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Abstract

We studied the fusion of three biometric authentication
modalities, namely, swiping gestures, typing patterns and
the phone movement patterns observed during typing or
swiping. A web browser was customized to collect the data
generated from the aforementioned modalities over four
to seven days in an unconstrained environment. Several
features were extracted by using sliding window mechanism
for each modality and analyzed by using information
gain, correlation, and symmetric uncertainty. Finally,
five features from windows of continuous swipes, thirty
features from windows of continuously typed letters, and
nine features from corresponding phone movement patterns
while swiping/typing were used to build the authentication
system. We evaluated the performance of each modality and
their fusion over a dataset of 28 users. The feature-level
fusion of swiping and the corresponding phone movement
patterns achieved an authentication accuracy of 93.33%,
whereas, the score-level fusion of typing behaviors and
the corresponding phone movement patterns achieved an
authentication accuracy of 89.31%.

1. Introduction

A significant amount of research has recently explored
how the sensors built in smartphones could aid in user
authentication. Some of the most studied sensors include
the touch sensor [1-4], the motion and orientation sensors
[5, 6], the microphone [7] and the camera [8]. While
the majority of research on these sensors has found
them promising in user authentication, the adoption of
these sensor-driven authentication systems in practical
applications continues to be a distant dream. Some of
the potential reasons for this challenge include: (1) High
error rates— a number of studies on such authentication
systems continue to report high error rates (see [2, 5])
which are far from the thresholds specified by NIST for
authentication systems, (2) Realism of the experiment
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settings— many of the studies on this type of authentication
use constrained experimental settings, which makes it
difficult to extrapolate how the system would perform in
the wild e.g., see experiments where users are constrained
to perform a particular task [1-4, 9], (3) Intermittent
availability of data— in most studies, researchers focus
on a single sensor and evaluate how data from this
sensor discriminates between users. The challenge with
these scenarios is that, in practice, a single sensor would
provide useful data during only those spells when the user
undertakes activities which trigger this sensor. During
spells when the sensor is not used, an authentication
system designed based on the sensor in question would be
redundant, which in turn implies it would not help defend
against active adversaries at that point in time, and (4) Spoof
attacks— it has been shown that several of the systems based
on the individual sensors can be spoofed by adversaries who
have access to population statistics [10-13] or those who
have access to user-specific data [10,11, 13, 14].

The sum-total of these challenges presents a major
impediment to the potential realization of these methods
in real systems. In this paper, we design and evaluate
an authentication system which takes steps towards
addressing these challenges. Specifically, we present
a fusion-based authentication mechanism for smartphone
users that combines typing, swiping, and phone movement
patterns while typing/swiping as respectively recorded by
the touch and motion sensors. The combination of these
sensors does not only result in low error rates but also
naturally presents a defense to the spoof attacks designed
to defeat the individual sensors. The low etror rates
result from the multiple sensors providing a large amount
of information about the users behavior, while the spoof
resistance emanates from the difficulty an attacker would
face to forge samples from all sensors at once.

To cap it all, we evaluate our system using data which
was collected while users freely interacted with the device
during routine web browsing, allowing us to provide
insights on sensor-driven authentication from a perspective
that is drastically different from the vast majority of past



research. To ensure that we collect a sufficient number
of touch and keystrokes, we provided seven browsing
exercises to the participants spread over a period of at
least four days. The core of our authentication system
is the feature and score-level fusion framework which
dynamically combines information expressing the user’s
typing, swiping and phone movement behavior.
The contributions of our work are summarized below:

e Using data collected from 28 users over a period of
four to seven days under a completely unconstrained
environment, we designed a multimodal fusion-based
continuous authentication system. To the best of our
knowledge, no past work has fused this full set of
sensors and performed evaluations in a realistic setting
which closely mirrors real-world conditions.

e We extracted a large number of features from all
three modalities and rigorously evaluated their
informativeness using several feature quality
measures. Our belief is that this corpus of ranked
features will be a handy resource for researchers
conducting further research in this area.

e An algorithm is presented for implementing a
multimodal framework. Although the framework
focuses only on the typing, swiping, and phone
movement patterns, it can be easily extended to
accommodate any number of modalities. Additionally,
we implemented a multi-template classification
framework (MTCF), especially for classifying swipe
gestures and the corresponding phone movement
patterns. Our experimental finding shows that it
is better to use MTCF compared to a traditional
single-template based classification framework
(STCF).

The rest of the paper is organized as follows: Section
2 presents related work; Section 3 describes the data
collection, preprocessing, and feature analysis; Section
4 discusses authentication/classification framework,
training/testing of classifiers, feature/score-level fusion;
Section 5 talks about the performance of different
modalities; finally, Section 6 concludes our work.

2. Related Work

The touch- and typing pattern based continuous
authentication systems have been widely studied recently
[1-4,15-17]. However, these authentication systems, like
classical biometrics, are also susceptible to mimicry-attacks
e.g. see [10, 11]. Sitova et al. [9] studied the phone
movement patterns as hand-movements, orientation and
grasp (HMOG) under two specific conditions: walking and
sitting. They showed that the phone movement patterns

while typing achieved equal error rates (EERs) of 19.67%
and 13.62% respectively under the sitting and walking
conditions. The fusion of typing patterns with HMOG
achieved EERs of 7.16% and 10.05% respectively for
walking and sitting conditions.

Similarly, we propose to fuse the phone movement
patterns (before, while, and after swiping/typing) with
the swiping or typing behaviors. However, our work
differs from Sitovas on the following aspects: (i) our
data collection was completely unconstrained, (i) we
apply feature-level fusion of modalities in addition to the
score-level fusion, (iii) we present a comparative analysis of
single- and multi-template frameworks for different kinds of
swipe gestures, (iv) and we test the system under continuous
authentication paradigm and report mean error rates.

The fusion not only improves the classification accuracy
but also provides more complex feature space. It may be
possible for adversaries to train a robot [10] or a human
imitator [11] to imitate swipe/type or phone movement
patterns separately. However, we believe that it will
be extremely difficult to imitate both (swiping/typing
patterns and the corresponding phone movement patterns)
simultaneously, especially when the features extracted from
both of the modalities are less correlated.

3. Data Collection and Feature Analysis
3.1. Data Collection

Following IRB approval, we invited university students
and staff members to participate in our data collection
experiment. The participants were pre-informed that i) their
swiping/typing behaviors shall be collected while they used
our customized web browser, ii) their phone movement
patterns would be collected all the time. More than 85%
of the participants were university students, while the rest
were university staff or faculty.

Figure 2 summarizes the system architecture used for
the data collection. Smartphones running Android, version
4.0 were used to collect the data with no hardware and/or
software modifications. The data collection app consisted
of two core components: a customized web browser called
Lightening [18] to collect typing and swiping patterns, and
a service that runs in the background to collect phone
movements continuously through an accelerometer sensor.
On its first startup, the web browser was programmed to
start the service.

Participants browsed a series of exercises through the
web browser by swiping back and forth and typing
responses to them. A total of seven exercises were provided,
one for each day, and each containing twenty objective
and ten subjective questions. Participants were not given
specific instructions on how and when to attempt the
exercises, however, they were required to type at least 1000
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Figure 1. Availability of a smartphone user’s activities on the phone over the time.

Table 1. List of features extracted from a window of phone movement patterns corresponding to each window of swipe gestures. The

X, Y, Z are the accelerometer readings in X, Y, and Z dimensions. M is the resultant acceleration and is defined as M =

X2+ Y2+ 22

| MeanM | Mean X | Mean Y | Std Y | MedianFreq Y | MedianFreq X | AbsSum X | AbsSum Y | AbsSum Z |

letters (= 10 questions x 100 letters for each question) and
generate on an average 25 swipes to complete one exercise.
Additionally, we encouraged participants to freely browse
pages of their choice in addition to attempting the daily
exercises. This helped ensure that the browsing activity
seen in our study was reflective of users free behavior
while they interact with a web browser in their daily life.
So, our dataset not only consisted of those gestures that
were generated while users answered the questions but
also consisted of those gestures that were generated while
users freely browsed pages of their choice. Since the
way in which users browse the web (i.e., by swiping and
occasionally clicking a link or button) is very similar to how
they interact with a significant proportion of apps and, our
experimental setting also addresses the challenges that are
posed by app browsing.
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Figure 2. Underlying architecture for data collection.

To collect typing pattern, Javascript was to record time
stamps associated with key presses and release events for
each character. The swiping gestures that were recorded
by the browser contained action type, orientation, X, Yy,
pressure, area, and time, and at every touch point along the
touch stroke (or swipe). The fields respectively represent
the type of action (i.e. finger up, down, or moving),
the orientation of the phone (landscape or portrait), the
x-coordinate of a point touched, the y-coordinate of a point
touched, the pressure exerted on the phone by the finger, the
area occluded between the finger and the phone screen and

the time at which a point is touched.

The typing and swiping data was sent to the server
whereas the data generated through phone movement
patterns i.e. (linear acceleration in x, y and z
directions, rotation vector, and timestamp) was saved
on the phone to prevent data transfer costs.  The
delay for collecting accelerometer data was set to
SENSOR_DELAY _NORMAL that generated an average of
five samples per second mostly and consumed the least
amount of battery.

3.2. Preprocessing and Feature Analysis
3.2.1 Availability of activities and preprocessing

Figure 1 shows a subset of activities individuals perform
typically while they interact with the smartphone. Observe
that the phone movement patterns are available throughout
the interaction time (e.g., while a person types, swipes,
etc.). Typing and swiping, on the other hand, do not
happen all the time and occur during non-overlapping time
intervals. The availability of phone movement patterns at
all times provides a perfect scenario for fusion with swiping
data or typing data whenever any of the latter modalities is
available.

We extracted the segments of phone movement patterns
(i.e. accelerometer readings) corresponding to individual
swipe gestures. We hypothesized that the phone movement
patterns before, after and while typing/swiping is useful
and may be unique to every user. Hence, for each
swipe, we extracted an additional three seconds of phone
movement patterns that was generated before and after
each swipe in addition to the data along with the swipe.
Similarly, we extracted segments of phone movement
patterns corresponding to the windows of typed characters.

3.2.2 Swiping and phone movement patterns

To make our authentication system continuous in nature, we
applied a sliding window-based mechanism for extracting



Table 2. List of features extracted from sliding windows of swipes. Windows of four consecutive swipes were used. We plotted x and y
coordinates of touch points of all the swipes over a time-scale and observed some unique pattern. Hence, we treated these points as signals
and extracted some features from signal processing domain such as the energy of the signal x and y. The energies of these signals were

selected among the best features for classification.

Mean
Area

Mean
Pressure

Sum of pairwise distance
among touch points

Energy of the signal formed by
X coordinates of touch points

Energy of the signal formed by
Y coordinates of touch points

Table 3. The symmetric uncertainty of 30 character pairs selected from the 40 most frequent character pairs. We used these pairs as features

for classification.

ce: .0617 | ha: .0541 | us: .034 co: .033 te: .023 or: .021 se: .0194 | an: .0153 | ar: .0152 | le: .0150
me: .013 | ri: .010 of: .0073 | es: .0071 | is: .0068 | al: .0065 | ou: .0053 | in: .0051 | ca: .0042 | on: .0039
nd: .0039 | be: .0038 | to: .0035 | at: .002 | en: .0018 | er: .0017 | ne: .0016 | ng: .0016 | ed: .0015 | th: .0015

features from each of the modalities. For swiping and phone
movements patterns while swiping, we used a window
of four consecutive swipes with a sliding window of two
swipes (see Algorithm 2).

The list of features extracted from the window of swiping
gestures and corresponding phone movement patterns are
presented respectively in Table 2 and 1. These features were
selected by the correlation-based feature subset selection
method [19] from a total of 36 features extracted from
the phone movements data and seven features from the
swipe gestures data. We observed that the feature reduction
not only reduced the computational complexity but also
improved classification performance significantly.

3.2.3 Typing and phone movement patterns

Similar to swipes, we used a sliding window 80 typed
characters with a sliding window of 40 characters. From
each window of typed letters, we extracted key hold times
(KHTs) for each character and key interval times (KITs)
for all possible pairs. The KHT is the latency between the
press and release of a given key, while the KIT is the latency
between the release of a key and the press of the next key.
While both KHTs are KITs are widely studied in
keystroke dynamics for desktop, we observed KHTSs
performed very poorly during preliminary experiments may
be due to poor clock resolution [20] so we did not study
them further. Given a large number of possible digraphs
729(= 27 X 27) considering 28 letters of the alphabet and
a shift key on the smartphone keypad, we evaluated the
discriminative power of 40 most frequent digraphs so as to
focus on a smaller number of highly informative digraphs.
We used the symmetric uncertainty to evaluate the
informativeness of all 40 most frequent digraphs. The
symmetric uncertainty (SU) of a diagraph is computed as,
SU =2xI(F,U)/(H(F)+H(U)). The term I(F,U) is the
mutual information between the feature and the class labels
while the H(F') and H(U) are respectively the entropy of
the feature and the entropy of the class labels. We selected

top 30 digraphs for classification (see Table 3). For phone
movement patterns, we used accelerometer readings along
with the windows of 80 consecutively typed characters with
an overlap of 40 characters. Similar to phone movements
while swiping, we extracted the same set of features (see
Table 1) from the data collected from the phone movement
patterns while typing.

Algorithm 1: Multimodal authentication framework

Input: U={phone movements, swiping, typing}
//Availability of modalities
Inpu': Gconf s Cthr, and G flag
//acong: Authenticity confidence,
//cthr: Threshold for aconf,
//aflag: User active/inactive flag
1 while (af44) do
2 if ((acons < cenr) A (T(1) V ¥(2) V ¥(3))) then
3 while (T(1) v ¥(2) vV ¥(3)) do
4 //Checking the availability
of modalities in order of
their performance
5 if (¥(1) A T(2)) then
6 update AuthCon f(¥ (1), ¥(2))
7 else if (T (1) A ¥(3)) then
8
9

update AuthCon f(¥(1), ¥(3))
else if (¥(2)) then

10 | updateAuthConf(¥(2))

il else if (¥ (3)) then

12 | updateAuthConf(¥(3))

13 else

14 | updateAuthConf(¥(1))

15 end

16 end

17 else

18 update AuthCon f(fingerprint V face V
PIN V password V ...)

19 end

20 end




4. Design of Experiments
4.1. Multimodal Framework

One of the major issues in building a complete
continuous authentication for smartphones is the
availability of unique behavioral patterns across the
interaction timeline. Smartphone users generally interact
with the phone by swiping, typing, zooming, speaking,
clicking, etc. in a random order. Hence, the security
provided by an individual modality based authentication
system is not comprehensive. For example, swiping- (or
touch-) based authentication alone is not sufficient to cover
the entire interaction window (see Figure 1). This issue
defeats the philosophy of the continuous authentication
which requires the continuous monitoring of the access
to the device. Adversaries can exploit the windows of
interaction where swiping does not take place to get into
the system. Therefore, to develop a complete continuous
authentication system for smartphone users, we need a
multi-modal framework that uses more than one modality
(as per their availability) and possibly fuses them in order
to cover the entire interaction window of users with the
phone.

Algorithm 1 presents steps to implement a tri-modal
framework. We believe that it is not mandatory to keep
the continuous authentication module active all the time as
it is quite resource consuming. Therefore, we proposed
to use a measure of the authenticity of the user that is
called authenticity confidence and represented by aconjf.
The latest value of acon; and a predefined threshold
cinr are used to decide whether to enable the continuous
authentication module or not. The value of ac., decreases
based on time spent on the phone by the user. It increases
when the system receives legitimate biometric patterns that
successfully verifies the identity of the user. If none of
the modalities are available and acons goes below to the
Cihr, users are prompted to enter a PIN, a password, face,
fingerprint etc. to verify their identity.

In order to achieve the best possible classification
accuracy, we have organized the if-else block in such a
way that the system first searches for the best available
combination of modalities. For example, the fusion
(combination) of swiping and phone movements while
swiping achieves the best accuracy at the time of validation
compared to the fusion of typing behaviors and phone
movements while typing. In this scenario, we first check
for the availability of swiping and phone movements while
swiping; if both are available, we use the fusion of these two
to update the authentication confidence a.on s by invoking
updateAuthConf(). The updateAuthConf() function is an
overloaded function that takes one or more modalities and
update a.ons based on the classification score obtained by
the supplied modalities.

4.2. Choice of Classifiers

We used k-NN (k=11) with Euclidean distance [21], and
random forest [22] with one thousand trees. We studied
these two classifiers only because there exist several studies
that compare classifiers for touch-based authentication and
these two have been tested and proven to be the good ones
in this area [1,2].

4.3. Training and Testing of Classifiers

We divided the whole dataset into two equal parts. Since
the data was collected over multiple (four to seven) days, the
divided data naturally created an inter-session scenario. We
trained both classifiers for every user separately. To train
classifiers for a user, we first created genuine and imposter
feature vectors by using the sliding window mechanism (see
line 1-6 Algorithm 2).

The genuine feature vectors were created from the
corresponding users training data whereas impostor feature
vectors were created by using the data from the rest of the
users. We selected five random vectors from each of the
rest of the users to create a total of 108 (=27x4) imposter
feature vectors for each user.

Algorithm 2: The feature level fusion framework.

Input: n, da Sindexs Gconfy Uthr, and 0
//n:# of swipes in a window,
//d:# of swipes to slide,
//Sindex : Index of first swipe,
//@conf : authenticity confidence,
//ushr : user—specific threshold,
//8: conf update factor,
Input: ws = {317 82, 83, }’ Wp = {plap?ap(% }
//ws :Stream of swipe gestures,
//wp :Stream of phone movement
Input: ciempiate //Classification template
1 Sindex < —d //initializing Sindex
2 while (w; Awp) do
3 Swindow ws(sindez +d: Sindex T d+ n)
4 Pwindow Wp(sindem +d: Sindex +d+ n)
5 Sindex < Sindex T+ d
6 sfy  getFeatures(Syindow)
7 Pfo < getFeatures(Pwindow)
8 | cfo ¢ fuseFeatures(sfy,pfy)
9 Cscore < getMatchScore(csy, Ctempiate)

10 if Cscore = Uzh then
1 | Gconf ¢ Geons + 0
12 end

13 end
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Figure 3. The appearance of swipe gestures on two opposite sides of the screen formed the basis to explore the multi-template classification
framework. An obvious and unique patterns can be observed in phone movement patterns, e.g., Userl seems pressing the phone too hard

while swiping.

4.4. Multi-template Classification Framework

We plotted swiping gestures of every user and observed
that a majority of users had swiped in two different parts of
the screen i.e. left and right (see Figures 3 and 4). The left
swipes were generated from the left hand and right from the
right hand of the user as it is impractical for an individual to
swipe on two opposite sides of the smartphone screen using
only one hand. Since a significant percentage of the total
swipes appeared on the left so discarding them was not an
option (see Figure 4).

Most of the researchers have used location-based
features (e.g. coordinates at the start, mid and end of
swipes) that may not be very useful in the scenario where
swipe gestures appear across the screen [1-4]. We believe
that the location of swipes also depends on the kind of
application the user is interacting with. We address this
problem by applying two different techniques: first by
defining location independent features (velocity, length,
area, and pressure of the swipe (see Table 2)); second by
creating two separate templates, namely, left template and
right template. The left template was created using all
swipes that appeared on the left side of the screen, whereas,
the right template was created using all swipes that appeared
on the right part of the screen.

To identify the type of swipes we rely on the coordinates
of the touch-points. If 80% of the touch points of a swipe
gesture lie on the left part of the screen (with the screen
divided into two equal parts vertically), we classify it as a
left-swipe otherwise as a right-swipe. The 80% criteria was
able to separate the left and right swipes for all of the users.

For testing, we first identified the type (left or right)
of the incoming swipe, extracted features, and then
fed the feature vector to the classifier for finding the
matching score with the corresponding template. Further,
we evaluated the performance of each modality under
both, single and multi-template classification frameworks;
we present their performance in Table 4. It can be
observed that the multi-template framework outperforms
the single-template approach. Therefore, we suggest using
a multi-template classification framework whenever it is
possible to accurately find out what template an incoming

pattern belongs to.

4.5. Fusion-based Classification Framework

We studied the fusion of modalities at feature- and
score-level fusion, that are discussed below:
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Figure 4. User-wise distribution of number of left and right swipes.

4.5.1 Feature level fusion (FLF)

Algorithm 2 presents the implementation steps for the
feature-level fusion of swipe gestures and phone movement
patterns. To fuse these modalities, we first checked for their
availability. Then, we extracted the next window of swipes
from the stream of incoming swipes, and the corresponding
window of accelerometer readings to extract five and nine
features respectively. Later, we concatenated these features
to obtain a fused-features vector that contained a total of 14
features. The fused feature vector was then supplied to the
matcher i.e. to the getMatchScore() function. This function
returned the probability of the fused feature vector to be of
a genuine type. The results of the feature-level fusion is
presented in Table 4 and discussed in Section 5.

4.5.2 Score level fusion (SLF)

Similar to the FLF, we first extracted feature vectors from
each of the to be fused modalities. These feature vectors
were supplied to the corresponding classifiers to get the
match scores. To compute the final match score, we
take a weighted average of these scores by using the
formula: sy = (ws X s5) + (wp X Sp), Where, s and
s, be the classification scores obtained after classifying
swipe gestures and the corresponding phone movements
respectively and w, + wp, = 1. To find the range of



Table 4. Classification performance of authentication systems based on swipes, phone movement patterns while swiping and their fusion
at feature and score-level under both, single and multi-template classification framework. The abbreviations used in this table are, PMs:
phone movement patterns; STCF: single-template framework; MTCF: multi-template classification framework.

Modality Average performance
Used for Classification kNN-Euclidean Random Forest
FAR(%) | FRR(%) | Ace(%) | FAR(%) | FRR(%) | Acc(%)
Swiping gesture w/ STCF 11.08 12.52 88.15 12.71 6.75 90.51
Swiping gesture w/ MTCF 7.92 15.21 87.47 10.09 5.59 92.89
PMs while swiping w/ STCF 14.71 23.63 80.55 14.06 14.54 86.02
PMs while swiping w/ MTCF 11.53 23.42 81.13 13.66 14.69 86.12
FLF of swipes & PMs while swiping w/ STCF 8.42 9.44 91.03 12.19 6.25 91.02
FLF of swipes & PMs while swiping w/ MTCF 6.84 10.20 91.15 11.44 4.23 93.33
SLF of swipes & PMs while swiping w/ STCF 11.08 11.90 88.45 7.20 7.01 92.85
SLF of swipes & PMs while swiping w/ MTCF 9.41 18.70 84.10 6.13 7.78 92.80
weights that gives the best performance, we repeated the process.

fusion experiments starting from w, = 1.0 and w, = 0.0
with a respectively decreasing and increasing step of 0.02,
and continued until w, = 0.0 and w, = 1.0. The
range of weights that achieved the best accuracy during
the SLF of swiping and corresponding phone movement
patterns were w, = [0.86,0.96] and w, = [0.14,0.04]
for both single template classification framework (STCF)
and multi-template classification framework (MTCF).
Similarly, the SLF of typing behaviors and corresponding
phone movement patterns was also carried out and achieved
the best accuracy for w; = [0.88,0.94] and w, =
[0.12,0.06], where, w; and w,, are the weights assigned
to the scores obtained from typing corresponding phone
movement patterns.

Table 5. Classification performance of authentication systems
based on typing behaviors, phone movement patterns while typing
and their fusion at score-level. The abbreviations used in this table
are, PMs: phone movement patterns, S Verifier: Similarity verifier,
and RandFor: random forest.

Modality & Classifiers Classifier performance

used for classification FAR | FRR | Acc
Typing behavior (S Verifier) | 11.31 | 13.65 | 88.45
PMs while typing (RandFor) | 16.43 | 18.71 | 81.53
Typing and PMs (SLF) 10.33 | 12.57 | 89.31

5. Performance Evaluation

We present the classification performances by using
three metrics, namely, average false accept rates (FAR),
average false reject rates (FRR) and average accuracy
(Acc). These metrics are computed from a series of
continuous scores returned by the classifiers, one for each
feature vector. In order to give an authentication decision
that is to decide whether a feature vector belonged to
the genuine class, we used user-specific thresholds. The
user-specific thresholds are created at the time of enrollment

We computed equal error thresholds by using the genuine
and imposter scores obtained during the validation. For
validation, we used half of the training data to train and
the other half to validate. Following sections talk about
the performance of the specific modalities and their possible
fusion.

5.1. Swiping and phone movement patterns

We used two classifiers, namely, k-NN and random
forest for verification purpose. In order to compare MTCF
and STCF, we ran experiments under both the setup and
computed the mean FARs, FRRs, and accuracies. Table 4
presents the results for swiping gestures, phone movement
patterns while swiping, and their fusion at the feature-
and score-level. We can observe that MTCF always
performs better than STCFE. The accuracies obtained by
each modality and their fusion are significant, especially
considering the fact that our data was collected in a
completely unconstrained environment. Also, the FLF
outperforms the SLF in most of the cases. Therefore, we
suggest using the MTCF and FLF frameworks with the
random forest classifier to achieve the best performance.

5.2. Typing and phone movement patterns

We evaluate the performance of typing behavior and the
corresponding phone movement patterns by using similarity
verifiers [13] and random forest. We studied the fusion of
these two modalities at score-level only. Table 5 presents
mean FARs, FRRs, and accuracies for both of the modalities
and their fusion at score-level. We can observe that the
score-level fusion is able to improve performance.

6. Conclusion and Future Work

We investigated three modalities, namely, swiping
gestures, typing behavior, phone movement patterns



while typing/swiping, and their possible fusion at the
feature- and score-level for authenticating smartphone users
continuously. Our experimental findings suggest that
the fusion of available modalities improves the overall
authentication accuracy. Specifically, the fusion of swiping
gestures and corresponding phone movement patterns at
the feature-level achieves the best classification accuracy.
Similarly, the fusion of typing behavior and corresponding
phone movement patterns at the score-level outperforms
the authentication systems based only on typing or
corresponding phone movement patterns. Also, for building
an authentication system that included swipe gestures, a
multi-template framework is recommended.

In the future, we plan to investigate the following: the
possibility of fusion of typing behavior and corresponding
phone movement patterns at the feature-level; phone
movement patterns while not typing/swiping; define metrics
that can be used to evaluate the overall performance of
a multimodal fusion-based authentication system; and the
behavioral patterns other than swiping and typing.
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