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10 ABSTRACT: Creating small-molecule-functionalized platforms for high-throughput screening or biosensing applications
11 requires precise placement of probes on solid substrates and the ability to capture and to sort targets from multicomponent
12 samples. Here, chemical lift-off lithography was used to fabricate large-area, high-fidelity patterns of small-molecule probes. Lift-
13 off lithography enables biotin—streptavidin patterned recognition with feature sizes ranging from micrometers to below 30 nm.
14 Subtractive patterning via lift-off facilitated insertion of a different type of molecule and, thus, multiplexed side-by-side placement
15 of small-molecule probes such that binding partners were directed to cognate probes from solution. Small molecules mimicking
16 endogenous neurotransmitters were patterned using lift-off lithography to capture native membrane-associated receptors. We
17 characterized patterning of alkanethiols that self-assemble on Au having different terminal functional groups to expand the library
18 of molecules amenable to lift-off lithography enabling a wide range of functionalization chemistries for use with this simple and

19  versatile patterning method.

20 l INTRODUCTION

21 To produce multiplexed, functional, biocapture platforms for
22 high-throughput screening or biosensing applications, surface
23 patterning and immobilization strategies are needed to anchor
24 molecules on solid substrates for capturing and sorting
25 respective binding partners from complex mixtures in solution
2 or in vivo.' " Although in vivo sensing to date has been based
27 largely on electrochemical'”™'* or enzymatic detection,">™"”
28 small-molecule biocapture strategies provide gateways to new
29 sensing opportunities.'® Immobilization of large biomolecules
30 on surfaces requires avoiding denaturation upon surface
31 adsorption and favorable orientation for ligand binding.'”~**
32 In contrast, surface tethering of small-molecule probes
33 necessitates judicious selection of coupling chemistries and
34 surface dilution to facilitate recognition by large biomolecule
35 binding partners.””**~>* For instance, the areal size mismatch
36 on surfaces between small-molecule neurotransmitters or
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amino acids and large antibody or receptor binding partners 37
is >100-fold.*>** 38

An important goal of small-molecule chemical patterning is 39
site-specific placement of multiple probes on substrates for the 40

interrogation of target binding specificity and selectivity.”** ™" 41

However, achieving this objective has been challenging.sg_43 )
We developed additive methods to pattern small molecules to 43
investigate biomolecule capture via relative quantification of 4
binding on functionalized versus unfunctionalized regions of 4s
substrates. Microcontact insertion printing (uCIP) was used to 46
pattern small-molecule neurotransmitters and precursors 47
mimicking endogenous neurotransmitters on alkanethiol self- 43
assembled monolayer (SAM)-modified Au substrates. "™ 4o
Using this approach, molecular tethers are inserted into so
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preformed SAMs, and tethers are functionalized on-substrate
with small-molecule probes. To circumvent problems asso-
ciated with the sequential surface functionalization chemistries
needed for multifunctionalized substrates, we used microfluidics
to generate multiplexed substrates.”® Here, two-component
SAMs with low proportions of tether molecules (<10% solution
concentration) are produced by codeposition to achieve
dilution of surface tethers. Individual channels are exposed to
different small-molecule targets for multiplexed functionaliza-
tion.

We also developed a subtractive patterning method called
chemical lift-off lithography, where alkanethiol SAM molecules
are removed from Au substrates.””** Polydimethylsiloxane
(PDMS) stamps are treated with oxygen plasma to generate
siloxyl groups on stamp surfaces. Activated stamps are brought
into conformal contact with hydroxyl-terminated alkanethiol
SAMs (or other suitably terminated monolayers) on Au
substrates to produce covalent interactions at stamp/SAM
interfaces. Previous studies indicated the lability of Au—Au
bonds at substrate—SAM interfaces based on evidence for
mobile Au thiolates within SAMs**~>” and the presence of low-
coordination Au adatoms beneath SAMs.**~° Zhang et al. used
thiol-derivatized tips and atomic force microscopy (AFM) to
quantify the strengths of isolated Au—S bonds.”® They showed
that Au—S bonds were sufficiently strong such that Au—Au
bonds at the outermost Au-substrate layers can be preferentially
disrupted. We have shown that stamp/SAM and SAM/Au
interfacial interactions in lift-off lithography are stronger than
Au—Au substrate bonds as stamp lift-off causes alkanethiols and
the outermost layer of the underlying Au atoms to be
simultaneously removed.’

Previously, lift-off regions were patterned with biotin-
terminated alkanethiols to capture streptavidin.'” Lift-off
removes a significant portion of the initial monolayer. Yet,
molecules remaining in the contact regions facilitate controlled
and favorable insertion of new molecules. For example, DNA
probes can be inserted into lift-off regions for highly efficient
and tunable hybridization with complementary oligomers.>’
Chemical lift-off lithography has also been combined with sol—
gel chemistry to print transistors for small-molecule bio-
sensors.”

Here, we advance the understanding, use, and applicability of
chemical lift-off lithography. We expand the feature shapes and
sizes patterned by lift-off lithography and extend nanoscale
patterning by this method to sub-30 nm using a single lift-off
step. We produce bifunctional substrates to demonstrate
biomolecule recognition and sorting. We use lift-off lithography
to produce patterned substrates that capture native protein
targets. In addition, alkanethiols with a range of terminal
functionalities are investigated to enlarge the molecular library
that can be patterned by chemical lift-off lithography.

B EXPERIMENTAL SECTION

Materials. Silicon substrates with 100 nm Au films over 10 nm Ti
adhesive layers were purchased from Platypus Technologies (Madison,
WI). 6-Mercaptohexanol (MCH), 1-dodecanethiol (CH;—C11), N-
hydroxysuccinimide (NHS), N-(3-(dimethylamino)propyl)-N'-ethyl-
carbodiimide hydrochloride (EDC), N,N-dimethylformamide (DMF),
4-methylpiperidine, bovine serum albumin (BSA), and 0.01 M
phosphate buffered saline (PBS) ([NaCl] = 138 mM, [KCl] = 2.7
mM pH 7.4) were purchased from Sigma-Aldrich (St. Louis, MO).
Absolute, 200 proof, anhydrous, ACS/USP grade ethyl alcohol was
from PHARMCO-AAPER (Oakland, CA). Deionized water (~18
MQ) was obtained from a Millipore water purifier (Billerica, MA).

The FMOC-protected biological precursors to serotonin and
dopamine, ie., 9-fluorenylmethyloxycarbonyl-5-hydroxy-L-tryptophan
(FMOC-L-SHTP) and 9-fluorenylmethyloxycarbonyl-3,4-dihydroxy-L-
phenylalanine (FMOC-L.-DOPA), were purchased from AnaSpec-
Eurogentec (Fremont, CA).

(11-Mercaptoundecyl)tri(ethylene glycol) (TEG) and (11-
mercaptoundecyl)hexa(ethylene glycol)carboxylic acid (COOH-
HEG) were purchased from Toronto Research Chemicals Inc.
(Toronto, ON, Canada). 11-Mercaptoundecyl hexa(ethylene glycol)-
biotin (biotinylated hexa(ethylene glycol)undecanethiol; BEG) was
from Nanoscience Instruments Inc. (Phoenix, AZ). 11-Bromo-1-
undecanethiol (Br-C11) was obtained from Assemblon Inc. (Red-
mond, WA). (11-Mercaptoundecyl)hexa(ethylene glycol)amine
(AEG), 1l-mercaptoundecylphosphonic acid (PO(OH),-C11), and
(11-mercaptoundecyl)tri(ethylene glycol)methyl ether (CH;0-TEG)
were from Prochimia (Sopot, Poland).

Streptavidin antibodies (1 mg/mL) and AlexaFluor 546 goat
antimouse IgG (H+L) highly cross-adsorbed antibodies (2 mg/mL)
were purchased from Invitrogen (Carlsbad, CA). Mouse polyclonal
antiserotonin;, (5-HT;,) receptor antibodies (whole antiserum),
rabbit polyclonal antidopamine D, receptor antibodies (whole
antiserum), mouse monoclonal anti-L-S-HTP antibodies (1 mg/mL),
mouse monoclonal anti-.-DOPA antibodies (1 mg/mL), and
fluorescein isothiocyanate (FITC)-conjugated rabbit polyclonal
antistreptavidin antibodies (10 mg/mL) were purchased from
Abcam Inc. (Cambridge, MA). Human S-HT), receptors (0.8 fmol
receptor protein/pug membrane protein; 6.4 ug/uL total protein
concentration) from transfected human embryonic kidney 293
(HEK293) cells and untransfected HEK293 cell membranes (10 ug/
uL total protein concentration) were from PerkinElmer, Inc.
(Waltham, MA). All antibodies and proteins were used as received
and incubated with substrates in 0.01 M PBS pH 7.4 at room
temperature. Antibodies not labeled with fluorophores and fluo-
rescently labeled antibodies were diluted 1:200 and 1:100, respectively,
in 0.01 M PBS pH 7.4.

Substrate and Stamp Preparation. All Au substrates were
hydrogen-flame annealed, followed by incubation with ethanolic
solutions of alkanethiols. After monolayer formation, substrates were
rinsed thoroughly with fresh ethanol and dried with nitrogen gas.
Different feature shapes on polydimethylsiloxane (PDMS) stamps
were produced from silicon masters, which were fabricated by standard
photolithography. The process of stamp fabrication and details of
oxygen plasma treatment are published elsewhere.***%*">

Briefly, a 10:1 mass ratio of SYLGARD 184 silicone elastomer base
and curing agent (Ellsworth Adhesives, Germantown, WI) was mixed
thoroughly in a plastic cup, degassed under vacuum, cast onto master
substrates in plastic Petri dishes, and cured in an oven at 70 °C
overnight. Polymerized stamps were removed from masters, cut into
usable sizes, and treated with oxygen plasma (Harrick Plasma, power
18 W, and oxygen pressure 10 psi) for 30 s just prior to use to produce
hydrophilic reactive PDMS surfaces.***””

Biotin—Streptavidin Patterns. Substrates were incubated with
ethanolic solutions of 0.5 mM TEG for ~17 h to form SAMs. Oxygen
plasma-treated PDMS stamps were placed in conformal contact with
substrates for 30 min to enable stamp/substrate contact reactions,
which caused SAM molecules and underlying Au atoms to be removed
from contact areas once stamps were released from the substrates
(Figure 1A). Stamps with microscale protruding features (~30 pm
with ~30—60 um spacings) or nanoscale protruding or recessed
features (200 nm circles with 2 gm pitch or 30 nm lines with 3 ym
pitch, respectively) were used for patterning. Post-lift-off substrates
were inserted with 80/20 ethanolic solutions of 0.40 mM TEG and 0.1
mM BEG for 1 h. For nanoscale patterning, 100% ethanolic solutions
of 0.5 mM BEG were used to maximize BEG insertion into post-lift-off
TEG-modified substrates.

Biotinylated substrates were incubated with 10 mg/mL BSA for 5
min to block nonspecific protein adsorption sites, then with 50 pg/mL
streptavidin for 20 min, and finally with 100 ug/mL FIT C-conjugated
rabbit antistreptavidin antibodies for 20 min to visualize streptavidin
binding to surface-tethered biotin (Table S1, Supporting Information).
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Figure 1. Schematic (not to scale) illustrating single and double
patterning via chemical lift-off lithography. Preformed SAMs of either
(A) hydroxyl-terminated tri(ethylene glycol)alkanethiol (TEG) or (B)
mixed 90/10 TEG/amine-terminated hexa(ethylene glycol)alkanethiol
(AEG) on Au substrates were chemically lifted off. In part A,
substrates were inserted with biotin-terminated hexa(ethylene glycol)-
alkanethiols (BEGs). In part B, substrates were first functionalized
with small-molecule probes, ie., L-3,4-dihydroxyphenylalanine or L-S-
hydroxytryptophan prior to BEG insertion to form side-by-side
patterns.

Copious amounts of deionized water were used to rinse substrates
gently after each protein incubation step.

An inverted fluorescence microscope (Axio Observer.D1, Carl Zeiss
Microscopy, LLC, Thornwood, NY) was used to image substrates. A
38 HE/high-efficiency filter set with excitation and emission
wavelengths at 470 + 20 and 525 + 2S5 nm, respectively, was used
to image streptavidin—biotin fluorescence patterns. A 43 HE/high-
efficiency filter set with excitation and emission wavelengths at 550 +
25 and 605 + 70 nm, respectively, was used to visualize antibody
binding to L-DOPA or L-S-HTP substrates (vide infra). Fluorescence

images were collected using 10X or 20X objective lenses for microscale
or nanoscale patterns, respectively. Exposure times were 100 ms (or
longer as needed) to visualize differences in fluorescence between the
patterned features and the surrounding background or between
regions patterned with different probes. The same exposure times were
used to image all test and control samples for each experiment. Auto-
optimized contrast images were also collected to maximize visual-
ization of nonspecific recognition on control substrates (see
Supporting Information).

Fluorescence intensities (arbitrary units) were determined using
AxioVs40 version 4.7.1.0 software (Carl Zeiss Microlmaging, Inc.).
Fluorescence line scans were adjusted to be approximately the same
sizes as patterned features. On average, five line scans were acquired
per image. Fluorescence intensities for bright versus dark areas were
averaged for each line scan and then for each image. For images with
more complex patterns, i.e, UCLA/CNSI letter-shaped features,
fluorescence intensities were measured in bright versus dark regions
using a histogram function. Fluorescence was quantified from at least
three different substrates per condition per experiment.

Streptavidin—biotin nanoscale features were investigated via
tapping-mode AFM (Dimension 5000, Bruker AXS, Santa Barbara,
CA). Topographic AFM images were collected using Si cantilevers
with a spring constant of 48 N/m and a resonant frequency of 190
kHz (Veeco Instruments, Santa Barbara, CA). The resulting images
were processed with WSxM 4.0 Beta 6.4 software (Nanotec
Electronica, Madrid, Spain).59

Side-by-Side Patterning. Substrates were incubated with 90/10
ethanolic solutions of 0.45 mM TEG and 0.05 mM AEG tethers for
~17 h to create dilute amine-terminated SAMs. Stamps were activated
with oxygen plasma and brought into conformal contact with SAM-
modified substrates for 30 min to generate stamp/SAM interfacial
interactions.

For functionalization with the first probe, which takes place
primarily in the unpatterned (non-lifted-off) regions (Figure 1B),
solutions of 20 mM FMOC-protected L-DOPA or 40 mM FMOC-
protected L-S-HTP were combined with 20 mM or 40 mM NHS/
EDC, respectively, in 60/40 DMF/deionized water. This step activates
the carboxyl groups of L-DOPA or L-5-HTP with NHS esters for
subsequent reaction with the amino moieties of AEG SAM molecules
to form amide bonds (Scheme 1). Substrates were incubated with
activated L-DOPA or L-5-HTP solutions for 4 h. To functionalize the
second probe, substrates were then incubated with 90/10 ethanolic
solutions of 0.45 mM TEG and 0.05 mM BEG for 1 h to insert BEG
primarily into the patterned (lifted-off) regions (Figure 1B).

The FMOC protecting groups on L-DOPA and L-5-HTP prevented
intermolecular reactions between these NHS-activated probe mole-
cules. After immobilization on substrates, FMOC protecting groups
were removed with 20% 4-methylpiperidine in deionized water for 20
min. After rinsing with deionized water and drying with nitrogen gas,
functionalized substrates were incubated with 10 mg/mL BSA for §
min, and then with mixtures of streptavidin (50 yg/mL) and either
mouse monoclonal anti-.-DOPA primary antibodies or mouse
monoclonal anti-L-S-HTP primary antibodies for 20 min, and then
with mixtures of FITC-conjugated rabbit polyclonal antistreptavidin
antibodies (100 pg/mL) and AlexaFluor 546 goat antimouse IgG
secondary antibodies (20 yg/mL) for 20 min to visualize multiplexed
protein patterns (Table S1). Imaging was carried out as described
above.

Patterning for Membrane-Associated Receptor Capture.
Dilute amine-terminated SAMs were produced by incubating
substrates with 95/5 ethanolic solutions of 0.048 mM TEG and
0.025 mM AEG for ~17 h. Substrates were brought into conformal
contact for 30 min with the hydrophilic reactive surfaces of oxygen
plasma-treated PDMS stamps (25 gm X 25 um square protruding
features). Post-lift-off substrates were functionalized with activated L-S-
HTP, and deprotection was carried out using the procedures described
in the previous section.

After being rinsed with deionized water, substrates were incubated
with 10 mg/mL BSA for 5 min to reduce nonspecific protein
binding.**** The 1-5-HTP-modified substrates were then incubated
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Scheme 1. Schematic Illustrating Surface Functionalization Chemistries”

FMOﬁaL-DOPA FMOC-L-5-HTP
OH !
OH
AEG o Lﬁﬂ
HSAAAAANO A0~ 0 NH2 HO HO
M A e Vg HNYO OR N0
0 0
EDC NHS
CHs & O Q‘O Q‘O
HaC N~ NC=N-CHs HOQ
0

Surface-Tethered FMOC-L-DOPA or FMOC-L-5-HTP

HO
OH i
HS\/\/\/\/\/\,O\/\ONO\/\O/\,O\/\O/\,H OR

|
HN\?O HNYO

FMOC Deprotection

Surface-Tethered L-DOPA or L-5-HTP

HO
OH §
2 9
HS‘/\/\/\/\/\'O‘/‘O’\’O‘/\O’\’O‘/‘O’\’H \ OR X
2

“N-Hydroxysuccinimide (NHS) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) were used to create NHS-ester-
activated carboxyl groups on 9-fluorenylmethyloxycarbonyl (FMOC)-protected 3,4-dihydroxy-L-phenylalanine (L-DOPA) or S-hydroxy-L-tryptophan
(L-S-HTP). The NHS esters were then reacted with the amino moieties on amine-terminated hexa(ethylene glycol)alkanethiol (AEG) to form amide
bonds. Protecting groups were removed after probe functionalization on substrates to reveal epitopes necessary for recognition by biomolecule

OH

2

partners.

264 with 100 pug/uL S-HT |, receptors for 1 h. The receptor-associated cell identification. No corrections were carried out during data collection 295
265 membranes were not solubilized to retain native receptor con- to shift peaks back to particular regions or to scale peaks based on 296
266 formations favorable for probe recognition.”***** Previously, we reference locations. 297
267 found that primary antibodies recognizing membrane-associated Statistical Analyses. Data were analyzed by two-tailed unpaired 298
268 receptors have weak affinity for surface-tethered probes.>® Thus, Student’s t-tests using GraphPad Prism 5.0 (GraphPad Software Inc., 299
269 after incubation with S-HT |, receptors, functionalized substrates were San Diego, CA). Fluorescence intensities were normalized to mean 300
270 exposed to antidopamine D, receptor rabbit polyclonal blocking values for control regions and are reported as means =+ standard errors 301
271 antibodies for 15 min to reduce nonspecific binding of anti-S-HT, in relative fluorescence units (RFU) with probabilities P < 0.05 302
272 receptor primary antibodies to surface-tethered L-S-HTP. Substrates considered statistically significant. 303
273 were incubated with mouse polyclonal anti-5-HT, receptor primary

274 antibodies for 15 min followed by 20 pg/mL AlexaFluor 546 goat B RESULTS AND DISCUSSION 304

275 antimouse secondary antibodies for 15 min to visualize S-HT,,
276 receptor binding (Table S1). Substrates were rinsed with deionized
277 water between protein incubation steps. The 43 HE fluorescence filter
278 set was used to visualize capture of S-HT), receptors to patterns of

To explore the flexibility of chemical lift-off lithography as a 30s
patterning method for creatin§ functional small-molecule arrays 306
beyond initial findings,"”**°" we investigated substrates 307

279 surface-tethered 1-S-HTP as described above. patterned with the small-molecule biotin (Figure 1A) over a 308
200 X-ray Photoelectron Spectroscopy. Featureless PDMS stamps wide variety of feature shapes and sizes (Figure 2). The use of 309 2
281 were used for the chemical lift-off process. All XPS data were collected PDMS stamps with different protruding microscale features 310
282 using an AXIS Ultra DLD instrument (Kratos Analytical Inc., produced corresponding bright fluorescent patterns (Figure 311
283 Chestnut Ridge, NY). A monochromatic Al Ka X-ray source (10 2A). Relative quantification of the fluorescence in bright versus 312
284 mA for survey scans and 20 mA for high-resolution scans, 15 kV) with dark areas of each pattern indicated differential recognition of 313
285 a 200 pim circular spot size and ultrahigh vacuum (107 Torr) was surface-tethered biotin by streptavidin in the patterned versus 314

286 used.***” Spectra were acquired at a pass energy of 160 eV for survey
287 spectra and 20 eV for high-resolution spectra of Au 4f regions (100
288 scans) using a 200 ms dwell time.

289 A charge neutralizer (flood gun) was used to obtain XPS signals on
290 PDMS, which is an insulator. As a result, peaks are shifted slightly from

unpatterned regions. A lack of measurable fluorescence or 31s
patterning was observed when similar substrates were incubated 316
with FITC-labeled antistreptavidin antibodies in the absence of 317
streptavidin indicating negligible nonspecific antibody binding 318

291 their expected regions. For example, the C 1s peak is 4—5 €V lower (F igure. S1). ) ) ) 319

292 than its reference peak at 284.0 eV. Because the number of peaks of A wide-area, brlght nanodot array 1s shown against a dark 320

203 interest was small (only Au 4f peaks on PDMS samples), and they TEG background in Figure 2B, illustrating a streptavidin— 321

294 were well-separated (~4 €V), peak shifting did not affect peak biotin recognition pattern with 100-fold smaller features than in 322
D DOI: 10.1021/acs.chemmater.7b01970
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Figure 2. Representative fluorescence and scanning probe images of streptavidin recognition on microscale and nanoscale biotin-patterned
substrates. (A) Bright, microscale circular-, striped-, triangular-, or square-patterned regions or (B) nanoscale dots are visualized against a dark
surrounding hydroxyl-terminated tri(ethylene glycol)alkanethiol (TEG) background. Binding of streptavidin to surface-tethered biotin was visualized
with fluorescein isothiocyanate (FITC)-labeled antistreptavidin antibodies (excitation at 495 nm). Fluorescence images were recorded at an emission
wavelength of S19 nm. Error bars represent standard errors of the mean [N = 3; **¢ < 0.01 vs unpatterned regions]. (C) Atomic force microscopy
(AFM) topography image to quantify sizes of streptavidin—biotin nanodots shown in part B. The dots are 215 + 3 nm in diameter. In parts D and E,
AFM topographic images at two different scales are of sub-30 nm wide TEG lines on a streptavidin—biotin background. The arrows help to visualize
the locations of single lines. Scale bars are 60, 40, 2, and 3 um for A, B, C, and D, respectively. The imaged area is 2 ym X 2 um in part E.

323 Figure 2A. Nanodot feature sizes measured by tapping-mode
324 AFM were 215 + 3 nm in diameter (Figure 2C). Because AFM
325 images were collected under dry conditions, some of the
326 proteins captured on biotin-functionalized dots may have been
327 denatured and/or desorbed contributing to the irregular shapes
328 in Figure 2C.°

329 Previously, we used chemical lift-off lithography to produce
330 features as small as 40 nm using a single lift-off step; double lift-
331 off lithography was needed to pattern 20 nm features.”” Here,
332 we achieved sub-30 nm feature resolution with single-step lift-
333 off via an inverse patterning strategy; i.e., ultrasmall features
334 were produced in the noncontact areas. Creating nanoscale
335 features in contact areas by conventional additive patterning
336 approaches, e.g, microcontact printing,”’ microdisplacement
337 printing,6 microcontact insertion printing,éé‘é7
338 subtractive chemical lift-oft lithography, is difficult because
339 protruding, ultrasmall features on PDMS stamps are not
340 mechanically stable during stamp/substrate conformal contact.

)

as well as

However, smaller features can be created by deliberately 341
manipulating/distorting stamps.**°"** Employing “hard” 34
PDMS or composite stamp materials and/or hierarchically 343
structured stamps may also enable ultrasmall features in contact 344
regions.él‘ég’70 345

Tapping-mode AFM was needed to visualize the nanoscale 346
patterns in Figure 2D,E. As shown in Figure 2D, wide lines (~3 347
um) with positive-height topographic features produced by 348
streptavidin recognition of biotinylated (contact) regions are 349
contrasted against narrow TEG features with negative-height 3s0
topography. Negative features were 26 + 1 nm wide by AFM 351
(Figure 2E). Since narrow line widths are similar to Au grain 3s2
sizes on 100 nm polycrystalline Au films (~20—50 nm), Au 353
graininess increases line-edge roughness and reduces the 354
accuracy of feature size and/or measurement.””’> This result 3ss
suggests further possibilities of using chemical lift-off 356
lithography to produce sub-20 nm or even sub-10 nm features 3s7

. . 737
via ultraflat Au films on mica substrates.”>~"° 358
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Figure 3. Target sorting on bifunctional substrates. Representative fluorescence images are shown for (A, B) biotin/L-DOPA and (D, E) biotin/L-5-
HTP patterned substrates. Substrates were exposed to mixed solutions of streptavidin and anti-L-DOPA or anti-L-5-HTP primary antibodies followed
by mixed fluorescein isothiocyanate (FITC)-conjugated antistreptavidin antibodies (excitation at 495 nm) and AlexaFluor 546 secondary antibodies
(excitation at 556 nm). Substrates were then imaged at (A, D) 519 nm or (B, E) 573 nm emission wavelengths. In part C, left, significantly higher
relative fluorescence intensities were measured in the wide-striped biotin-modified regions vs the narrow-striped L-DOPA-modified regions [£(4) = S,
**P < 0.01] at the FITC emission wavelength, while in part C, right, significantly higher relative fluorescence intensities were detected in the L-
DOPA-modified narrow-striped regions vs the wide-striped biotin-functionalized regions [t(6) = 3, *P < 0.05] at the AlexaFluor 546 emission
wavelength. Similarly, in part F, left, at the FITC emission wavelength, higher relative fluorescence intensities were observed within the UCLA letters
and regions surrounding the CNSI letters [#(4) = 4, *P < 0.05], which were biotin-modified vs surrounding the UCLA letters and within the CNSI
letters, which were L-S-HTP-modified regions. In part F, right, opposite fluorescent intensity patterns were quantified at the AlexaFluor 546 emission
wavelength [t(6) = 6, **P < 0.01]. N = 3—4 substrates per group. Scale bars are 50 ym.

Above and in previous work, lift-off lithography was used to
remove TEG or other hydroxyl-terminated undecanethiol SAM
molecules.”’ Here, we extended the use of lift-off lithography to
mixed TEG/AEG SAMs. To determine whether stamp contact
removes AEG, we used flat PDMS stamps to carry out lift-off
on 100% AEG SAMs. Post-lift-off PDMS stamps in contact
with AEG-modified Au substrates showed Au 4f XPS signals
(Figure S2A), indicating that AEG molecules are liftable.

The AEG in the noncontact regions, as well as any remaining
AEG in the contact regions, was functionalized with 3,4-
dihydroxy-L-phenylalanine (L-DOPA) or S-hydroxy-L-trypto-
phan (1-S-HTP) (Scheme 1). Afterward, insertion of 90/10
TEG/BEG into the contact regions was carried out to create
side-by-side biotin/L-DOPA or biotin/L-5-HTP bifunctional
patterns (Figure 1B). The BEG and AEG molecules were in
low abundance compared to TEG to ensure dilution of surface-
tethered biotin and L-DOPA or L-5-HTP**** in the TEG
background matrix for efficient capture of large biomolecule
binding partners.76_78 Moreover, low abundance of functional
molecules, ie, AEG in the original SAM or BEG in the
insertion solution, minimized residual cross-contamination of
side-by-side patterns.

Bifunctionalized substrates were exposed to solutions
containing pairs of binding partners, ie., biotin and anti-L-
DOPA or anti-L-5-HTP primary antibodies, to investigate site-
specific sorting of biomolecules. Substrates were then exposed
to solutions containing FITC-conjugated antistreptavidin
antibodies and AlexaFluor 546 secondary antibodies for sorting
and visualization of bound streptavidin or primary L-DOPA or
L-S-HTP antibodies, respectively.

In Figure 3A, at the fluorescence emission wavelength for
FITC-conjugated antistreptavidin antibodies (519 nm), bright
wide channels (~75 pm) illustrate streptavidin—biotin
recognition in stamp-contact regions. In contrast, dark narrow
channels (~30 pym) occur where L-DOPA was functionalized in
the noncontact areas. Conversely, in Figure 3B, at the
fluorescence emission wavelength for AlexaFluor 546 secondary
antibodies (573 nm), bright narrow channels represent anti-L-
DOPA antibody recognition of surface-functionalized L-DOPA

394

396
397

against dark wide channels where biotin-captured streptavidin 398
occurred. 399
Similarly, juxtaposed biotin—streptavidin and L-5-HTP/anti- 400

L-5-HTP antibody patterns are shown in Figure 3D,E, 401
respectively, corresponding to fluorescence wavelengths of 402
FITC-conjugated antistreptavidin antibodies (519 nm) and 403
AlexaFluor 546 secondary antibodies (573 nm), respectively. 404
Bright “UCLA” letters and bright regions surrounding the 4o0s
“CNSI” letters in Figure 3D indicate biotin—streptavidin 406
recognition. The “CNSI” letters and bright areas surrounding 407
the “UCLA” letters in Figure 3E indicate L-5-HTP/anti-L- 408
SHTP-antibody binding on the same substrates shown in 409
Figure 3D. Low levels or lack of fluorescence occurred when 410
substrates were incubated with solutions containing FITC- 411
conjugated antistreptavidin antibodies or AlexaFluor 546 412
secondary antibodies, respectively, without prior exposure to
streptavidin and L-DOPA or L-5-HTP primary antibodies
(Figure S3). These findings indicate negligible nonspecific
binding of the fluorescently labeled antibodies to bifunctional
substrates. Importantly, these results demonstrate that bifunc-
tional patterns produced using chemical lift-off lithography 418
could be used to direct capture of neurotransmitter-related 419
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40 biomolecules including receptors (see below), transporters, and
41 artificial receptors.””*"?*%

422 Variations in intermolecular interactions in mixed versus
423 monocomponent monolayers may impact lift-off yields. None-
424 theless, we estimate that lift-off removes ~70% of AEG
45 molecules (similar to the lift-off yield for TEG molecules). If
426 the mixed monolayers used here nominally contained 5—10%
427 AEG, then ~1.5—3% of the molecules remaining in the contact
428 regions would be AEG and functionalized with L-DOPA or L-5-
429 HTP. As such, a small amount of anti-L.-DOPA or anti-L-5-HTP
430 antibody binding likely occurs in the lift-off regions, which are
431 subsequently functionalized with biotin. Similarly, in mono- and
432 bifunctionalized substrates (Figure 1), small numbers of BEG
433 molecules insert into native SAM defects in the noncontact
434 regions, in addition to insertion in the contact regions.
435 Previously, we used quartz crystal microbalance gravimetry to
436 estimate insertion of alkanethiol molecules similar to BEG into
437 SAM defects in preformed TEG monolayers.”” We determined
438 that the degree of solution-phase insertion constituted ~0.5%
439 of the monolayer for 4 h insertion times with 0.2 mM insertion
440 molecules. Here, we inserted BEG into TEG SAMs for 1 h
441 using 0.05—0.1 mM BEG. Thus, the extent of “unintentional”
442 BEG insertion into noncontact region defects is probably
443 <0.5% of the monolayer. Collectively, these effects reduce
444 selective functionalization of contact versus noncontact regions
445 somewhat. However, they appear to have negligible con-
446 sequences for relative site-specific target recognition under
447 dilute deposition and insertion conditions (Figure 3C,F).

448 We have shown through the use of small-molecule probes
449 with an additional functional group for linking chemistries that
450 we can retain free functional groups needed for native receptor
451 capture and sorting.33’46 Earlier patternin§ was by microcontact
452 insertion printing or microfluidics.*>*®*® Here, lift-off lithog-
453 raphy was used to pattern the small-molecule serotonin
454 precursor L-5-HTP to investigate the capture of native 5-
4ss HT |, membrane-associated G-protein-coupled receptors.
456 Because S-HT,, receptors play critical roles in regulatin
457 serotonin neurotransmission in the central nervous system,7
458 they are tar%ets for developing treatments for neuropsychiatric
459 disorders.”""

460  Subtractive patterning was carried out on 95/5 TEG/AEG
461 mixed SAMs. The AEG molecules were then functionalized
462 with L-5-HTP, which has an additional carboxyl moiety
463 compared to serotonin. Anti-5-HT,, receptor primary anti-
464 bodies and AlexaFluor 546-labeled secondary antibodies were
465 used to visualize L-5-HTP/S-HT,, receptor recognition.
466 Patterns of 5-HT, receptors appeared in fluorescence
467 microscopy images as bright areas surrounding arrays of dark
468 TEG squares (Figure 4A). Relative fluorescence intensities in L-
469 S-HTP-functionalized (noncontact) regions were significantly
470 greater than in control (contact) regions (Figure 4B).
471 Additional experiments were carried out where similarly
472 patterned substrates were exposed to membranes from cells
473 that do not express 5-HT), receptors. Substrates were
474 incubated with anti-S-HT, receptor primary antibodies and
475 AlexaFluor 546-labeled secondary antibodies. Fluorescent
476 patterns were not detectable (Figure S4), indicating negligible
477 nonspecific binding of cell-membranes to patterned L-S-HTP.
478 To expand chemical lift-off lithography to additional
479 alkanethiols that self-assemble on Au substrates, we investigated
480 lift-oft chemistries at stamp/SAM interfaces by varying the
481 terminal functional groups of SAM molecules (Chart 1). X-ray
482 photoelectron spectroscopy characterization of post-lift-off

—
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Figure 4. Native receptor capture. (A) Representative fluorescence
image of an L-5-HTP-modified substrate exposed to HEK293
membranes from cells overexpressing 5-HT |, receptors, anti-S-HT |,
receptor primary antibodies, and AlexaFluor 546 secondary antibodies
(excitation at 556 nm). (B) Mean relative fluorescence intensities were
significantly different for stamp-noncontact vs contact regions [t(4) =
4, *P < 0.05]. Scale bar is SO pm.

Chart 1. Liftable and Nonliftable Alkanethiols Investigated
via X-ray Photoelectron Spectroscopy To Detect the
Presence/Absence of Au 4f Peaks on Post-Lift-Off
Polydimethylsiloxane Stamps”

Lift-Able
6-Mercaptohexanol

HSeA~A~~0H
11-Mercaptoundecanol &
HSeAAAAAOH

11-Mercaptoundecylphosphonic acid

HS\/\/\/\/\/\,II'-"—OH
0
16-Mercaptohexadecanol i
HSe~~AAANAA~AA~AOH
(11-Mercaptoundecyl) tri(ethylene glycol) i
HSe~A~AAANO AN O~y
(11-Mercaptoundecyl) hexa(ethylene glycol) i
HSe~~A~AAANO AN O g~ O g~ OH
(11-Mercaptoundecyl) hexa(ethylene glycol)amine
HSe~AAAANO AN O g~ O~ gANH:
(11-Mercaptoundecyl) hexa(ethylene glycol)carboxylic acid

HSoAAAAANO AN O AN O~ Aoy

Non-Lift-Able

1-Dodecanethiol
HSeAAAAACH:

11-Bromo-1-undecanethiol “
HS oA AAAABr

(11-Mercaptoundecyl) tri(ethylene glycol)methyl ether *
HS\/\/\/\/\/\,O\/\o’\,O\/\()CHs

(11-Mercaptoundecyl) hexa(ethylene glycol)biotin

H S
Hs*/\/\/\/\/\rN\/VO\/‘O’\’O\/‘O'\’O‘/‘OMNQ,;T:)
0 H §

“Asterisk refers the reader to ref 47. Dagger refers the reader to ref 56.
Plus indicates that the species was investigated by wet chemical etching
only.

PDMS stamps (Figure SS) and wet chemical etching 4s3
(Supporting Information) indicated that, generally, hydrophilic 484
terminal groups, i.e, —OH, —COOH, —NH,, and —PO(OH),, 4ss
are amenable to chemical lift-off, presumably because of their 486
abilities to undergo condensation reactions with activated 487
stamp surfaces. By contrast, hydrophobic moieties, i.e,, —CHj, 4s8
—OCH;, and —Br, or the small-molecule probe biotin showed 489
no evidence of lift-off. Chain lengths and SAM ordering may 490
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influence stamp-SAM reactions and lift-off efficiencies;
however, XPS does not have the sensitivity to detect potentially
subtle differences in lift-off efficiencies.’”” In any case, a
shortcoming of lift-off lithography is that not all terminal
moieties are amendable to patterning by this method, limiting,
to some extent, the on-substrate reactions that can be utilized.

B CONCLUSIONS AND PROSPECTS

In summary, we broaden the scope of subtractive patterning via
chemical lift-off lithography by demonstrating a wide variety of
feature shapes and sizes, bifunctional substrates, native protein
capture, and a large library of lift-able molecules. Sub-30 nm
biopatterning via a single lift-off step was possible using the
noncontact areas to advantage. Small-molecule probes were
spatially encoded side-by-side on the same substrates to create
multiplexed platforms such that targets were directed to the
correct probe locations from solution. Small molecules
mimicking endogenous neurotransmitters were patterned by
lift-off lithography and captured native receptor targets.

One drawback of using chemical lift-off lithography or other
stamp-based patterning methods to produce multiplexed
substrates involves successive on-substrate probe functionaliza-
tion steps. Here, we used biotin prefunctionalized molecules,
ie, BEG, to circumvent serial functionalization, which can
result in unintended reactions and leaves unreacted surface
tethers to contribute to nonspecific target recognition.””*’ We
are investigating the synthesis of a variety of small-molecule
prefunctionalized alkanethiols. Preformed 100% TEG SAMs
could then be used for lift-off, in place of mixed SAMs, which
would obviate tether molecules remaining in the lift-off regions.
Post-lift-off substrates could be functionalized via microfluidics
to address prefunctionalized molecules to different substrate
locations.

Alternately, generating defects by exposing SAM-modified
substrates to ultraviolet light or electron irradiation followed by
solution deposition of ligand-functionalized molecular sub-
stituents could be used to control specific binding of proteins
and to generate bifunctional substrates.*”® These strategies
have been combined with electron-beam lithography to pattern
DNA probes on biorepulsive SAMs.*>®” Although these
approaches can be used to create user-defined features, they
are limited in terms of sequential processing and time-
consuming tuninjfr of ultraviolet wavelength or electron
irradiation doses.*"*%*’

Ongoing efforts to optimize and to understand chemical lift-
off lithography mechanistically include collaborative work to
characterize and to quantify lift-off and insertion yields further
via sum frequency generation spectroscopy.”’ Time-of-flight
secondary-ion mass spectrometry (ToF SIMS) may also be
useful in this regard. However, charge exchange between
neighboring molecules poses challenges, and without detailed
information on the ionization efliciencies of each species,
quantification, particularly for low-abundance species after lift-
off or insertion, is not possible by ToF SIMS.”" Others and we
are investigating the basis of variable reactivities of head groups
on different substrates (e.g, —SH on Au vs Ge, or —PO(OH),
on In,0,/Sn0,”*). We are also determining the unique
characteristics of PDMS-supported Au monolayers.” In
general, multiplexed patterning capabilities, nanoscale bio-
patterns, as well as the fabrication of thin-film field-effect
transistor-based biosensors via chemical lift-off lithography

point to the broad applicability of this patterning meth-
0d 19395
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