Introducing Parallel and Distributed Computing to K12

Brian Broll, Akos Lédeczi,

Péter Volgyesi, Janos Sallai, Miklés Mardti

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN, USA

Email: akos.ledeczi@vanderbilt.edu

Abstract—The paper introduces a visual programming lan-
guage and corresponding web- and cloud-based development
environment called NetsBlox. NetsBlox is an extension of Snap!
and it builds upon its visual formalism as well as its open
source code base. NetsBlox adds distributed programming
capabilities to Snap! by introducing two simple abstractions:
messages and NetsBlox services. Messages containing data can
be exchanged by two or more NetsBlox programs running
on different computers connected to the Internet. Services
are called on a client program and are executed on the
NetsBlox server. These two abstractions make it possible to
create distributed programs, for example multi-player games
or client-server applications. We believe that NetsBlox provides
increased motivation to high-school students to become creators
and not just consumers of technology. At the same time, it helps
teach them basic distributed programming concepts.

Keywords-visual programming, distributed programming,
computer science education

I. INTRODUCTION

Computational thinking (CT) has been described as a
general analytic approach to problem solving, designing
systems, and understanding human behaviors [1], [2]. The
integration of CT within the K12 curriculum has also been
argued for by the ACM committee on K12 education [3].

There are many efforts around the world to introduce
young learners to computer programming, such as code.org,
Khan Academy, LEGO Mindstorms or the Raspberry Pi.
Visual programming languages have come to play a promi-
nent role in this movement and have been used to teach
children programming [4], [5] as well as using computa-
tional modeling to teach and learn science [6], [7]. However,
most of these efforts focus exclusively on the computer
and neglect an equally important concept, the network.
This is of course completely understandable: you need to
learn how to program a computer before you can create
networked/distributed applications. Nevertheless, some of
the most widely used computer applications today rely on
the network to provide their functionality. The web, texting,
Twitter, Facebook and other social networks, multiplayer
games, Pandora, Netflix, Amazon Echo, Siri, Google Maps
and YouTube are just a few of the most popular examples.
Even embedded systems are becoming networked at a rapid

Chris Vanags
Center for Science Outreach
Vanderbilt University
Nashville, TN, USA

pace with cars and home automation being the prime ex-
amples. Teaching distributed programming then constitutes
both a necessity and a great opportunity. It is a necessity,
because distributed computing is becoming part of basic
computer literacy. And it is also an opportunity, because
children already use the technology every day and their
natural curiosity will provide excellent motivation for them
to learn more about it.

We believe that it is not enough to introduce computer
programming into the K12 curriculum, but it also necessary
to teach distributed computing concepts to young learners.
At the college level, the ACM IEEE Computer Science
curriculum (2013) [8] advocates introducing the follow-
ing topics to CS students: asynchronous and synchronous
communication, reliable and unreliable protocols, and the
need for concurrency in operating systems. We argue that
with the help of a carefully designed visual representa-
tion, an intuitive user interface and a sophisticated cloud-
based infrastructure, it will be possible to teach some of
the key underlying concepts of distributed computation to
high school students. To this end, we have developed a
new learning environment called NetsBlox which extends
the visual programming paradigm of Scratch [4]. NetsBlox
introduces a few carefully selected abstractions that enables
children to create distributed computing applications [9].

The literature on educational computing is rife with
observations of children’s difficulties with learning basic
constructs of programming. Alleviating syntactic complex-
ity is an important pedagogical affordance of a visual
programming paradigm. In such an environment, students
construct programs using graphical objects on a drag-and-
drop interface [5]. This significantly reduces students’ chal-
lenges in learning the language syntax (compared to text-
based programming), and thus makes programming more
accessible to novices. Examples of some visual program-
ming environments are Snap! [10], [11], which itself is an
extension of Scratch [4], StarLogo TNG [12], and Alice [13].

We decided to base our research on Scratch [4] because
it is one of the most mature and widely used approaches
and we have significant experience using and teaching it.
A Scratch program consists of one or more sprites that can

have multiple visual representation (“Costumes”) and one or
more scripts. The program is executed on the “stage”. The
available computing blocks (instructions, operators, etc.) are
grouped by various color coded tabs according to their role,
e.g., operators, program control, variables, etc. The shapes of
the different blocks give a hint about their role, for example,
you can only insert hexagons as a condition into an if block
header. This prevents syntax errors altogether. As an illus-
tration of the power of Scratch, see a 10-block program that
plots the sound volume measured by the microphone of the
computer continuously at http://tinyurl.com/loudnessmeter.
Note that it is not only the intuitive and easy to learn visual
language but also the superb user interface that make Scratch
a great tool.

A. Understanding Concurrency

Although researchers have been investigating approaches
for teaching and learning computer programming in K12
classrooms, very few studies have looked at how K16
students can learn about concurrency. A few researchers
have pointed out that Scratch can be used productively
to introduce basic ideas of concurrency to novices [14],
[15]. Meerbaum-Salant et al. [14] investigated difficulties
experienced by students in understanding concurrency using
Scratch. They divided this concept in two categories: Type
I concurrency occurs when several sprites are executing
scripts simultaneously, such as sprites representing two
dancers. Type II concurrency occurs when a single sprite
executes more than one script simultaneously; for example,
a Pac-Man sprite moving through a maze while opening and
closing its mouth. They found that Type I concurrency seems
to be much more intuitive for students and easier to grasp.

Maloney, et al. [15] reported on an experiment where
Scratch was used by students in an after-school clubhouse.
These students were self-selected and self-paced, receiving
no formal instruction. By analyzing the students projects,
they found that the majority of the projects that actually
constructed executable scripts used both sequential and
concurrent execution. However, as the authors themselves
note: without realizing it, most Scratch users make use
of multiple threads (p. 368, our emphasis). The researchers
did not investigate if the use of concurrency demonstrates
understanding of this concept. The internalization of con-
cepts was measured by counting the portion of projects
using them. These measures were higher (about 50 %) for
user interaction and loops, lower for conditional statements
and for communications and synchronization (about 25 %),
and much lower for Boolean logic, variables and random
numbers (about 10 % or less).

II. NETSBLOX

Scratch is implemented in Flash. However, Snap! [11] is
an open source extension of Scratch written in JavaScript.
It is the tool of choice for the popular Beauty and Joy

of Computing high school course that originated at UC
Berkeley [16]. Therefore, we have built NetsBlox upon
Snap! [9] It constitutes an excellent starting point because
just like Scratch, it also supports concurrency. Sprites run
in parallel and each script runs in its own thread. The
keyboard and the mouse generate events that scripts can
handle and scripts can generate and handle custom events.
NetsBlox builds on these concepts to supply primitives
for synchronization and communication across computers
providing a gentle introduction to distributed computing.

We believe that the main appeal of NetsBlox is the
increased motivation it provides because young learners are
able to create new classes of programs that are currently out
of reach. For example, multi-player video games are very
popular with children and NetsBlox supports the creation
of non-trivial gaming programs. Real-time games with 3D
scene rendering are obviously beyond the realm of possi-
bilities. However, strategy games, turn-based board games
and games that include slower paced animation are quite
feasible. In addition, NetsBlox applications can be hosted
on phones and tablets. Just imagine an average high school
student creating a multi-player game, running it on her phone
and playing against a friend over the Internet after just a few
weeks of instruction. That is the promise of NetsBlox.

Furthermore, there are a large number of publicly avail-
able interesting data sets on the web. Examples include the
weather, air pollution, seismic data, real-time traffic infor-
mation and many others. Typically the data is visualized on
a given website, but in many cases a public API is available
to access the data programmatically. The NetsBlox server
already provides access to a select set of interesting data
sources. These are available from NetsBlox programs via
a simple abstraction called NetsBlox Services. Essentially
these services provide a mapping between NetsBlox service
calls and the corresponding API of the public data service.
For example, the NetsBlox Weather Service has a function
called “femp” that takes arguments for the location and
returns the corresponding temperature. A second function
returns a weather icon representing the current conditions.
On the NetsBlox server, they silently invoke the proper call
on the OpenWeatherMap API to get the data.

The possibilities are quite literally limitless. With Nets-
Blox, children are able to create all kinds of imaginative
applications that utilize the wealth of information available
on the web provided to them using a single, simple ab-
straction. One potential difficulty is that much of the data
are geospatial. To help students make use of it, NetsBlox
integrates Google Maps as an interactive background, again,
using services. See Figure 1. Displaying real-time data on
an interactive map using a Scratch-like easy-to-use visual
programming language is one of the most attractive features
of NetsBlox.

&) NetsBlox x
&« C | @ Secure | https;//editor.netsblox.org

] & 4+ Temperature @ WeatherMap

7 draggable

{ control B
Sensing PN
{ Operators 2
{ Variables
Services Custom

Make a block

map of l , B with zoom H
mouse latitude
temperature at [, |
mouse longitude
weather icon for [, [l

[update map

Wexn
(e ey e oy

Scripts Costumes Sounds Room

2 to - (B e YD) -
=——=H=)ie

set lon to call statiomsp | / getLongitude

‘sglLlo call weather | [temp

set color eﬂecttnrm—
stamp
point in direction I

move (=ze) steps

[—————

.puiit'-lhc:ﬁnnm

move |sze steps

go to x: y: ([stage height |— (=== [€D

Figure 1.

III. DISTRIBUTED PROGRAMMING PRIMITIVES

The key design decision for NetsBlox was the selection of
distributed programming primitives manifesting themselves
as visual abstractions. In order for the students to engage
with the technology and be able to learn the basics of
distributed computation, these needed to be intuitive, easy-
to-grasp and show the essence of important concepts while
hiding unnecessary complexity. The two main distributed
programming primitives NetsBlox supports are Messages
and Remote Procedure Calls (RPC).

A. Messages

Peer to peer communication is supported by Messages.
Messages are very similar to Events already present in Snap!
and in Scratch. Basically, a separate event handler script
can be defined in any sprite of the application that will be
invoked when the event is generated (see Figure 2).

In NetsBlox, a Message is an Event that contains data
payload. Users are able to drag and drop one or more
variables on the “send msg” block (called broadcast
for events in Snap!). On the receiver side, when they pick
the given message from the list of available ones, these
data items will appear in the “when I receive” block
header as variables with the appropriate names, as shown in
Figure 3.

In order to support complex data payloads, NetsBlox
messages follow a schema specified by their given message
type. A message type is composed of a name and a list of

DAKOTA |
Jr,

NEBRASKA

ILLINOIS

. United States INDIANA

KANSAS missouRl
KENTUCKY
CALIFORNIA

Olas Vegas OKLAHOMA TENNESSEE:

ARKANSAS |

Dallas MISSISSIPPI |
2 ALABAMA |
GEORGIA

Los Angeles ' , o/ 1
ZONA
{+]
D NEW MEXICO
'l

TEXAS
- LOUISIANA
f\ Houston

3 Map data 2017 Google, INEGI

Weather Map application in NetsBlox showing temperatures in the continental US in the morning of January 29, 2017

f broadcast Milk!

when I receive Milk!
play sound meow

switch costume to Happy

Figure 2. Scratch event example

when | receive location | ([lat

| to everyone

Sending and receiving messages with data in NetsBlox

send msg location

Figure 3.

fields defined for the given messages. Message blocks, as
shown in Figure 3, provide a dropdown of all the currently
defined message types; upon selecting a given message type,
the block is updated to show the corresponding data fields.
The message type in Figure 3 has the name “location” which
contains two fields: “lat” and “long”.

As the creation of different distributed applications will
likely require unique messaging protocols, including unique
message types, it is important that users are able to define
their own custom message types. NetsBlox supports this
creation and management of message types similarly to the
creation and management of variables in Snap!. An example
of creating a message type can be found in Figure 4 and the
corresponding message handler is shown in Figure 4.

Create Message Type

name: fields: e

OK J Cancel J

i

Figure 4. Custom Message Creation

when | receive chat "f:_rsender "f,:_rtime ""ﬁ:,-_._rmessage

Figure 5. Chat Message Handler Block

Another important distributed programming primitive is
the concept of a Room. A Room defines the virtual network
for the project and consists of Roles which are named
NetsBlox clients. That is, a Room defines the NetsBlox
clients which share a network and can communicate with
each other using messages. For example, a chess game app
would have two Roles, black and white.

Like the Stage in Scratch, every NetsBlox project auto-
matically has a single associated Room. The project owner
manages the Room and its Roles. This includes creating,
removing, renaming and cloning Roles. Along with building
the structure of the project and its Room, the owner also has
the ability to invite other users to specific Roles in the project
enabling collaboration with other users by delegating parts
of the project to peers. Once a distributed program is ready,
the owner can invite other users to run the program, e.g., to
play the game.

Figure 6 shows the Room for a project called MyRoom
which contains 4 Roles: “alice”, “bob”, “eve”, and “steve.”
The current user is occupying the “alice” role; the other
three roles currently are unoccupied. The + button on the
right allows the owner to add new Roles to the Room; this
will result in another client being added to the project. If
the user clicks on any of the given colored roles, she will
be able to edit the given role (i.e., rename, clone or remove
it) or invite a peer to the given role to collaborate on the
given project. Another example for a room could be that of
a Tic-Tac-Toe game with exactly two roles: “X” and “O.”

When sending NetsBlox messages, the “target” field of

Figure 6. NetsBlox Room

the message is populated with the other Roles present in the
given Room as well as two broadcasting options: “others
in room” and “everyone in room”. Both broadcast options
will send the message to all other Roles in the room, but
“everyone in room” will also trigger the given message
handlers in the Role of the sender. Figure 7 shows one
example for sending a simple message in the context of the
Room in Figure 6. The items in the addressee pull-down
menu are dynamically populated given the Roles currently
defined in the Room. This simplifies the process of sending
messages and reduces the likelihood of simple routing errors.

send msg message | to

steve
bob
eve
others in room

everyone in room

Figure 7. Sending messages to other NetsBlox clients

The semantics of Messages in NetsBlox are based on
the semantics of Events in Scratch and Snap! [4]. Multiple
handlers can be defined for the same kind of message and all
of them will be invoked when a message of the given type
arrives, each in its own thread, but the order of execution
is not specified. However, two messages sent from the same
script are guaranteed to be delivered in the same order as
they were sent. Furthermore, when two roles send messages,
the order of delivery is guaranteed to be consistent. That is,
if roles A and B send one message each to every other role
at the same time, all roles will get these in the same order.
The order is decided by the message arrival time on the
server.

Message passing is asynchronous, hence, the sender is
not blocked and no acknowledgements are returned either.
Note that if a message handler is still executing when a new
message of the same type arrives, the new message is queued

and will execute once the current execution has completed.
Multiple message handlers for the same message type will
all be executed in parallel for every received message of the
given type.

It is interesting to note that messages are addressed to
one or more Roles of the Room, that is, nodes participating
in the virtual network defined by the application. Within a
Role, that is, the NetsBlox program running on one host
(computer or browser tab), messages are broadcast just like
events. This means that any sprite, and the stage as well,
can receive and handle any and all message types.

To illustrate the concepts introduced above, let us consider
a simple example. Figure 8 shows a 2-person dice game. The
idea is that two players both roll their dice and whoever has
a higher number wins. In case of a tie, they roll again.

when h clicked

send msq start | to everyone‘inroom |

when I receive start

s

set size to %

set dice | to [pick random &P to &
pe

switch to costume (dice

e -
send msq roll |(dice to othersinroom |

when I receive roll | roll

set dice | to [pick random &P to &
e — —
say EESTCROTTECELS for € secs
e - W

switch to costume (dice

Figure 8. The scripts of the Dice game

The program is symmetrical in that both players (Roles)
use the exact same scripts. The game is started by one
player clicking the green flag. The script corresponding to
this event sends a message to every role to start the game.
The corresponding message handler picks a random number
between 1 and 6, shows the correct costume, i.e., side of
the dice, and sends a “roll” message to the “others in room”
that is, the other player. Not naming the other Role explicitly

makes it possible to have the exact same code for both Roles.

The script with the “when I receive roll” header runs once
the “roll” message arrives and it supplies the data in the
payload as the variable called “roll”. The code then simply
compares the two values, the local “dice” and the remote
“roll”. The interesting case is when the two are equal. In this
case, each player rolls again and send the new dice value to
the other side using another “roll” message. Otherwise, the
players are notified about the outcome of the game by a text
displayed on the stage.

B. Remote Procedure Calls (RPC)

RPCs are the highest level of distributed abstraction
NetsBlox employs. An RPC allows for invoking code that
will be executed at a remote location, and then (optionally)
getting back the results of the computation. The seman-
tics of RPCs are as expected: multiple input arguments,
single output argument, pass-by-value and blocking call.
Syntactically, RPCs appear as a reporter block on the block
palette in NetsBlox; however, they are often packaged in
custom blocks as convenient, more user friendly libraries.
This allows the blocks to be represented in a more intuitive
way as custom blocks can be a different type of block
(e.g., an RPC without a return value may use a command
block) or can be assigned to a different color to make their
functionality more apparent. The block for calling RPCs is
shown in Figure 9.

call weather ||

temp
humidity

description
icon

windSpeed
windAngle

Figure 9. Calling a NetsBlox Service

Related RPCs are grouped into Services. As shown in
Figure 9, the block for calling RPCs is a reporter block with
two drop-down menus. The first drop-down is dynamically
populated with the supported Services of the given NetsBlox
server. The second drop-down is populated with the RPCs
of the given Service. In the given example, the block is
set to the weather Service and the second drop-down is
populated with all weather-related RPCs. These include
temp, humidity, windSpeed, etc. After selecting an RPC, the
block is updated to provide named fields for each argument
for the given function. An example of this is shown in
Figure 10. Also see Figure 1 for an additional example of
using the Map Service.

call weather | I temp | [EW0DIS

Figure 10. Getting the current temperature with the Weather Service

Note that a Service can also include message types and
server initiated messages. For example, the Earthquake Ser-
vice has a single RPC called “trigger earthquake messages”
which is called with coordinates of the area of interest. In
turn, the Service will gather historical earthquakes from the
web and send one message per earthquake event to the user,
i.e., the caller of the RPC. Each such message contains the
location, magnitude and date of the given seismic event.

NetsBlox Services also have the ability to maintain state.
This state can be shared either globally or just among the
users in the given NetsBlox room. Examples of services
using a global context can be found in the services exposing
3rd party endpoints, such as Google Maps, as they often
cache their results to minimize redundant requests to the
given external APIL.

Similarly, for multi-player games, one of the main chal-
lenges can be maintaining the game state and enforcing
the rules. For example, implementing a chess, poker or
even a battleship application in a visual language is a non-
trivial undertaking. The NetsBlox Service concept makes
it possible to move the most challenging aspects of such
games to the server. For example, the Battleship Helper
Service provides assistance in turn coordination and game
state management. This includes maintaining whether the
players are still placing ships or have already proceeded to
shooting at one another, storing the list of hits and misses,
as well as enforcing the turn-based nature of the game.
These kinds of Services generally send messages to notify
the players (Roles) of important events, such as “your turn”
or “game over” and expect RPC invocations about the users
actions.

Currently, NetsBlox supports a fixed set of Services that
run on a NetsBlox server. From the user’s perspective,
services are executing “in the cloud”. In the near future, we
will enable users to host one Role of their program on the
server, in effect creating their own Service. Custom blocks
defined for the given Role will become RPCs and they will
be able to send messages as well. This will be one way to
support the extensibility of NetsBlox.

C. Dynamic Virtual Networks

The Room concept provides an easy-to-understand ab-
straction for students to implement their programs that in-
clude more than one computer. However, its inherently static
nature can prove to be inflexible for various applications.
What if we wanted to write a program with a varying
number of users, i.e., Roles? What if we wanted to allow
two different NetsBlox programs to message each other?

NetsBlox supports more dynamic networking with the
Public Role Id Service that allows users to request a public
id, a kind of address, which can be used to facilitate inter-
room communication. That is, a user can request a public
role id and share this id with other users via email or text
message. The other users can then send messages to this id.

The NetsBlox server will then resolve these public ids to the
initial user and route the messages accordingly.

A simple illustration of using the Public Roles Service is
shown in Figure 11. In this example, when the green flag is
pressed the program request a public role id. It then records
this id and announces it to the user so he/she can easily
share it with others.

when h clicked

set publicroleid to I'/l::all publicRoles | I requestPublicRoleld

say .__juin my-publicrole-is: SR EIGIENT]

Figure 11.

Requesting a Public Role Id

Figure 12 shows the other side. In this example, the user
is first prompted for the public role id of the recipient.
Then the program requests its own public role id so it can
receive any responses. Finally, the program sends a message
to the recipient that includes a message and its public role
id. This example illustrates the simplicity of inter-room
communication; rather than introducing an entirely new
concept, public roles simply build on the existing concepts
in an intuitive and natural way. This gradual progression
should simplify the transition from building applications
in a small, clearly defined network (the Room) to more
flexible, scalable applications which include a higher degree
of uncertainty and complexity.

when h clicked
_ what-rule-id-wuuld-you-Iike-tu-send-a-message-m?
set rokeid
get myroleid | to I"'1:nll publicRoles |l requestPublicRoleld |
send msg simple'message | ‘my role id = to (Tole id

to | answer

Figure 12. Sending message to a public role

A good use of this facility is an illustration of the “mas-
sively” parallel, volunteer computing concept. For example,
prime factorization is embarrassingly parallel and simple
enough to implement in NetsBlox. A master program can
request a public role id and wait for worker programs to
connect. In turn, it can send messages to the workers to
test possible factors one by one. The master distributes the
work and gathers and combines the results. A brief video
demonstration of this application can be found at [17].

The public role id concept, when used in conjunction with
NetsBlox messages, also allows users to develop higher level
messaging patterns, such as Publish-Subscribe shown in Fig-
ure 13. In this example, we have created a Publish-Subscribe
broker which has defined 4 different message types: pub-
lish, subscribe, unsubscribe and update. The broker then
maintains a variable called “subscriptions” which contains

when =pace | key pressed
set myld | to call public
s-et subscriptions | 1o ' list

say | join [N | myld

when | receive = : id

script variables = added

for each | item of [subscriptions
[—

if | itern @S of (item | = topic

add (id to (0. @FRs i item

I3

gel added | to trur:e.
if ¢ not added

add | fopic | list (id

to | subscriptions

when | receive puhlish topic content

for each | item of { subscriptions
-

if* item @S of (item = topic

2« of HiEL

content to [id

for each id | o

send msg u topic

when | receive uns 2 topic id
for each | item of [subscriptions

if | itern S of =

if* | item (id of

delete (00 of Lo R id

Figure 13. Publish-Subscribe Broker in NetsBlox

a list of topics and the associated subscribers. On subscribe
and unsubscribe events, the broker will add or remove the
requestor from it’s internal record of subscriptions. On a
publish event, the broker will send an update message with
the topic and the content to all of the Roles subscribed to
the given topic.

An example of a subscriber is shown in Figure 14. The

user is first prompted about which Publish-Subscribe broker
to connect to and a public role id is requested. On pressing
the “s” key, the user is prompted about which topic he/she
would like to subscribe to and the broker is sent a subscribe
message with the topic and the client’s public role id. When
data for this topic is published to the broker, the client will
receive the update message (as shown in Figure 13) which
will simply display the update to the user.

when clicked
E;sk what serverwiould your like tor connect to? JELLEVEN

set myld |t call publicRoles

set serverld | to answer

when s | key pressed
EETNwhat topic-would-youlike to-subscribeio? Rk C T
ANSWer

send msg subscribe myld to | serverld

when | receive o topic content

say | join topic | [TTGA | content for @ secs
Figure 14. Subscribe Client in NetsBlox

Although this is a relatively simple example, it demon-
strates the ability to compose higher level messaging patterns
completely within NetsBlox. Building higher-level abstrac-
tions from the NetsBlox primitives allows users to not only
use these messaging patterns but also to understand them on
a lower level. Alternatively, providing these patterns as built-
in concepts would allow users to understand how to use them
but would not enable them to open the actual implementation
and gain a deeper understanding of the concepts.

IV. CONCLUSIONS AND FUTURE WORK

The paper presented NetsBlox, a web- and cloud-based
visual programming environment that enables users to create
distributed applications. NetsBlox extends the well-known
and widely used Snap! environment and hence, it provides
natural progression to students who take the Beauty and Joy
of Computing (BJC) class and consequently, novel curricular
units can be easily incorporated into BJC, one of the new
AP CS Principles courses [18]. NetsBlox is an ideal vehicle
to support some of the big ideas and computational thinking
practices that the AP CS Principles curriculum emphasizes.
These include the Internet, communicating, collaborating,
cybersecurity and global impact.

Furthermore, providing access to vast arrays of data on
the Internet right from the visual programming environment
in a uniform manner will empower the students to create
innovative science projects and bring STEM concepts into
CS education at the same time. The ability to create multi-
player games will provide increased motivation for a large

number of students making them creators and not just
consumers of digital entertainment.

Nevertheless, NetsBlox is in its infancy. While the dis-
tributed computing primitives are fully implemented, the
robustness of the tool needs to be improved. The most
promising feature we are working on is collaborative editing
of a project by multiple students similarly to how Google
Docs works. This will enable pair programming, group
projects and other novel forms of collaboration even outside
of the classroom. Our future work also involves adding a lot
of new services and data sources to NetsBlox in the form
of a large library of services. Equally important is to create
new curricular modules that can be incorporated to existing
courses such as the BJC. Finally, extensive classroom studies
need to be developed and executed to steer the ongoing
development of NetsBlox in the right direction.

V. ACKNOWLEDGEMENTS

We thank Pratim Sengupta for his contributions during
the initial discussions about NetsBlox. Funding from the
Trans-institutional Programs (TIPs) of Vanderbilt University
made possible to start the development of the tool. This
material is also based in part upon work supported by the
National Science Foundation under Grant Numbers CNS-
1644848 and DRL-1640199. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Communications of
the ACM, Viewpoint, vol. 49, no. 3, pp. 33-35, Mar. 2006.

[2] Committee for the Workshops on Computational Thinking;
National Research Council, Report of a Workshop on
The Scope and Nature of Computational Thinking. The
National Academies Press, 2010. [Online]. Available:
http://www.nap.edu/openbook.php?record_id=12840

[3] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan,
and A. L. Hosking, “A multidisciplinary approach towards
computational thinking for science majors,” in Proceedings
of the 40th ACM technical symposium on Computer
science education, ser. SIGCSE ’09. New York, NY,
USA: ACM, 2009, pp. 183-187. [Online]. Available:
http://doi.acm.org/10.1145/1508865.1508931

[4] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. East-
mond, “The scratch programming language and environment,”
ACM Transactions on Computing Education (TOCE), vol. 10,
no. 4, p. 16, 2010.

[5S] C. Kelleher and R. Pausch, “Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers,” ACM Comput.
Surv., vol. 37, no. 2, pp. 83-137, Jun. 2005. [Online].
Available: http://doi.acm.org/10.1145/1089733.1089734

[6] P. Sengupta, J. Kinnebrew, S. Basu, G. Biswas, and
D. Clark, “Integrating computational thinking with k-
12 science education using agent-based computation:
A theoretical framework,” Education and Information
Technologies, vol. 18, no. 2, pp. 351-380, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10639-012-9240-x

[7] P. Blikstein and U. Wilensky, “An atom is known by the
company it keeps: A constructionist learning environment for
materials science using agent-based modeling,” International
Journal of Computers for Mathematical Learning, vol. 14,
no. 2, pp. 81-119, 2009. [Online]. Available: http:
//dx.doi.org/10.1007/s10758-009-9148-8

[8] I. C. S. The Joint Task Force on Computing Curricula,
Association for Computing Machinery (ACM), “Computer
science curricula 2013: Curriculum guidelines for undergrad-
uate degree programs in computer science,” http://www.acm.
org/education/CS2013-final-report.pdf, 2013.

[9] B. Broll, A. Lédeczi, P. Volgyesi, J. Sallai, M. Mardti,
S. Wieden-Wright, A. Melo, and C. Vanags, “A visual
programming environment for learning distributed program-
ming,” in Proceedings of the 48th ACM Technical Symposium
on Computing Science Education. ACM, 2017.

[10] B. Harvey and J. Monig, “Bringing no ceiling to scratch: can
one language serve kids and computer scientists,” in Proc. of
Constructionism, pp. 1-10, 2010.

[11] “Snap!: a visual, drag-and-drop programming language,” http:
//snap.berkeley.edu/snapsource/snap.html, cited 2016 March
16.

[12] E. Klopfer, S. Yoon, and T. Um, “Teaching complex
dynamic systems to young students with starlogo,” Journal
of Computers in Mathematics and Science Teaching, vol. 24,
no. 2, pp. 157-178, April 2005. [Online]. Available:
http://www.editlib.org/p/5537

[13] M. J. Conway, “Alice: Easy—to-Learn 3D Scripting for
Novices,” Master’s thesis, University of Virginia, Faculty of
the School of Engineering and Applied Science, December
1997.

[14] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Learning
computer science concepts with scratch,” Computer Science
Education, vol. 23, no. 3, pp. 239-264, 2013.

[15] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,
“Programming by choice: urban youth learning programming
with scratch,” in ACM SIGCSE Bulletin, vol. 40. ACM,
2008, pp. 367-371.

[16] “The Beauty and Joy of Computing,” http://bjc.berkeley.edu/,
cited 2016 May 14.

[17] “Prime Factorization in NetsBlox,” https://www.youtube.com/
watch?v=-qS7hGowQKQ, cited 2017 January 15.

[18] O. Astrachan and A. Briggs, “The CS principles project,”
ACM Inroads, vol. 3, no. 2, pp. 3842, 2012.

