set.

We present an overall description of the number of sam-

ples in every activity in Table 3. Because of space limita-

tions, we only present information from the first 15 users.

Additionally, we give a summary of the samples of every ac-

tivity and transition in Table 4. In total, the post-processed

data set has 10,411 samples of activities and 518 samples

of transitions. It is normal that the transitions have a much

smaller number of samples than that of activities, because a

transition usually lasts for a very short time.

3.4. Experimental Design

After preparing the data sets, we perform and compare

ten classification algorithms, and most of them are widely

used in user identification research. Our motivation is that

even though there has been some work using the algorithms

in user recognition, there is a lack of work to compare

performance of the classifiers. The ten classification algo-

rithms are: Random Forest (RF), Support Vector Machine

(SVM), Naive Bayes (NB), J48, Neural Network (NN), k-

Nearest Neighbors (kNN), Rpart, JRip, Bagging (Bag) and

AdaBoost (AB). We use functions in R packages for the

classification. For the Neural Network, we set the number

of units in the hidden layer to 9, the parameter for weight

decay to 5e-4, and the maximum number of iterations to

1,000. For k-Nearest Neighbors, we configure k to 5. For

all the other classifiers, we utilize the default settings. We

partition the cleaned data set into 70% training and 30%

testing data, according to every user. And we train the mod-

els by the training data set and test them on testing data set.

For the Human Activities and Postural Transitions Data

Set, we perform more experiments because it contains more

activities. We partition it into six segments, with each cor-

responding to a specific activity (walking, walking upstairs,

walking downstairs, sitting, standing or lying). With the

six sub data sets, we perform the experiments to explore

the performance of different classifiers on various activities.

While, these experiments are only related to one specific ac-

tivity which has been known beforehand. The next series of

experiments we conduct is to integrate the samples of all

the six activities. This idea was first presented in [8]. In this

case, we obtain a large data set with six different activities

mixed together. There is a divergence as to whether or not

the labels of activities should be removed. It is more sim-

ilar to a real scenario if we remove all the labels, because

in practice, we may not have precise information about the

activity a user is performing. In our work, we compare the

results of the two approaches. We first keep the labels and

apply the classifiers; afterwards, we eliminate the labels and

conduct the experiment again.

One important experiment is performed afterwards. Be-

cause the data set also contains the transitions between static

postures, we append the transition data to the aggregated

data set without any activity labels. In our opinion, this case

achieves the most accurate simulation of a human subject’s

activities. It is also beneficial for continuous identification

and authentication because in practice, an activity may not

be recognized if the recognition system is only trained for

some specific activities.

4. Evaluation Results

4.1. Evaluation Results of Walking Pattern Data Set

To compare the classifiers, we calculate the overall accu-

racies for every experiment, and we also compute the sen-

sitivity and specificity of every user for each classification

algorithm. In our work, sensitivity is defined as the pro-

portion of positive cases identified correctly by a classifier.

And specificity is defined as the proportion of negative cases

identified correctly by a classifier. The reason for computa-

tion of sensitivity and specificity is that even though a clas-

sifier can obtain a reasonably high overall accuracy, it may

not identify some specific users well. This problem may in-

fluence the usage of the classifier in practice. So, for each

classifier, it is also crucial to evaluate the identification per-

formance for every user.
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Classifier Accuracy Classifier Accuracy

RF 85.7 kNN 99.8
SVM 77.2 Rpart 64.0

NB 48.3 JRip 72.6

J48 78.0 Bag 69.9

NN 76.3 AB 71.9

Table 5. Accuracies (%) of ten classifiers on the Walking Pattern

Data Set. Accuracies higher than 90% are bold. RF: Random

Forest. SVM: Support Vector Machine. NB: Naive Bayes. NN:

Neural Network. kNN: K-Nearest Neighbors. Bag: Bagging. AB:

AdaBoost.

ID
RF kNN

Sensitivity Specificity Sensitivity Specificity

1 76.7 99.8 100.0 100.0

2 39.1 99.8 100.0 100.0

4 81.0 99.5 100.0 100.0

6 86.2 99.8 96.6 100.0

7 95.5 99.3 100.0 99.8

8 47.6 99.8 95.2 100.0

9 79.2 98.3 100.0 100.0

10 83.3 99.9 100.0 100.0

11 84.8 99.6 100.0 100.0

12 85.7 99.9 100.0 100.0

13 97.5 98.9 100.0 100.0

14 94.4 99.6 100.0 100.0

15 81.8 99.6 100.0 100.0

17 87.1 97.4 100.0 100.0

18 91.1 95.7 100.0 100.0

20 96.0 99.3 100.0 100.0

21 88.9 99.5 100.0 100.0

22 77.6 98.6 100.0 100.0

Table 6. Sensitivity and specificity per user of Random Forest and

k-Nearest Neighbors in the Walking Pattern Data Set.

We first compute the overall accuracy of each classifica-

tion algorithm. The result is illustrated in Table 5. From the

table, we observe that only Random Forest and k-Nearest

Neighbors could achieve accuracies higher than 80%. Par-

ticularly, k-Nearest Neighbors gives an excellent result, as

the identification accuracy is nearly 100%. Remember that

the data set is not pre-processed by noise filters, and only

nine very basic features related to mean, standard deviation

and median absolute deviation are extracted, it is surpris-

ing that k-Nearest Neighbors achieves such a good perfor-

mance.

To check more details of user identification of the two

classifiers, we present Table 6 to provide sensitivity and

specificity of every user. The table indicates a promising

result that k-Nearest Neighbors has 100% identification ac-

curacies for almost all of the users. For Random Forest, the

specificities are very high, though for some users (User 2

for example), the sensitivities are relatively low.

0.25

0.50

0.75

1.00

RF SVM NB J48 NN kNN Rpart JRip Bag AB
Classifer

A
cc

ur
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y

Figure 3. Comparison of box plots of ten classifiers on the Hu-

man Activities and Postural Transitions Data Set. Note that kNN’s

performance is so high that in the figure it is almost just a line.

4.2. Evaluation Results of Human Activities and
Postural Transitions Data Set

Details of the overall accuracy of every classifier is re-

ported in Table 7. From the table, we observe that five clas-

sifiers (Random Forest, Naive Bayes, Neural Network, k-

Nearest Neighbors, and AdaBoost) can achieve more than

90% accuracy in user identification with the walking pat-

tern. Regarding the six different activities, the table indi-

cates that for the three dynamic activities (walking, walk-

ing upstairs, and walking downstairs), there are some clas-

sifiers that can accurately identify users. Random Forest,

k-Nearest Neighbors and AdaBoost are the three best al-

gorithms which obtain more than 90% accuracy in each of

the three dynamic activities. While, from the perspective of

static postures, the performance is different. All the classi-

fiers except k-Nearest Neighbors cannot work well for the

recognition. We notice that, on average, the classifiers ob-

viously gain a higher performance in dynamic patterns than

that of static patterns. And walking achieves highest identi-

fication accuracy in the six activities.

A very important part of our work is that we aggre-

gate all the samples together. In the last three rows of Ta-

ble 7, we consider three additional scenarios: aggregated

data with activity labels, aggregated data without activity

labels, aggregated data without activity labels and contain-

ing transitions. For these three experiments, almost all of

the classifiers’ performance deteriorates. For Naive Bayes,

Rpart, Bagging and AdaBoost, the accuracies for these ex-

periments are even lower than 20%. It seems that Random

Forest’s accuracies can still be higher than 80%, which is

tolerable. Additionally, k-Nearest Neighbors’s accuracies

are more than 99%. Actually, k-Nearest Neighbors ob-

tains very high accuracies (nearly 100%) in all of the tests.

This indicates that even when the data is from static pos-

tures or aggregated data with various activities, k-Nearest

6



Type Activity RF SVM NB J48 NN kNN Rpart JRip Bag AB Average

Dynamic

Walk 97.6 89.7 92.4 89.7 97.8 100.0 78.5 80.5 87.7 97.8 91.2
Upstairs 93.6 79.6 82.9 82.7 90.5 100.0 71.4 71.2 80.9 91.4 84.4

Downstairs 94.6 71.4 78.0 80.2 86.3 100.0 68.2 67.2 79.2 95.6 82.1

Static

Sit 68.3 22.2 12.9 69.2 62.9 99.8 33.7 48.1 44.3 46.4 50.8

Stand 72.2 37.5 25.6 74.1 76.8 100.0 52.6 60.7 57.9 59.8 61.7

Lie 86.6 46.9 34.7 84.1 80.6 99.8 58.8 72.4 66.5 84.5 71.5

Aggregated

Aggregate 86.3 30.6 10.1 80.0 40.2 100.0 14.8 62.8 16.1 18.5 45.9

Aggregate* 83.4 30.0 10.0 77.1 41.7 100.0 14.8 58.0 16.7 18.7 45.0

Aggregate** 80.9 29.2 10.2 74.8 35.3 99.2 14.6 57.0 16.4 15.7 43.3

Table 7. Accuracies (%) of ten classifiers on the Human Activities and Postural Transitions Data Set. Accuracies higher than 90% are

bold. Aggregate: Aggregated activity data with activity labels. Aggregate*: Aggregated activity data without activity labels. Aggregate**:

Aggregated activity data without activity labels but containing transitions. kNN achieves high accuracies in all of the tests.

ID
NN kNN AB

Sens Spec Sens Spec Sens Spec

1 96.4 100.0 100.0 100.0 100.0 100.0

2 100.0 100.0 100.0 100.0 100.0 100.0

3 94.1 99.8 100.0 100.0 94.1 100.0

4 100.0 100.0 100.0 100.0 100.0 100.0

5 100.0 99.8 100.0 100.0 100.0 100.0

6 100.0 100.0 100.0 100.0 94.1 99.8

7 94.1 100.0 100.0 100.0 94.1 100.0

8 100.0 99.8 100.0 100.0 100.0 100.0

9 86.7 100.0 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0 80.0 100.0

11 100.0 100.0 100.0 100.0 100.0 99.8

12 93.3 99.8 100.0 100.0 80.0 100.0

13 100.0 100.0 100.0 100.0 100.0 100.0

14 100.0 100.0 100.0 100.0 100.0 100.0

15 100.0 100.0 100.0 100.0 100.0 99.8

Table 8. Sensitivity and specificity of first 15 users under walking

in the Human Activities and Postural Transitions Data Set. Sens:

Sensitivity. Spec: Specificity.

Neighbors could still identify users accurately. This is very

promising, because it indicates that for user identification

with various activities, we do not need to recognize the ac-

tivity first, but can directly feed the models with activity

data. Overall, we put the comparison of the ten classifica-

tion algorithms in a boxplot, in Figure 3. From the plot, we

observe that k-Nearest Neighbors is the most stable clas-

sifier of the ten. And Random Forest also has a relatively

high and stable performance in all of the nine experiments.

Some classifiers, such as Naive Bayes and AdaBoost, have

a large difference between various activities. For example,

Naive Bayes achieves 92.4% accuracy in the walking pat-

tern, but can only identify 12.9% samples correctly in the

sitting pattern.

In Table 8, we also provide additional information about

sensitivity and specificity of first 15 users for Neural Net-

work, k-Nearest Neighbors and AdaBoost, with respect to

walking activity. It illustrates that the three algorithms work

well for almost all of the users. More importantly, k-Nearest

Neighbors achieves 100% accuracy for identifying every

user.

5. Discussion

After the analysis of two activity data sets, we summa-

rize what we have found in this section. In Figure 4, we

illustrate the overall comparison of the ten classification al-

gorithms based on the evaluation results of the two data sets.

We compute the rankings in three categories: aggregated,

dynamic and static activities. Because the figure is about

rankings, the lower, the better. K-Nearest Neighbors is ob-

viously the best classifier of the ten, and it ranks first in all

of the three categories. Additionally, Random Forest is an-

other classifier which ranks high in all of the three kinds of

activities.

6. Conclusions

In this paper, we evaluated ten classifiers on two pub-

licly available activity data sets for user identification. We

considered data sets obtained from dynamic activities, static

postures, and postural transitions. Our results included

analysis on individual activities and labelled and unlabeled

aggregate of activities. In our experiments, the k-Nearest

Neighbors algorithm outperformed all other classifiers. We

plan to extend our analysis on data obtained from additional

sensors, such as EEG obtained from Brain Computer Inter-

face devices. We posit that this work will serve as a resource

and a benchmark for selection and evaluation of classifica-

tion algorithms for activity based identification on smart-

phones.
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