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ABSTRACT 
The process of code adaptation to take advantage of the          
latest innovations in a supercomputing platform begins with        
learning about the details of the platform’s underlying        
hardware. It can be challenging for many users to spend          
time and effort in developing an understanding of the         
innovative features in a supercomputing platform - such as         
deep memory hierarchies - and to harness their maximum         
possible performance by manually modernizing their      
applications. To mitigate the aforementioned challenge, we       
are developing an Interactive Code Adaptation Tool (ICAT).        
In its current form, ICAT can assist the users in modifying,           
compiling, and optimally running their applications on the        
latest HPC platforms that are equipped with the Intel         
Knights Landing (KNL) processors. ICAT detects a given        
application’s characteristics such as memory usage pattern,       
type of memory allocation, and execution time. Depending        
upon the application’s characteristics, it advises the user on         
optimal ways to take advantage of the KNL processor and          
its memory-hierarchy.  
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1 INTRODUCTION 
Intel’s manycore Knights Landing (KNL) processors have       
high-bandwidth memory called Multi-Channel DRAM     
(MCDRAM) on the package in addition to the usual DDR4          
SDRAM. On the self-bootable version of the KNL        
processors, the theoretical peak bandwidth of MCDRAM is        
approximately 4.5 times higher than that of the DDR4         
memory [1]. On the flip side, the MCDRAM is smaller in size            
- 16 GB compared to up to 400 GB of DDR4. MCDRAM can             
improve the performance of applications with a low        
floating-point intensity (low ratio of FLOPs v. memory        
access). Such applications are typically labeled as       
bandwidth-critical or bandwidth-bound. However, using     
MCDRAM optimally is not a straightforward task for many         
applications because of its limited size and a variety of          
memory and cluster modes (explained below) in which the         
MCDRAM can be configured. Depending upon an       
application’s characteristics, a particular configuration mode      
may work better than the other modes. 

Memory Modes​: The three memory modes for the        
MCDRAM are named cache, flat, and hybrid. In cache         
mode the MCDRAM serves as a third-level cache. In flat          
mode the MCDRAM is addressable memory like DDR4. In         
hybrid mode, part of the MCDRAM is configured as a          
cache and a part of it is configured in flat mode.  

The main difference between the flat and the cache         
mode is that the MCDRAM in flat mode is user-addressable          
while the MCDRAM in cache mode is not. As obvious, the           
cache mode is more convenient to use since it operates          
without user interaction, and, for applications with a small         
memory footprint, the cache mode usually provides high        
performance. However, for applications with large memory       
footprints, the efficiency of the cache can drop dramatically         



 

(due to the frequent cache misses) and in those cases it           
may be advantageous to manage the cache from within the          
code and to hand-select arrays to be stored in the          
MCDRAM. Using the MCDRAM configured in hybrid mode        
gives the advantages of both cache mode and the flat          
mode, but results in smaller sizes of MCDRAM available in          
each of these modes.  

Cluster Modes​: Pairs of cores on a KNL chip are          
organized into tiles. Each core has its own L1 cache and           
each tile provides a shared L2 cache. The tiles are          
connected to each other with a cache-coherent mesh        
interconnect. There is a Distributed Tag Directory (DTD) to         
maintain coherency across L2 cache on all tiles. This DTD          
is organized as a set of Tag Directories (TDs) on each tile            
and is used to identify the state and the location of cache            
lines. The mesh interconnect supports three modes of        
cluster operations to keep the on-die communication - for         
handling memory requests originating from cores,      
forwarded to the TD, and then serviced by the right memory           
channel - as local as possible. These modes are named          
all-to-all, quadrant or hemisphere, and sub-NUMA cluster       
mode (SNC-4/SNC-2) [2, 3].  

In the all-to-all cluster mode, the memory addresses are         
distributed uniformly across all the TDs, hence, it can suffer          
from a high-latency of cache miss and hit. This mode is           
mostly used for diagnostic purposes. 

In the quadrant cluster mode, the tiles of the KNL          
package are divided into four parts called quadrants such         
that each quadrant is in proximity to a memory controller.          
The memory addresses that are controlled by the memory         
controller in each quadrant are mapped locally to the TDs in           
that quadrant. This arrangement reduces the latency of a         
cache miss as compared to the all-to-all mode because the          
memory controller and TD’s are in the same locality, and          
thus, there is no need to go across the quadrants. The           
hemisphere mode is similar to the quadrant mode with the          
difference that the tiles on the chip are divided into two           
parts.  

In the sub-NUMA mode, just like the quadrant or         
hemisphere mode, the tiles are divided into four or two          
parts. However, each part acts as a separate NUMA node          
such that, the core requesting access to memory, the TD,          
and the memory channel for servicing the memory access         
request, are all in the same part (quadrant or hemisphere).          
The multi-threaded NUMA-aware applications can     
experience improved performance in this mode by pinning        
the threads and memory to the specific quadrants or         
hemisphere on each NUMA node.  

Given the different memory and the cluster modes for the          
MCDRAM configuration, the burden is on the software        
developers to find the modes that will work best for their           
applications ​. There are some default recommendations by       

Intel that may work well for cache-friendly applications. For         
all other applications, the process of finding the best         
memory and cluster mode begins with developing an        
understanding of the architecture of the KNL processors. It         
may also involve using tools like Vtune [4] for understanding          
the application characteristics. Manual reengineering of the       
code may be necessary for improving the parallelization and         
vectorization of the code. And in flat mode, code         
modifications to direct memory allocations to the MCDRAM        
are also required.  

To facilitate the migration of applications to the KNL and          
future generations architectures, we are developing an       
Interactive Code Adaptation Tool (ICAT). ICAT can analyze        
a user-supplied serial or parallel application using built-in        
heuristics, and tools like Vtune and ​perf [5]. Based on its           
analysis, ICAT can advise the user on modifying, compiling,         
and optimally running an application on the KNL nodes. If          
the user desires, ICAT can automatically modify the        
application code to use MCDRAM for specific arrays.  

Code analysis and modification regarding MCDRAM is       
explained in Section 2 of the paper. Additional details on the           
decision-trees used by ICAT to provide recommendations to        
the users are presented in Section 3. The techniques for          
memory optimization that will soon be part of ICAT are          
discussed in Section 4. Advanced vectorization support will        
also be added to ICAT in future and it is discussed in            
Section 5. The usage of ICAT is demonstrated with an          
example in Section 6 of the paper. 

2 CODE ADAPTATION  
As mentioned in Section 1, MCDRAM is a smaller         
high-bandwidth memory compared to DDR4. Applications      
that fit in MCDRAM will likely not benefit from code          
modifications and can be run in cache mode or in flat mode            
using MCDRAM (in the latter case select appropriate        
numactl options). Applications that require more than       
16GB of memory will not fit entirely in the MCDRAM. Users           
may rely on the MCDRAM cache and may measure the          
cache performance by comparing data from tests with        
varying memory footprints. If the performance degradation       
is high, which is likely for footprints much larger than the           
16GB of MCDRAM cache, the application developers may        
use tools like Vtune to identify the bandwidth-critical data         
structures. The bandwidth-critical data structures can be       
selectively allocated on MCDRAM with or without any        
application reengineering.  

The autoHBW library [6] can be used for allocating all the           
data structures beyond a particular memory size on        
MCDRAM without involving any reengineering of the       
applications or recompilation. Another option that the users        
can explore for allocating memory on MCDRAM or DDR4 is          
to use appropriate ​numactl command options [7].       
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However, if a fine-grained control on memory allocation is         
needed such that out of the multiple data structures of the           
same size, only a few should be allocated on MCDRAM,          
then one can either use the memkind interface [8] (which is           
basically a heap manager for enabling allocation to specific         
types of memory), or one can use a simplified version of the            
memkind interface that is known as High-Bandwidth       
Memory ALLOCator (HBWMALLOC) interface [9]. Using      
these interfaces would entail application reengineering to       
insert appropriate API calls in C/C++ code or directives in          
Fortran code.  

In C/C++ applications, the application reengineering to       
use the HBWMALLOC interface is usually straightforward.       
The calls to the ​calloc ​, ​malloc ​, ​realloc ​, and ​free         
functions are replaced with the calls to the ​hbw_calloc ​,         
hbw_malloc ​, ​hbw_realloc ​, and ​hbw_free functions     
that are defined in the HBWMALLOC interface. The        
signature of the functions in the HBWMALLOC interface is         
same as their analogs in the standard C library named          
stdlib.h ​. In Fortran applications, the reengineering effort       
usually involves adding a directive with the ​FASTMEM        
attribute for allocating the memory from MCDRAM after the         
allocatable data structure of interest has been declared.  

The code snippets in Figure 1 show the method for          
explicitly allocating a data structure on MCDRAM. Line # 4          
in Figure 1.(I) has a call to ​malloc that allocates memory           
for the array named ​a from the heap on DDR4. Line # 4 in              
Figure 1.(II) has the call to ​hbw_malloc for allocating         
memory for the array named ​a ​on MCDRAM. For portability          
reasons, one should write the code to make sure that the           
calls to the HBWMALLOC interface are used only if the          
MCDRAM is available in the underlying HPC system. The         
availability of MCDRAM can be queried with the        
hbw_check_available function [9]. If the MCDRAM is       
not present, then the usual calls for memory allocation         
should be used.  

As can be noticed from Figure 1, the reengineering step          
itself is not difficult once the bandwidth-critical data        
structures are identified. However, ​the combined effort       
involved in (1) understanding the KNL architecture and the         
various modes in which the MCDRAM can be configured,         
(2) identifying the bandwidth-critical data structures, (3)       
deciding which data structures to allocate on MCDRAM,        
and then, if needed, (4) adapting the code to use the           
HBWMALLOC interface, is not trivial. ICAT automates all        
these steps for the user and hence, assists them in          
migrating their applications to the KNL architecture.  

 

1. #include <stdlib.h> 
2. int main(){  
3.  int arraySize = 1024; 
4.  ​double* a = (double*)    

        ​malloc​(sizeof(double)*arraySize); 
5.  //other code 
6.  ​free​(a);  
7.  return 0; 
8. } 

 
(I)  C code snippet - allocating memory on DDR4 

1. #include <hbwmalloc.h> 
2. int main(){  
3.  int arraySize = 1024; 
4.  double* a = (double*) 

hbw_malloc​(sizeof(double)*arraySize); 
5.  //other code 
6.  ​hbw_free​(a);  
7.  return 0; 
8. } 

 
(II) C code snippet - using HBWMALLOC interface 

REAL, ALLOCATABLE :: arryA(:), arryB(:) 

! arryA is allocated in​ DDR4 
ALLOCATE (arryA(1:2048)) 

! arryB is allocated in DDR4 

ALLOCATE (arryB(1:2048)) 

 
 
 
(III) Fortran code snippet - allocating memory on 
DDR4 

REAL, ALLOCATABLE :: arryA(:), arryB(:) 

!DEC$ ATTRIBUTES FASTMEM :: arryA 

! arryA is allocated in ​HBM 
ALLOCATE (arryA(1:2048)) 

! arryB is allocated in DDR4 

ALLOCATE (arryB(1:2048)) 

 

(IV) Fortran code snippet - allocating memory on MCDRAM 

 
Figure 1.(I) - (IV). Code snippets showing the usage of ​hbw_* ​calls  and directives for using MCDRAM 
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As mentioned above, for assuring code maintainability        
and portability across multiple systems, it is important that         
the code modifications for taking advantage of the        
MCDRAM on the KNL nodes do not break the portability of           
the code. Therefore, instead of merely replacing the calls to          
malloc/calloc/realloc with the corresponding ​hbw_* calls,      
ICAT also inserts extra checks in the code so that if the            
MCDRAM is not available on the system on which the code           
is being compiled and run, the memory allocation happens         
using ​malloc ​/​calloc ​/​realloc calls instead of the      
hbw_malloc ​/​hbw_calloc ​/​hbw_realloc ​  calls.  

3 DECISION-MAKING IN ICAT 
There are multiple decision trees that are part of ICAT for           
recommending the appropriate memory mode, cluster      
mode, and code adaptation. Some of the application        
characteristics used for decision-making are L2 cache hit        
bound (ratio of cycles spent handling L2 hits to all cycles),           
L2 cache hit rate, L2 cache miss bound (ratio of cycles           
spent handling L2 misses to all cycles), and L2 cache miss           
count. These metrics are determined by first running the         
application with ​perf ​, and then if needed, with Vtune as          
well. Metrics are also gathered from the process that is          
associated with the application. ICAT uses the collected        
metrics to prepare recommendation reports for the user and         
also assists in code adaptation. Figure 2 shows a high-level          
overview of how ICAT works. 

If ICAT determines that the memory footprint of an         
application is smaller than 16 GB, then it recommends to          
use either one of the flat or cache modes. While          
recommending flat mode, ICAT also provides appropriate       
numactl options. If the application is appropriately blocked        
(or tiled) to take advantage of the L2 cache and its memory            
footprint is smaller than 16 GB, then ICAT recommends         
ignoring the MCDRAM and using the DDR4. This        
recommendation is based on the fact that the DDR4 latency          
is lower than the MCDRAM latency. However, in some         
situations, ICAT also recommends testing the application by        
running it on MCDRAM configured in cache mode.  

For memory footprints larger than 16 GB, ICAT        
recommends one of the following options depending on the         
results of the internal analysis: : 

● Use MCDRAM configured in cache mode 
● Use MCDRAM configured in flat mode and use        

numactl to prefer MCDRAM: ​numactl     
—preferred=1 a.out 

● Use MCDRAM configured in flat mode and allocate        
selected bandwidth-critical data structures on the      
MCDRAM 

 
ICAT also helps users in making their applications        

NUMA-aware. It gives recommendations to (1) establish       

MPI domains, (2) pinning threads in OpenMP code, or (3)          
both the previous two recommendations in hybrid code. The         
selection of the cluster mode is affected by this step as well.            
For example, using the sub-NUMA quadrant mode is only         
applicable if at least four MPI tasks (per KNL node) are           
used. However, if it is not required to make the application           
NUMA-aware, ICAT recommends to use the quadrant mode        
by default.  

 

Figure 2: High-Level overview of ICAT 

At the time of code adaptation, ICAT inserts additional         
lines of code to determine the size of data structures that           
are dynamically allocated. It also inserts conditional       
statements that can determine if the size of the data to be            
allocated dynamically is greater than 16 GB or not. If the           
size is greater than 16 GB, then the standard library calls           
like ​malloc ​, ​calloc ​, or ​realloc are used for data         
allocation. However, if the size of the data to be allocated is            
less than 16 GB, then the inserted code triggers the usage           
of the HBWMALLOC interface. Additionally ICAT inserts       
code to dynamically check the availability of MCDRAM and         
to make calls to the HBWMALLOC interface if applicable. 
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4 MEMORY OPTIMIZATION 

On all the computing platforms that exist today, there is a           
significant gap between the performance of the processing        
elements and the main memory. To mitigate the effect of          
the high-latency and low-bandwidth of the main memory,        
deep memory hierarchies are provisioned on the HPC        
platforms. Optimizing memory access in an application       
continues to be important for achieving good performance.        
Several researchers have demonstrated that application      
performance can be improved by reducing memory access        
and by improving cache reuse [10-14]. In the case of nested           
loops, one commonly used strategy for optimizing cache        
and register reuse is to interchange the ordering of the          
loops where possible to reduce the stride of memory access          
[14]. By reducing the stride of memory access, the         
applications can utilize more data from each cache line that          
is transferred from or to memory. 

Another useful strategy for cache reuse is blocking or         
tiling the loops. With this strategy, a single loop can be           
replaced by a pair of loops such that, the inner loop in the             
pair iterates over a block of the iteration in the original loop            
while using the same loop stride that was specified in the           
original loop. However, the outer loop in the pair iterates          
with a stride that is equal to the size of the block iterated             
over by the inner loop. 

Some optimizations that we have discussed so far can         
be done either automatically by the compiler or explicitly by          
the programmer. However, there are additional types of        
optimizations that are too complex for the compiler. Some         
examples of such transformations are: reorganization of the        
data layout by changing array-of-structures to      
structure-of-arrays, complicated forms of cache-blocking,     
converting data access from main memory to on-the-fly        
recalculation, allocating and initializing memory close to the        
place in the application where it is used, and deallocating          
memory soon after its last use [11]. These memory         
optimization strategies will be part of ICAT in future. 

5 ADVANCED VECTORIZATION ADVISOR 
Modern compilers automatically vectorize loops if they       
recognize an opportunity to use SIMD instructions.       
Programmers can also expose the vectorization opportunity       
by using specific code annotations (​e.g ​., #pragma       
vector always ​). 

However, there are loops that cannot be vectorized by         
the compilers due to data-dependencies - real or assumed         
by the compiler. Having switch statements, pointer aliasing,        
certain types of if-statements, and function calls in a loop          
can also prevent it from vectorizing. Non-contiguous       
memory accesses with a non-unit stride or indirect        
addressing also creates difficulties for the compiler [15-16].        

There are also situations in which the static-code analysis         
by the compiler can be inconclusive. In such situations, the          
developers can add annotations in their code to provide         
guidance to the compiler. 

ICAT will be extended to allow users to interactively add          
vectorization related advice to their code. For example, it         
can advise the developers to add the following hint before          
the loops that should not be vectorized: #pragma        
novector ​, or add the following hint before the loops in          
which the compiler should ignore any assumed       
dependencies: ​#pragma ivdep ​. Restructuring the existing      
code for explicitly prefetching data, inlining small functions,        
SIMD enabled functions, scalar-to-vector conversions, and      
improving memory alignment of data structures will also be         
supported by ICAT. 

6 ICAT IN ACTION 
ICAT is a command-line tool that is invoked as shown in           
Figure 3. Before invoking ICAT, the application that needs         
to be ported to KNL must be compiled with the “-g” flag. As             
shown in Figure 3, ICAT prompts the user to select one or            
all of the following options: memory mode advisor, cluster         
mode advisor, vectorization advisor, code adaptation      
advisor, and memory optimization advisor.  
 

 

c561-052$ ​bash -i ./icat.sh   

Figure 3: Invoking ICAT 

In the scenario shown in Figure 3, the user chooses          
option number “​6​” to run all advisors. As a first step, ICAT            
runs the memory mode advisor. It prompts the user for the           
name of the application executable that was compiled with         
“-g” flag and the complete path to it. Without any user           
interaction ICAT then profiles the application using ​perf ​,        
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and if needed, with Vtune as well. After analyzing the          
memory usage characteristics of an application, ICAT       
generates a ​reports directory and saves the       
recommendations in this directory. A sample report is        
presented in Figure 4 and it shows that ICAT provides          
condensed information about the memory usage pattern of        
the application. It suggests the memory mode in which the          
application should be run and the appropriate commands to         
start the application. 
 

 

ICAT will determine best memory and 
clustering modes and will check for 
vectorization opportunities 
Please enter the executable name (only):  
circuit_serial 
Please enter complete path to folder 
containing executable:  
/home1/01698/rauta/sample_code  
Please enter any program arguments:  
 
Profiling program... 
  
Report generated. 
---------------------- 

Figure 4: Specifying the input program name and the         
path to it  

 

c561-003$ ​ cat 
reports/circuit_serial_memory_advisor_repo
rt.txt 
--- circuit_serial Characteristics --- 
Memory usage: 0.120438  
Cache Miss Rate: -0 
 
----- Recommendations ----- 
Application fits into HBM. 
 
Mode to use: If numactl is available, use 
the Flat-Mode with all allocations to HBM. 
 
If numactl is not available, then use the 
Cache-Mode. However, note that the cache 
misses in the Cache-Mode are more 
expensive than reading data from DDR4 in 
Flat-Mode. 
 
Memory Allocation: HBM 
 

 

To execute the application in Flat-Mode:  
Use command < ​numactl --membind=1 
./run-app ​> if it is serial, or < ​ibrun 
--membind=1 ./run-app ​ > if it is parallel.  
 
To execute the application in Cache-Mode:  
Use the command that you normally use, 
that is, < ./run-app > if it is serial or 
< ibrun ./run-app > if it is parallel.  
 
In general, to determine <NUMA_NODE> in 
the command < numactl --membind=NUMA_NODE 
>, run the command < numactl -H > and look 
for the node that does not have any cores 
 
--End ICAT report for circuit_serial-- 

Figure 5: Sample memory mode recommendation 

 
On the basis of the memory usage information ICAT         

performs further analysis to suggest an appropriate cluster        
mode for the application. As shown in Figure 6, it prompts           
the user for information on the parallel programming model         
used by the application, and generates a report with advice          
on the cluster mode to use. A sample cluster mode report is            
shown in Figure 7. In this example ICAT recommends the          
quadrant mode. 
 

 

Profiling program... 
What is the programming model used in your 
application? 
1. OpenMP 
2. MPI 
3. OpenMP+MPI 
4. None of the above/serial 
4 
Report generated. 
---------------------- 
 
OTHER INFORMATION NOT INCLUDED HERE 
---------------------- 

Figure 6: Specifying the input for the cluster mode         
advisor  

The code adaptation advisor checks the report       
generated by the memory advisor to detect if any code          
adaptation might be needed or not. For our example         
application, as shown in Figure 8, no code adaptation is          
recommended.  
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c561-003$ ​cat 
reports/circuit_serial_clustering_advisor_
report.txt  
 
--- circuit_serial Recommendations --- 
 
 Clustering mode to use: Quadrant 
 
--End ICAT report for circuit_serial-- 
 

Figure 7: Sample cluster mode recommendation 

 
 

 

Either the source code modification is not 
needed or the Memory Advisor report for 
circuit_serial does not exist in the 
subdirectory named reports. However, if 
you would like to test how our source code 
modification script works, press 2, else 
press 3. 
3 
Please choose from the following ICAT 
options:  
1. Run Memory Mode Advisor 
2. Run Cluster Mode Advisor 
3. Run Vectorization Advisor  
4. Run Code Adaptation Advisor  
5. Run Memory Optimization Advisor 
6. All 
7. Quit ICAT 
7 

Figure 8: Code adaptation advisor 

 
To demonstrate how the code adaptation advisor       

changes the input code, let us consider a different and trivial           
example that is shown in Figure 9. If the memory allocation           
for the arrays named ​buffer ​and ​duffer should be         
done on MCDRAM, then the ​malloc ​calls for allocating         
memory for them should be replaced with the calls to the           
function ​hbw_malloc​. The calls to function ​free ​should        
be replaced with calls to the function ​hbw_free​, and the          
header file for the HBWMALLOC interface should be        
included in the code. It is also advised to insert appropriate           
checks (conditional statements) to ensure the availability of        
MCDRAM by calling the ​hbw_check_available     
function. ICAT can make all the aforementioned       

modifications or insertions in the code. The steps for         
modifying code using ICAT and the resulting code snippet         
are shown in Figure 10. ICAT also inserts code to ensure           
that the size of memory allocated from MCDRAM is less          
than or equal to 16 GB. At present, the vectorization and           
memory optimization advisors are under development. 

 

 

#include <stdio.h>  
#include <stdlib.h>  
#include <unistd.h> 
int main (){ 
  int i, n, *buffer, *duffer; 
  i=4816000; 
  buffer = (int*) ​malloc ​(i*sizeof(int));  
  duffer = (int*) ​malloc ​(i*sizeof(int));  
  for (n=0; n<i; n++) 
    buffer[n]=rand()%26 + 100; 
  for (n=0; n<i; n++) 
    buffer[n]=rand()%26 + 120; 
  usleep(1000); 
  for (n=0; n<i; n++) 
    duffer[n]=buffer[n]+(buffer[n]+n);  
 ​ free ​(buffer); 
  free ​(duffer); 
  return 0; 
} 

Figure 9: Sample code for adaptation  

 

7 CONCLUSION 
In this paper we presented a high-level tool named ICAT          
that assists users to take advantage of the MCDRAM on          
KNL nodes. ICAT internally utilizes Vtune and ​perf to         
analyze an application provided by the user. ICAT guides         
the users to select the most efficient memory and cluster          
modes. It also helps with reengineering source code to         
optimally utilize the MCDRAM for allocating      
bandwidth-critical data structures. In the future versions of        
ICAT, support for memory optimization and advanced       
vectorization will be added.  

While there are ongoing efforts to provision the        
middleware for managing multiple-levels of memory      
hierarchies, higher level tools like ICAT have the potential         
for helping users in efficiently taking advantage of the         
memory hierarchies without feeling overwhelmed with their       
low-level architectural details, and without learning multiple       
tools like Vtune, and ​perf ​. 
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Code Adaptation Advisor for Using HBM.  
... 
Line # '7' of your program contains a call 
to malloc that can be replaced with a call 
to hbw_malloc to take advantage of MCDRAM. 
Do you want to replace the calls to 
malloc?(type y for yes, and n for no) ​y 
 
Lines with call to function free that is 
paired with the recently replaced malloc 
call, will be replaced with hbw_free. 
… 
Program modification is complete. The 
modified program is presented below. 
#include <hbwmalloc.h> 
#include <stdio.h>  
#include <stdlib.h>  
#include <unistd.h> 
int main (){ 
  int i, n, *buffer, *duffer; i=4816000; 
  ​int checkHBMAvailability =  
     hbw_check_available();  
  ​int array_size = (i *sizeof(int));  
  ​if (checkHBMAvailability == 0 &&  
     array_size < 17179869185){ 
     buffer = (int*)hbw_malloc (i  
                        *sizeof(int));  
  } else{   
     buffer = (int*)malloc(i*sizeof(int));  
 ​ ​} 
 ​//other code-memory allocation for duffer 
  for (n=0; n<i; n++) 
    buffer[n]=rand()%26 + 100; 
  for (n=0; n<i; n++) 
    buffer[n]=rand()%26 + 120; 
  usleep(1000); 
  for (n=0; n<i; n++) 
    duffer[n]=buffer[n]+(buffer[n]+n);  
 ​ if (checkHBMAvailability == 0 &&  
                array_size < 17179869185){  
     hbw_free(buffer);  
  } else ​{ ​   free(buffer); ​} 
 ​//other code-memory allocation for duffer 
  return 0; 
} 

Figure 10: Code updating using ICAT 
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