Interactive Code Adaptation Tool for Modernizing
Applications for Intel Knights Landing Processors

Ritu Arora

Texas Advanced Computing Center
The University of Texas at Austin
rauta@tacc.utexas.edu

ABSTRACT

The process of code adaptation to take advantage of the
latest innovations in a supercomputing platform begins with
learning about the details of the platform’s underlying
hardware. It can be challenging for many users to spend
time and effort in developing an understanding of the
innovative features in a supercomputing platform - such as
deep memory hierarchies - and to harness their maximum
possible performance by manually modernizing their
applications. To mitigate the aforementioned challenge, we
are developing an Interactive Code Adaptation Tool (ICAT).
In its current form, ICAT can assist the users in modifying,
compiling, and optimally running their applications on the
latest HPC platforms that are equipped with the Intel
Knights Landing (KNL) processors. ICAT detects a given
application’s characteristics such as memory usage pattern,
type of memory allocation, and execution time. Depending
upon the application’s characteristics, it advises the user on
optimal ways to take advantage of the KNL processor and
its memory-hierarchy.

CCS CONCEPTS

e Computing methodologies~Parallel computing
methodologies~Parallel programming languages °
Software and its engineering~Source code generation
* Computer systems organization~Architectures
~Parallel architectures~ Multicore architectures

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PEARC17, July 09-13, 2017, New Orleans, LA, USA

© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM 978-1-4503-5272-7/17/07...$15.00
http://dx.doi.org/10.1145/3093338.3093352

Lars Koesterke
Texas Advanced Computing Center
The University of Texas at Austin
lars@tacc.utexas.edu

KEYWORDS

Code modernization, code migration, interactive code
adaptation, memory optimization, advanced vectorization,
clustering advisor, memory advisor, Intel Knights Landing

1 INTRODUCTION

Intel's manycore Knights Landing (KNL) processors have
high-bandwidth memory called Multi-Channel DRAM
(MCDRAM) on the package in addition to the usual DDR4
SDRAM. On the self-bootable version of the KNL
processors, the theoretical peak bandwidth of MCDRAM is
approximately 4.5 times higher than that of the DDR4
memory [1]. On the flip side, the MCDRAM is smaller in size
- 16 GB compared to up to 400 GB of DDR4. MCDRAM can
improve the performance of applications with a low
floating-point intensity (low ratio of FLOPs v. memory
access). Such applications are typically labeled as
bandwidth-critical or bandwidth-bound. However, using
MCDRAM optimally is not a straightforward task for many
applications because of its limited size and a variety of
memory and cluster modes (explained below) in which the
MCDRAM can be configured. Depending upon an
application’s characteristics, a particular configuration mode
may work better than the other modes.

Memory Modes: The three memory modes for the
MCDRAM are named cache, flat, and hybrid. In cache
mode the MCDRAM serves as a third-level cache. In flat
mode the MCDRAM is addressable memory like DDR4. In
hybrid mode, part of the MCDRAM is configured as a
cache and a part of it is configured in flat mode.

The main difference between the flat and the cache
mode is that the MCDRAM in flat mode is user-addressable
while the MCDRAM in cache mode is not. As obvious, the
cache mode is more convenient to use since it operates
without user interaction, and, for applications with a small
memory footprint, the cache mode usually provides high
performance. However, for applications with large memory
footprints, the efficiency of the cache can drop dramatically

(due to the frequent cache misses) and in those cases it
may be advantageous to manage the cache from within the
code and to hand-select arrays to be stored in the
MCDRAM. Using the MCDRAM configured in hybrid mode
gives the advantages of both cache mode and the flat
mode, but results in smaller sizes of MCDRAM available in
each of these modes.

Cluster Modes: Pairs of cores on a KNL chip are
organized into tiles. Each core has its own L1 cache and
each tile provides a shared L2 cache. The tiles are
connected to each other with a cache-coherent mesh
interconnect. There is a Distributed Tag Directory (DTD) to
maintain coherency across L2 cache on all tiles. This DTD
is organized as a set of Tag Directories (TDs) on each tile
and is used to identify the state and the location of cache
lines. The mesh interconnect supports three modes of
cluster operations to keep the on-die communication - for
handling memory requests originating from cores,
forwarded to the TD, and then serviced by the right memory
channel - as local as possible. These modes are named
all-to-all, quadrant or hemisphere, and sub-NUMA cluster
mode (SNC-4/SNC-2) [2, 3].

In the all-to-all cluster mode, the memory addresses are
distributed uniformly across all the TDs, hence, it can suffer
from a high-latency of cache miss and hit. This mode is
mostly used for diagnostic purposes.

In the quadrant cluster mode, the tiles of the KNL
package are divided into four parts called quadrants such
that each quadrant is in proximity to a memory controller.
The memory addresses that are controlled by the memory
controller in each quadrant are mapped locally to the TDs in
that quadrant. This arrangement reduces the latency of a
cache miss as compared to the all-to-all mode because the
memory controller and TD’s are in the same locality, and
thus, there is no need to go across the quadrants. The
hemisphere mode is similar to the quadrant mode with the
difference that the tiles on the chip are divided into two
parts.

In the sub-NUMA mode, just like the quadrant or
hemisphere mode, the tiles are divided into four or two
parts. However, each part acts as a separate NUMA node
such that, the core requesting access to memory, the TD,
and the memory channel for servicing the memory access
request, are all in the same part (quadrant or hemisphere).
The multi-threaded NUMA-aware applications can
experience improved performance in this mode by pinning
the threads and memory to the specific quadrants or
hemisphere on each NUMA node.

Given the different memory and the cluster modes for the
MCDRAM configuration, the burden is on the software
developers to find the modes that will work best for their
applications. There are some default recommendations by

Intel that may work well for cache-friendly applications. For
all other applications, the process of finding the best
memory and cluster mode begins with developing an
understanding of the architecture of the KNL processors. It
may also involve using tools like Vtune [4] for understanding
the application characteristics. Manual reengineering of the
code may be necessary for improving the parallelization and
vectorization of the code. And in flat mode, code
modifications to direct memory allocations to the MCDRAM
are also required.

To facilitate the migration of applications to the KNL and
future generations architectures, we are developing an
Interactive Code Adaptation Tool (ICAT). ICAT can analyze
a user-supplied serial or parallel application using built-in
heuristics, and tools like Vtune and perf [5]. Based on its
analysis, ICAT can advise the user on modifying, compiling,
and optimally running an application on the KNL nodes. If
the user desires, ICAT can automatically modify the
application code to use MCDRAM for specific arrays.

Code analysis and modification regarding MCDRAM is
explained in Section 2 of the paper. Additional details on the
decision-trees used by ICAT to provide recommendations to
the users are presented in Section 3. The techniques for
memory optimization that will soon be part of ICAT are
discussed in Section 4. Advanced vectorization support will
also be added to ICAT in future and it is discussed in
Section 5. The usage of ICAT is demonstrated with an
example in Section 6 of the paper.

2 CODE ADAPTATION

As mentioned in Section 1, MCDRAM is a smaller
high-bandwidth memory compared to DDR4. Applications
that fit in MCDRAM will likely not benefit from code
modifications and can be run in cache mode or in flat mode
using MCDRAM (in the latter case select appropriate
numactl options). Applications that require more than
16GB of memory will not fit entirely in the MCDRAM. Users
may rely on the MCDRAM cache and may measure the
cache performance by comparing data from tests with
varying memory footprints. If the performance degradation
is high, which is likely for footprints much larger than the
16GB of MCDRAM cache, the application developers may
use tools like Vtune to identify the bandwidth-critical data
structures. The bandwidth-critical data structures can be
selectively allocated on MCDRAM with or without any
application reengineering.

The autoHBW library [6] can be used for allocating all the
data structures beyond a particular memory size on
MCDRAM without involving any reengineering of the
applications or recompilation. Another option that the users
can explore for allocating memory on MCDRAM or DDR4 is
to use appropriate numactl command options [7].

2

However, if a fine-grained control on memory allocation is
needed such that out of the multiple data structures of the
same size, only a few should be allocated on MCDRAM,
then one can either use the memkind interface [8] (which is
basically a heap manager for enabling allocation to specific
types of memory), or one can use a simplified version of the
memkind interface that is known as High-Bandwidth
Memory ALLOCator (HBWMALLOC) interface [9]. Using
these interfaces would entail application reengineering to
insert appropriate API calls in C/C++ code or directives in
Fortran code.

In C/C++ applications, the application reengineering to
use the HBWMALLOC interface is usually straightforward.
The calls to the calloc, malloc, realloc, and free
functions are replaced with the calls to the hbw calloc,
hbw malloc, hbw realloc, and hbw free functions
that are defined in the HBWMALLOC interface. The
signature of the functions in the HBWMALLOC interface is
same as their analogs in the standard C library named
stdlib.h. In Fortran applications, the reengineering effort
usually involves adding a directive with the FASTMEM
attribute for allocating the memory from MCDRAM after the
allocatable data structure of interest has been declared.

The code snippets in Figure 1 show the method for
explicitly allocating a data structure on MCDRAM. Line # 4
in Figure 1.(l) has a call to malloc that allocates memory
for the array named a from the heap on DDR4. Line # 4 in
Figure 1.(Il) has the call to hbw malloc for allocating
memory for the array named a on MCDRAM. For portability
reasons, one should write the code to make sure that the
calls to the HBWMALLOC interface are used only if the
MCDRAM is available in the underlying HPC system. The
availability of MCDRAM can be queried with the
hbw check available function [9]. If the MCDRAM is
not present, then the usual calls for memory allocation
should be used.

As can be noticed from Figure 1, the reengineering step
itself is not difficult once the bandwidth-critical data
structures are identified. However, the combined effort
involved in (1) understanding the KNL architecture and the
various modes in which the MCDRAM can be configured,
(2) identifying the bandwidth-critical data structures, (3)
deciding which data structures to allocate on MCDRAM,
and then, if needed, (4) adapting the code to use the
HBWMALLOC interface, is not trivial. ICAT automates all
these steps for the user and hence, assists them in
migrating their applications to the KNL architecture.

1. #include <stdlib.h>

2. int main(){

3. int arraySize = 1024;

4. double* a = (double%*)
malloc(sizeof(double)*arraySize);

5. //other code

6. free(a);

7. return 0;

8. }

() C code snippet - allocating memory on DDR4

1. #include <hbwmalloc.h>

2. int main(){

3. int arraySize = 1024;

4. double* a = (double*)
hbw_malloc(sizeof(double)*arraySize);

5. //other code

6. hbw_free(a);

7. return 0;

8. }

(Il) C code snippet - using HBWMALLOC interface

REAL, ALLOCATABLE :: arryA(:), arryB(:)
I arryA is allocated in DDR4

ALLOCATE (arryA(1:2048))

! arryB is allocated in DDR4

ALLOCATE (arryB(1:2048))

(Ill) Fortran code snippet - allocating memory on
DDR4

REAL, ALLOCATABLE :: arryA(:), arryB(:)
IDEC$ ATTRIBUTES FASTMEM :: arryA

I arryA is allocated in HBM

ALLOCATE (arryA(1:2048))

I arryB is allocated in DDR4

ALLOCATE (arryB(1:2048))

(IV) Fortran code snippet - allocating memory on MCDRAM

Figure 1.(I) - (IV). Code snippets showing the usage of hbw_* calls and directives for using MCDRAM

As mentioned above, for assuring code maintainability
and portability across multiple systems, it is important that
the code modifications for taking advantage of the
MCDRAM on the KNL nodes do not break the portability of
the code. Therefore, instead of merely replacing the calls to
malloc/calloc/realloc with the corresponding hbw_ * calls,
ICAT also inserts extra checks in the code so that if the
MCDRAM is not available on the system on which the code
is being compiled and run, the memory allocation happens
using malloc/calloc/realloc calls instead of the
hbw malloc/hbw calloc/hbw_realloc calls.

3 DECISION-MAKING IN ICAT

There are multiple decision trees that are part of ICAT for
recommending the appropriate memory mode, cluster
mode, and code adaptation. Some of the application
characteristics used for decision-making are L2 cache hit
bound (ratio of cycles spent handling L2 hits to all cycles),
L2 cache hit rate, L2 cache miss bound (ratio of cycles
spent handling L2 misses to all cycles), and L2 cache miss
count. These metrics are determined by first running the
application with perf, and then if needed, with Vtune as
well. Metrics are also gathered from the process that is
associated with the application. ICAT uses the collected
metrics to prepare recommendation reports for the user and
also assists in code adaptation. Figure 2 shows a high-level
overview of how ICAT works.

If ICAT determines that the memory footprint of an
application is smaller than 16 GB, then it recommends to
use either one of the flat or cache modes. While
recommending flat mode, ICAT also provides appropriate
numactl options. If the application is appropriately blocked
(or tiled) to take advantage of the L2 cache and its memory
footprint is smaller than 16 GB, then ICAT recommends
ignoring the MCDRAM and using the DDR4. This
recommendation is based on the fact that the DDR4 latency
is lower than the MCDRAM latency. However, in some
situations, ICAT also recommends testing the application by
running it on MCDRAM configured in cache mode.

For memory footprints larger than 16 GB, ICAT
recommends one of the following options depending on the
results of the internal analysis: :

e Use MCDRAM configured in cache mode

e Use MCDRAM configured in flat mode and use
numactl to prefer MCDRAM:
—preferred=1 a.out

e Use MCDRAM configured in flat mode and allocate
selected bandwidth-critical data structures on the
MCDRAM

numactl

ICAT also helps users in making their applications
NUMA-aware. It gives recommendations to (1) establish

MPI domains, (2) pinning threads in OpenMP code, or (3)
both the previous two recommendations in hybrid code. The
selection of the cluster mode is affected by this step as well.
For example, using the sub-NUMA quadrant mode is only
applicable if at least four MPI tasks (per KNL node) are
used. However, if it is not required to make the application
NUMA-aware, ICAT recommends to use the quadrant mode
by default.

ICAT Launch Script
User Input:
MName and path of the executable, command-
line arguments, selection of program type

(MP1/OpenMF /serial), selection of advisor
mode

¢

Memory Usage and Performance Analyses
[Using application process status, Perf tool)

Is memory
sage < 16
GB?

No

—

Memory Object

Yes

Evaluation of

Heap Memory

Analysis with Object Information App Iicar_iu:_]
Vtune Characteristics
Recommendation Reports on Memory
Mode and [:Iusrr Mode Usage
If source code transformation is required,
user selects appropriate option (Yes/Nao)
Madified Source Code

Figure 2: High-Level overview of ICAT

At the time of code adaptation, ICAT inserts additional
lines of code to determine the size of data structures that
are dynamically allocated. It also inserts conditional
statements that can determine if the size of the data to be
allocated dynamically is greater than 16 GB or not. If the
size is greater than 16 GB, then the standard library calls
like malloc, calloc, or realloc are used for data
allocation. However, if the size of the data to be allocated is
less than 16 GB, then the inserted code triggers the usage
of the HBWMALLOC interface. Additionally ICAT inserts
code to dynamically check the availability of MCDRAM and
to make calls to the HBWMALLOC interface if applicable.

4 MEMORY OPTIMIZATION

On all the computing platforms that exist today, there is a
significant gap between the performance of the processing
elements and the main memory. To mitigate the effect of
the high-latency and low-bandwidth of the main memory,
deep memory hierarchies are provisioned on the HPC
platforms. Optimizing memory access in an application
continues to be important for achieving good performance.
Several researchers have demonstrated that application
performance can be improved by reducing memory access
and by improving cache reuse [10-14]. In the case of nested
loops, one commonly used strategy for optimizing cache
and register reuse is to interchange the ordering of the
loops where possible to reduce the stride of memory access
[14]. By reducing the stride of memory access, the
applications can utilize more data from each cache line that
is transferred from or to memory.

Another useful strategy for cache reuse is blocking or
tiling the loops. With this strategy, a single loop can be
replaced by a pair of loops such that, the inner loop in the
pair iterates over a block of the iteration in the original loop
while using the same loop stride that was specified in the
original loop. However, the outer loop in the pair iterates
with a stride that is equal to the size of the block iterated
over by the inner loop.

Some optimizations that we have discussed so far can
be done either automatically by the compiler or explicitly by
the programmer. However, there are additional types of
optimizations that are too complex for the compiler. Some
examples of such transformations are: reorganization of the
data layout by changing array-of-structures to
structure-of-arrays, complicated forms of cache-blocking,
converting data access from main memory to on-the-fly
recalculation, allocating and initializing memory close to the
place in the application where it is used, and deallocating
memory soon after its last use [11]. These memory
optimization strategies will be part of ICAT in future.

5 ADVANCED VECTORIZATION ADVISOR

Modern compilers automatically vectorize loops if they
recognize an opportunity to use SIMD instructions.
Programmers can also expose the vectorization opportunity
by using specific code annotations (e.g., #pragma
vector always).

However, there are loops that cannot be vectorized by
the compilers due to data-dependencies - real or assumed
by the compiler. Having switch statements, pointer aliasing,
certain types of if-statements, and function calls in a loop
can also prevent it from vectorizing. Non-contiguous
memory accesses with a non-unit stride or indirect
addressing also creates difficulties for the compiler [15-16].

There are also situations in which the static-code analysis
by the compiler can be inconclusive. In such situations, the
developers can add annotations in their code to provide
guidance to the compiler.

ICAT will be extended to allow users to interactively add
vectorization related advice to their code. For example, it
can advise the developers to add the following hint before
the loops that should not be vectorized: #pragma
novector, or add the following hint before the loops in
which the compiler should ignore any assumed
dependencies: #pragma ivdep. Restructuring the existing
code for explicitly prefetching data, inlining small functions,
SIMD enabled functions, scalar-to-vector conversions, and
improving memory alignment of data structures will also be
supported by ICAT.

6 ICATIN ACTION

ICAT is a command-line tool that is invoked as shown in
Figure 3. Before invoking ICAT, the application that needs
to be ported to KNL must be compiled with the “-g” flag. As
shown in Figure 3, ICAT prompts the user to select one or
all of the following options: memory mode advisor, cluster
mode advisor, vectorization advisor, code adaptation
advisor, and memory optimization advisor.

c561-052$ bash -i ./icat.sh

-------- Welcome to ICAT :: Interactive Code Adaptation Tool =—====—==

Step 1
Purpose : Acknowledge usage of compiler option '~h'
Question : Please acknowledge that you have compiled the code with the '-g' option

Answer with y/n (y is the default) :: y
You have answered with iy

Step 2
Purpose : Provide the name of the executable, the path, and optionally the program &
Question : Name of the executable? testProgram

Path to the executable? You may use . (dot)

Command line arguments, separated by commas?

Step 3
Purpose : Select advice topic
Question : Please select from one of these options

Option : Advice Description

: Memory mode Exploit memory hierarchies

: Code adaptation Assign individual arrays to different memory types
: Cluster mode Exploit clustering of cores

: Vectorization mode Enable vector instructions

: Memory optimization Is this the AoS to SoA transformation?

@ ALl Get all available advice at once

© ousrwNkE

: Quit ICAT

Answer with a number between @ and 6 (@ is the default))
You have selected option H]

Figure 3: Invoking ICAT

In the scenario shown in Figure 3, the user chooses
option number “6” to run all advisors. As a first step, ICAT
runs the memory mode advisor. It prompts the user for the
name of the application executable that was compiled with
“g” flag and the complete path to it. Without any user
interaction ICAT then profiles the application using perf,

and if needed, with Vtune as well. After analyzing the
memory usage characteristics of an application, ICAT
generates a reports directory and saves the
recommendations in this directory. A sample report is
presented in Figure 4 and it shows that ICAT provides
condensed information about the memory usage pattern of
the application. It suggests the memory mode in which the
application should be run and the appropriate commands to
start the application.

ICAT will determine best memory and
clustering modes and will check for
vectorization opportunities

Please enter the executable name (only):
circuit_serial

Please enter complete path to folder
containing executable:
/homel/01698/rauta/sample code

Please enter any program arguments:

Profiling program...

Report generated.

Figure 4: Specifying the input program name and the
path to it

c561-003$ cat
reports/circuit_serial memory advisor_ repo
rt.txt

--- circuit serial Characteristics ---
Memory usage: 0.120438

Cache Miss Rate: -0

————— Recommendations —--—-—-—-—
Application fits into HBM.

Mode to use: If numactl is available, use
the Flat-Mode with all allocations to HBM.

If numactl is not available, then use the
Cache-Mode. However, note that the cache
misses in the Cache-Mode are more
expensive than reading data from DDR4 in
Flat-Mode.

Memory Allocation: HBM

To execute the application in Flat-Mode:
Use command < numactl --membind=1
./run-app> if it is serial, or < ibrun
--membind=1 ./run-app > if it is parallel.

To execute the application in Cache-Mode:
Use the command that you normally use,
that is, < ./run-app > if it is serial or
< ibrun ./run-app > if it is parallel.

In general, to determine <NUMA NODE> in
the command < numactl --membind=NUMA NODE
>, run the command < numactl -H > and look

for the node that does not have any cores

-—-End ICAT report for circuit serial--

Figure 5: Sample memory mode recommendation

On the basis of the memory usage information ICAT
performs further analysis to suggest an appropriate cluster
mode for the application. As shown in Figure 6, it prompts
the user for information on the parallel programming model
used by the application, and generates a report with advice
on the cluster mode to use. A sample cluster mode report is
shown in Figure 7. In this example ICAT recommends the
quadrant mode.

Profiling program.. .
What is the programming model used in your

application?

1. OpenMP

2. MPI

3. OpenMP+MPI

4. None of the above/serial
4

Report generated.

Figure 6: Specifying the input for the cluster mode
advisor

The code adaptation advisor checks the report
generated by the memory advisor to detect if any code
adaptation might be needed or not. For our example
application, as shown in Figure 8, no code adaptation is
recommended.

c561-003$ cat
reports/circuit_serial clustering advisor_
report. txt

--- circuit serial Recommendations ---
Clustering mode to use: Quadrant

--End ICAT report for circuit serial--

Figure 7: Sample cluster mode recommendation

Either the source code modification is not
needed or the Memory Advisor report for
circuit serial does not exist in the
subdirectory named reports. However, if
you would like to test how our source code
modification script works, press 2, else

press 3.

3

Please choose from the following ICAT
options:

1. Run Memory Mode Advisor

2. Run Cluster Mode Advisor

3. Run Vectorization Advisor

4. Run Code Adaptation Advisor

5. Run Memory Optimization Advisor
6. All

7. Quit ICAT

7

Figure 8: Code adaptation advisor

To demonstrate how the code adaptation advisor
changes the input code, let us consider a different and trivial
example that is shown in Figure 9. If the memory allocation
for the arrays named buffer and duffer should be
done on MCDRAM, then the malloc calls for allocating
memory for them should be replaced with the calls to the
function hbw malloc. The calls to function free should
be replaced with calls to the function hbw free, and the
header file for the HBWMALLOC interface should be
included in the code. It is also advised to insert appropriate
checks (conditional statements) to ensure the availability of
MCDRAM by calling the hbw check available
function. ICAT can make all the aforementioned

modifications or insertions in the code. The steps for
modifying code using ICAT and the resulting code snippet
are shown in Figure 10. ICAT also inserts code to ensure
that the size of memory allocated from MCDRAM is less
than or equal to 16 GB. At present, the vectorization and
memory optimization advisors are under development.

#include <stdio.h>
#include <stdlib.h>
finclude <unistd.h>
int main () {
int i, n, *buffer, *duffer;

1=4816000;
buffer = (int*)malloc (i*sizeof (int));
duffer = (int*)malloc(i*sizeof (int));

for (n=0; n<i; n++)
buffer[n]l=rand() %26 + 100;

for (n=0; n<i; n++)
buffer[n]=rand() %26 + 120;

usleep (1000) ;

for (n=0; n<i; n++)
duffer[n]=buffer[n]+ (buffer[n]+n);

free (buffer);

free (duffer);

return 0;

Figure 9: Sample code for adaptation

7 CONCLUSION

In this paper we presented a high-level tool named ICAT
that assists users to take advantage of the MCDRAM on
KNL nodes. ICAT internally utilizes Vtune and perf to
analyze an application provided by the user. ICAT guides
the users to select the most efficient memory and cluster
modes. It also helps with reengineering source code to
optimally utilize the MCDRAM for allocating
bandwidth-critical data structures. In the future versions of
ICAT, support for memory optimization and advanced
vectorization will be added.

While there are ongoing efforts to provision the
middleware for managing multiple-levels of memory
hierarchies, higher level tools like ICAT have the potential
for helping users in efficiently taking advantage of the
memory hierarchies without feeling overwhelmed with their
low-level architectural details, and without learning multiple
tools like Vtune, and perf.

Code Adaptation Advisor for Using HBM.

Line # '7'
to malloc that can be replaced with a call
to hbw malloc to take advantage of MCDRAM.
Do you want to replace the calls to

of your program contains a call

malloc? (type y for yes, and n for no)y

Lines with call to function free that is
paired with the recently replaced malloc
call, will be replaced with hbw free.

Program modification is complete. The
modified program is presented below.
#include <hbwmalloc.h>
#include <stdio.h>
#include <stdlib.h>
finclude <unistd.h>
int main () {
int i, n, *buffer, *duffer; 1=4816000;
int checkHBMAvailability =
hbw_check_available() ;
int array size = (i *sizeof(int));
if (checkHBMAvailability == 0 &&
array size < 17179869185) {
buffer = (int*)hbw_malloc (i
*sizeof (int)) ;
} else{
buffer = (int*)malloc (i*sizeof (int));
}
//other code-memory allocation for duffer
for (n=0; n<i; n++)
buffer[n]=rand()%26 + 100;
for (n=0; n<i; n++)
buffer[n]=rand() %26 + 120;
usleep (1000) ;
for (n=0; n<i; n++)
duffer[n]=buffer[n]+ (buffer[n]+n);
if (checkHBMAvailability == 0 &&
array size < 17179869185) {
hbw_free (buffer) ;
free (buffer); }
//other code-memory allocation for duffer

} else{

return 0;

Figure 10: Code updating using ICAT

ACKNOWLEDGMENTS

We are grateful to Tiffany Connors for her contributions to
the ICAT codebase. We are very grateful to the National

Science Foundation for grant # 1642396,

ICERT REU

program (National Science Foundation grant # 1359304),

XSEDE

(National ~ Science Foundation grant #

ACI-1053575), and TACC for providing resources required
for this project.

REFERENCES

1

(2

13

41

(51

6l

[71
(8l
101
[10]

1]

2]

(3]

[14]

[18]

[16]

MCDRAM as High-Bandwidth Memory (HBM) in Knights Landing
Processors: Developer’s Guide. 2016. Accessed on March 10th 2017:
https://colfaxresearch.com/knl-mcdram/

Clustering Modes in Knights Landing Processors. 2016. Accessed on
March 10th 2017: https://colfaxresearch.com/knl-numa/

James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Ph
Processor High Performance Programming: Knights Landing Edition 2.
Elsevier Science & Technology Books, 662. ISBN: 0128091940
9780128091944

Vtune Performance Profiler. 2017. Accessed on March 10th, 2017:
https://software.intel.com/sites/default/files/managed/d7/balintel-vtune-amp
lifier-2017-product-brief.pdf

perf: Linux Profiling with Performance Counters. Accessed on March 10th,
2017: https://perf.wiki.kernel.org/index.php/Main_Page

Sunny G. Using The AutoHBW Library with Jemalloc and Memkind. 2015.
Accessed on March 10th, 2017:
https://software.intel.com/en-us/articles/using-autohbw-with-jemalloc-and-
memkind-library

NUMACTL. Accessed on March 10th, 2017:
http://linuxcommand.org/man_pages/numactl8.html

Memkind Heap Manager. Accessed on March 10th, 2017:
http://memkind.github.io/memkind/memkind_arch_20150318.pdf
HBWMALLOC. Accessed on March 10th, 2017:
https://www.mankier.com/3/hbwmalloc

Charles Yount and Alejandro Duran. 2016. Effective use of large
high-bandwidth memory caches in HPC stencil computation via temporal
wave-front tiling. In Proceedings of the 7th International Workshop on
Performance Modeling, Benchmarking and Simulation of High
Performance Computing Systems (PMBS '16). |IEEE Press, Piscataway,
NJ, USA, 65-75. DOI: https://doi.org/10.1109/PMBS.2016.12
Raghunandan Mathur, Hiroshi Matsuoka, Osamu Watanabe, Akihiro
Musa, Ryusuke Egawa, and Hiroaki Kobayashi. 2015. A Case Study of
Memory Optimization for Migration of a Plasmonics Simulation Application
to SX-ACE. 2015 Third International Symposium on Computing and
Networking (CANDAR), Sapporo, 2015, 521-527.
DOI:10.1109/CANDAR.2015.105

Ranjith Subramanian, Yannis Smaragdakis, and Gabriel H. Loh. 2006.
Adaptive Caches: Effective Shaping of Cache Behavior to Workloads. In
Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 39). IEEE Computer Society, Washington, DC,
USA, 385-396. DOI: http://dx.doi.org/10.1109/MICRO.2006.7

Yonghong Song, Rong Xu, Cheng Wang, and Zhiyuan Li. 2004. Improving
Data Locality by Array Contraction. IEEE Transactions on Computers, Vol.
53(9), 1073-1084. DOI: 10.1109/TC.2004.62

Markus Kowarschik, Christian Wei. 2002. An Overview of Cache
Optimization Techniques and Cache-Aware Numerical Algorithms. In
Algorithms for Memory Hierarchies, Advanced Lectures, 213 - 232.

A Guide to Vectorization with Intel C++ Compilers. Acessed on March 10th,
2017
https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-CompilerAut
ovectorizationGuide.pdf

Guide to Automatic Vectorization with Intel AVX-512 Instructions in Knights
Landing Processors. 2016. Accessed on March 10th 2017:
https://colfaxresearch.com/knl-avx512/

