
XXXX

ReHub. Extending Hub Labels for reverse k-nearest neighbor queries
on large-scale networks

ALEXANDROS EFENTAKIS, Research Center “Athena”
DIETER PFOSER, Department of Geography and GeoInformation Science, George Mason University

Quite recently, the algorithmic community has focused on solving multiple shortest-path query problems
beyond simple vertex-to-vertex queries, especially in the context of road networks. Unfortunately, those
advanced query-processing techniques cannot be applied to large-scale graphs, e.g., social or collaboration
networks, or to efficiently answer Reverse k-Nearest Neighbor (RkNN) queries, which are of practical rele-
vance to a wide range of applications. To remedy this, we propose ReHub, a novel main-memory algorithm
that extends the Hub Labeling technique to efficiently answer RkNN queries on large-scale networks. Our
experimentation will show that ReHub is the best overall solution for this type of queries, requiring only
minimal additional preprocessing and providing very fast query times in all cases.

CCS Concepts: rMathematics of computing→ Graph algorithms; rTheory of computation→ Short-
est paths; Nearest neighbor algorithms;

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Query processing, Graph algorithms, ReHub algorithm, RkNN, Reverse
k-Nearest Neighbors, RNN, k-Nearest Neighbors, kNN, Hub Labels

ACM Reference Format:
Alexandros Efentakis, and Dieter Pfoser, 2016. ReHub. Extending Hub Labels for reverse k-nearest neighbor
queries on large-scale networks ACM J. Exp. Algor. V, N, Article XXXX (November 2016), 36 pages.
DOI: http://dx.doi.org/10.1145/2990192

1. INTRODUCTION
During the last two decades, the algorithmic community has produced significant
results regarding vertex-to-vertex shortest-path queries, especially in the context of
transportation networks (cf. [Bast et al. 2015] for the latest overview). Recently, this
focus shifted to additional types of shortest-path (SP) queries, such as one-to-all (find-
ing SP distances from a source vertex s to all other graph vertices), one-to-many (com-
puting the SP distances between the source vertex s and all vertices of a set of tar-
gets T), range (find all nodes reachable from s within a given timespan), many-to-
many (calculate a distance table between two sets of vertices S and T) and k-Nearest
Neighbor (kNN) queries. Recent contributions here include [Delling et al. 2011; 2013]
(one-to-all), [Delling et al. 2011] (one-to-many, many-to-many), [Efentakis and Pfoser
2014] (one-to-all, range, one-to-many) and [Delling and Werneck 2015; Efentakis et al.
2015b] (kNN queries). Unfortunately, most of these advanced query processing meth-

This work was partially supported by the Research Programs for Excellence 2014-2016 / CitySense-
ATHENA R.I.C. and by the National Science Foundation under Grant No. 1637541.
Author’s addresses: A. Efentakis (Corresponding Author), Research Center ATHENA and D. Pfoser, Depart-
ment of Geography and GeoInformation Science, George Mason University
Email: efentakis@imis.athena-innovation.gr (A. Efentakis), dpfoser@gmu.edu (D. Pfoser)
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1084-6654/2016/11-

ARTXXXX $15.00
DOI: http://dx.doi.org/10.1145/2990192

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:2 A. Efentakis et al.

ods are tailored for road networks and, thus, they cannot be easily applied to denser,
small-diameter graphs, such as social or collaboration networks.

For large-scale networks, the prevailing technique for vertex-to-vertex queries is
based on the 2-hop labeling, or, Hub Labeling (HL) algorithm [Gavoille et al. 2001;
Cohen et al. 2002; Gavoille et al. 2004], in which the preprocessing stage calculates for
every vertex v a forward label forwLab(v) and a backward label backLab(v). These la-
bels are then used to very fast answer vertex-to-vertex SP queries. The HL technique
has been adapted successfully for vertex-to-vertex queries on road networks [Abra-
ham et al. 2011; 2012; Delling et al. 2013; Akiba et al. 2014], undirected, unweighted
graphs [Akiba et al. 2013; Delling et al. 2014; Jiang et al. 2014] and public transporta-
tion networks [Wang et al. 2015; Delling et al. 2015; Efentakis 2016]. The HL method
has also been used for one-to-many, many-to-many and kNN queries on road networks
in [Delling et al. 2011; Delling and Werneck 2015; Abraham et al. 2012].

Another very important problem variation is the Reverse k-Nearest Neighbor (RkNN)
query, initially proposed in [Korn and Muthukrishnan 2000]. Given a query point q
and a set of targets P , the RkNN query retrieves all the targets in P that have q as
one of their k-nearest neighbors according to a distance function dist(). RkNN queries
may be used in various domains and applications, such as geomarketing, location-
based services, resource allocation, profile-based marketing and decision support [Liu
and Özsu 2009]. Despite their importance and the fact that there is some scientific
literature discussing RkNN queries for road networks [Safar et al. 2009; Cheema et al.
2012; Borutta et al. 2014], to the best of our knowledge, the only RkNN work focusing
on other types of graphs is [Yiu et al. 2006]. Unfortunately, all those previous works
share some inherent limitations, such as assuming that the graph does not fit in main
memory (and therefore is stored on secondary storage), require query times of a few
seconds which prohibits their use in real-time applications and most importantly, they
do not scale particularly well with respect to the network size, the target density, the
distribution of targets and the cardinality of the reverse k-nearest neighbor result.

Putting everything together, the ambition of this work is to provide an efficient and
fast main-memory algorithm for answering RkNN queries on large-scale graphs. Our
proposed algorithm, termed ReHub (Reverse kNN + Hub labels) extends the Hub La-
beling approach to efficiently handle these queries. The main advantage of ReHub is
that its slower Offline phase depends only on the the targets P and has to run only
once, whereas its Online phase (which depends on the query vertex q) is very fast.
Still, even the costlier offline phase hardly needs more than 1s (after the creation of
the labels), while the online phase requires typically less than 1ms, making ReHub
the only RkNN algorithm fast enough for real-time applications and big, large-scale
graphs. Moreover, the necessary additional data structures created for ReHub may
also answer kNN queries and require only a small fraction of the memory required for
storing the created hub labels for the typical case of vertex-to-vertex queries. In addi-
tion, our experiments will show that by using ReHub, we can precompute the RkNN
of all graph vertices for large-scale graphs with millions of vertices in just a few min-
utes, where previous solutions would require several days. Thus, ReHub is also the
only viable alternative for addressing the related All-RkNN problem on large-scale
graphs. In this work, we use undirected and unweighted graphs which constitute an
important graph class (containing social and collaboration networks) but also pose a
significant challenge to Hub Labeling algorithms because of the sheer size of the cre-
ated labels. However, ReHub may be easily adapted for other graph classes where the
HL algorithm typically performs well, including road networks.

The outline of this work is as follows. Section 2 presents related work. Section 3
describes the ReHub algorithm and provides a theoretical analysis of its performance.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:3

Experiments showcasing ReHub’s benefits, in comparison to previous works, are pro-
vided in Section 4. Finally, Section 5 gives conclusions and directions for future work.

2. BACKGROUND AND RELATED WORK
Given a query point q and a set of targets P , the RkNN query (also referred
as the monochromatic RkNN query) retrieves all the targets that have q as one
of their k-nearest neighbors, according to a distance function dist(). Formally
RkNN(q) = {p ∈ P : dist(p, q) ≤ dist(p, pk)} where pk is the k-Nearest Neighbor
(kNN) (among the targets P) of p. In Euclidean space, the distance dist(s, t) refers to
the Euclidean distance between two points s and t. In graph networks, the query point
is a random graph vertex q ∈ V and dist(s, t) corresponds to the minimum network dis-
tance between the two vertices. Throughout this work we use undirected, unweighted
graphs G(V,E) (where V represent vertices and E represents arcs), we assume that
targets are located on vertices (Pi ∈ V) and we refer to snapshot RkNN queries, i.e, tar-
gets are not changing. Also, similar to previous works, the term target density D refers
to the ratio |P |/|V |.

2.1. RkNN queries on graphs and applications
RkNN queries on network graphs have a wide range of applications. In road networks,
typical applications for RkNN queries include resource allocation, profile-based and
location-based marketing and decision support [Liu and Özsu 2009]. For example,
RkNN queries may be used to determine the optimal location for opening a new fran-
chise store in a area not covered by existing stores. A new take-away restaurant owner
may choose the optimal location of his restaurant according to the locations of other
competing restaurants, again by initiating a RkNN query. In this case, the set of tar-
gets although not physically moving may change for different kinds of restaurants,
e.g., the owner of a Chinese restaurant would consider only locations of competing
Chinese restaurants, whereas the targets of a RkNN query for a pizza owner would be
restricted to other pizza places. These specific RkNN queries where the set of targets
change between individual queries are referred to the bibliography as ad-hoc RkNN
queries [Yiu et al. 2006].

Recently, the emergence of large-scale social networks has provided novel oppor-
tunities for uses of RkNN queries. In citation or collaboration networks, the set of
targets may represent researchers that belong to a particular discipline (e.g., Com-
puter Science), thematic area (e.g., algorithms) or a hosting university-institution (e.g.,
Stanford) and a RkNN query may determine which subset of those targets collaborate
with a external (query) researcher more closely than colleagues belonging in the same
university or thematic area. Similar examples, such as targets corresponding to au-
thors that “should have exactly two SIGMOD papers” have been proposed in [Yiu et al.
2006]. For collaboration networks between touring artists where edges connect artists
that have toured together, the targets may represent artists belonging to the same
subgenre or record company and the RkNN query may be used to determine friendly
relationships between bands belonging to a different company or subgenre. In social
networks, where targets may represent users known for promoting illegal activities,
RkNN queries may identify the cluster of the illegal organization that one suspect-
user (the query vertex q) belongs.

In terms of RkNN queries and road networks, the work of [Safar et al. 2009] uses
Network Voronoi cells (i.e., the set of vertices and arcs that are closer to the gener-
ator object) to answer RkNN queries. This work has only been tested on a relatively
small network (110K arcs) and all precomputed information is stored in a database.
Despite its costly preprocessing (for calculating the Network Voronoi cells), queries

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:4 A. Efentakis et al.

still require 1.5s for D = 0.05 and k = 1. The query times further increase to 32s for
k = 20 . Later works focusing on continuous RkNN queries on road networks [Cheema
et al. 2012] have only been tested with even smaller road networks (22K arcs) and are
different in scope from our work, which focuses on snapshot RkNN queries.

To the best of our knowledge, the only work focusing on other graph classes (besides
road networks) is [Yiu et al. 2006]. This work proposes the Eager algorithm that tra-
verses the network around query vertex q (in a way similar to Dijkstras algorithm or
BFS for unweighted graphs), pruning vertices on the way that may not lead to RkNN
results. For static RkNN queries where the target objects do not change and the num-
ber k is known in advance, the same authors propose the improved EagerM algorithm
that similar to ReHub, has an offline and an online phase (that uses the precomputed
information obtained from the offline phase) to accelerate RkNN queries. During the
offline phase, the EagerM algorithm precomputes the kNN of each graph vertex, by
using a combined network expansion from all targets at once. This information is later
used to prune the graph traversal around query vertex q during the online phase. Un-
fortunately this work too, has only been tested on relatively sparse networks, e.g., road
networks, grid networks (max degree 10), p2p graphs (avg degree 4) and a very small,
sparse co-authorship graph (4K nodes). Furthermore, all experimentation there for
values of k > 1 (up to k = 8) refers to road networks, so the scalability of the proposed
algorithms for denser graphs and larger values of k is debatable. Moreover, even for
the EagerM algorithm, the online phase still has to perform a pruned Dijkstra-like
expansion from the query vertex and thus, cannot be very fast for denser graphs and
small values of D. Recently, Borutta et al. [Borutta et al. 2014] extended this work
for time-dependent road networks, but the presented results were also not encourag-
ing. The larger road network tested had 50k vertices (queries require more than 1s for
k = 1) and for a road network of 10k nodes and k = 8, RkNN queries take more than
0.3s (without even adding the I/O cost). In a nutshell, all existing contributions and
methods have not been tested on large-scale graphs, do not scale well for increasing k
values and their performance highly depends on the target density D.

2.2. Hub Labels
Our work builds on the 2-hop labeling or Hub Labeling (HL) algorithm of [Gavoille
et al. 2001; Cohen et al. 2002; Gavoille et al. 2004] in which, the preprocessing stage
stores at every vertex v a forward forwLab(v) and a backward label backLab(v). The
forward label forwLab(v) is a sequence of pairs (u, dist(v, u)), with u ∈ V . Likewise, the
backward label backLab(v) contains pairs (w, dist(w, v)). Vertices u and w denote the
hubs of v. The generated labels conform to the cover property, i.e., for any s and t, the set
forwLab(s)∩backLab(t) must contain at least one hub that is on the shortest s−t path.
For undirected graphs backLab(v) = forwLab(v). To find the network distance dist(s, t)
between two vertices s and t, a HL query must find the hub v ∈ forwLab(s)∩backLab(t)
that minimizes the sum dist(s, v) + dist(v, t). Since the pairs in each label are sorted
by hub, this takes linear time by employing a coordinated sweep over both labels. The
HL technique has been successfully used for road networks in [Abraham et al. 2011;
2012; Akiba et al. 2014; Delling et al. 2013].

In the case of large-scale graphs, the Pruned Landmark Labeling (PLL) algorithm
of [Akiba et al. 2013] orders vertices by degree and then during preprocessing, per-
forms one BFS per graph vertex, starting from the highest-order / degree vertices. At
each iteration, each individual BFS is pruned by using the hub labels calculated from
the previous searches. With this straightforward strategy, the PLL algorithm produces
labels that are minimal for a specified ordering [Delling et al. 2014] but also exhibit
quite uniform size between the different vertices [Akiba et al. 2013]. The later work
of [Delling et al. 2014] improves the previous vertex ordering of [Akiba et al. 2013] and

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:5

Fig. 1: An example graph G

Vertex Hub Labels (hub, dist)
0 (0,0)
1 (0,1), (1,0)
2 (0,1), (2,0)
3 (0,1), (3,0)
4 (0,1), (4,0)
5 (0,2), (1,1), (5,0)
6 (0,2), (1,1), (6,0)
7 (0,2), (1,1), (7,0)
8 (0,2), (2,1), (8,0)
9 (0,2), (3,1), (9,0)

10 (0,2), (4,1), (10,0)
11 (0,3), (1,2), (5,1), (11,0)
12 (0,3), (1,2), (6,1), (12,0)
13 (0,3), (1,2), (7,1), (13,0)

Table I: The created hub-labels for the ex-
ample graph G

the storage scheme of the hub labels for maximum compression. On a similar note,
Jiang et al. [Jiang et al. 2014] propose their HopDB algorithm to provide an efficient
HL index construction when the given graphs and the corresponding index are too big
to fit into main memory. The HL method has also been used for one-to-many, many-
to-many [Delling et al. 2011], kNN queries on road networks in [Delling and Werneck
2015] and in the context of databases in [Abraham et al. 2012; Efentakis et al. 2015a;
Efentakis 2016] respectively. The core contribution of this work is to extend existing
HL techniques in the context of RkNN queries on large-scale graphs and the proposed
ReHub algorithm, presented in the following section.

3. THE REHUB ALGORITHM
What follows is the description of the ReHub (Reverse kNN+ Hub labels) algorithm
that extends the Hub Labeling approach to efficiently handle RkNN queries on large-
scale graphs. ReHub consists of two distinct, independent phases: (i) A slower, costlier
Offline phase that takes place after the creation of the hub labels and depends only
on the targets P (regardless of the query vertex q). (ii) An Online phase that uses
the auxiliary data structures created during the Offline phase to compute the actual
RkNN query results. The main benefit of the ReHub algorithm is that the costlier
offline phase has to run only once and may service all RkNN queries for a specific set
of targets, whereas the online phase (that actually depends on the query vertex q) is
very fast (typically less than a 1ms). Hence, ReHub may be used within the context of
real-time applications, operating on large-scale graphs.

3.1. Offline Phase
The offline phase of the ReHub algorithm takes place after the creation of the hub
labels. Although the ReHub algorithm works with any correct Hub Labeling algorithm,
in this work we generate the necessary labels using the PLL algorithm of [Akiba et al.
2013], as provided by its authors in [Akiba et al. 2015]. To highlight the results of the
PLL algorithm, the generated labels for the example undirected, unweighted graph G
of Figure 1 are shown in Table I. In the remainder of this work we will refer to those
labels as the forward labels. We also assume that the targets are located at vertices
4,10,12, i.e., P = {4, 10, 12}. The respective entries are highlighted in Table 1. For each

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:6 A. Efentakis et al.

Labels kNN Backward kNN Backward
(to-many) Labels (k=2) Labels (k=1) for ReHub

Hub (id,dist) (id,dist) (idx,dist)
0 (4,1), (10,2), (12,3) (4,1), (10,2) (0,1), (1,2)
1 (12,2) (12,2) (2,2)
4 (4,0), (10,1) (4,0),(10,1) (0,0), (1,1)
6 (12,1) (12,1) (2,1)
10 (10,0) (10,0) (1,0)
12 (12,0) (12,0) (2,0)

Table II: The kNN backward labels creation for ReHub, the example graph G, k = 1
and P = {4, 10, 12}

vertex v, the forward label forwLab(v) is a vector of pairs (u, dist(v, u)) sorted by hub
vertex u. This is the starting point for the offline phase of the ReHub algorithm, which
in turn is divided in three smaller substages: (i) the kNN backward labels construction,
(ii) the batch kNN calculations from all targets, and (iii) the RkNN labels construction.
Each of these stages will be described in the following.

3.1.1. The kNN backward labels construction. To efficiently answer one-to-many queries
with hub labels, Delling et al. [Delling et al. 2011] construct an additional data struc-
ture (referred hereafter as the labels-to-many). The labels-to-many are constructed
by storing separately the hub labels of the targets P = {P1, . . . , P|p|} ordered by
hub [Delling et al. 2011]. For each such hub u, those labels-to-many is a vector of pairs
(Pi, d(u, Pi)). Expanding this approach for kNN queries, [Abraham et al. 2012] showed
that if the number k is known in advance (or the maximum k that will be serviced for
kNN queries), then for each hub, it suffices to keep the best k pairs with the smallest
distances per hub. The corresponding kNN backward labels data structure is hence
constructed by ordering the labels of targets P = {P1, . . . , P|p|} by hub and then keep-
ing the best k pairs with the smallest distances per hub. Although these works focused
on road networks, their correctness still applies to undirected, unweighted graphs.
The corresponding data structures (labels-to-many and kNN backward labels) for our
example graph G, P = {4, 10, 12} and k = 2 are shown in Table II.

KNNLAB (P , |P |, k , forwLab, kNNLab)
1 // Create a |V |-sized vector of empty bounded priority queues of size k + 1
2 Initialize(kNNLab, (|V |, BoundPQue(k + 1)))
3 for i = 0 to |P |
4 for j = 0 to forwLab[P [i]].size
5 hub = forwLab[P [i]][j].hub
6 d = forwLab[P [i]][j].dist
7 kNNLab[hub].push(i, d)

To efficiently calculate the kNN backward labels for ReHub, we combined elements
from previous works, namely the works of [Knopp et al. 2007; Delling et al. 2011;
Delling and Werneck 2015; Geisberger 2011; Abraham et al. 2012]. Still, we need to
do some additional modifications: (i) When answering RkNN queries, we must assume
that k = k + 1 during the construction of the kNN backward labels. This is necessary,
since in our example the NN of target 10 (for k = 1) is by definition the same tar-
get, but for RkNN queries with k = 1, the NN neighbor of 10 is target 4. (ii) Similar
to [Knopp et al. 2007], instead of storing the vertex IDs Pi of the targets in the kNN
backward labels, we store the array index i of each target, as shown in the last co-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:7

lumn of Table II. This facilitates faster processing during the remaining substages of
the offline and online phase of the ReHub algorithm. On the technical side, the kNN
backward labels creation is quite fast, since we only have to loop through the forward
labels of the targets in P and use a bounded priority queue of size k + 1 per hub to
store the k+1 pairs with the smallest distances per hub. This method offers two major
advantages. (i) We do not need to build the intermediate labels-to-many data structure
(column 2, Table II), which would be much slower, and (ii) when looping through the
forward labels of each target, pairs with distances greater than the k+1 worst distance
previously found for a specific hub may be safely ignored. The resulting pseudocode for
the kNN backward labels construction is shown in procedure KNNLAB and throughout
this process, for each hub we use a bounded priority queue of size k + 1 that stores
pairs in the form (idx, dist) ordered by distance.

The kNN backward labels for ReHub, for the example graph G and k = 1 are shown
in Table II. For small-diameter graphs (like the ones used in this work) we will have
many ties (in terms of distance), but keeping at most k + 1 labels still ensures correct-
ness. Due to the pruning of the PLL algorithm, in our example, kNN backward labels
do not necessarily have as many as k + 1 pairs per hub.

Compared to previous works, ReHub features some important implementation dif-
ferences. The first four approaches [Knopp et al. 2007; Delling et al. 2011; Delling and
Werneck 2015; Geisberger 2011] store the entire backward search space from the tar-
gets (i.e., the labels-to-many) using a unified vector storing triples (hub, id, dist) that
at the end should be sorted according by (hub, id) in [Knopp et al. 2007; Delling et al.
2011] or (hub, dist) in [Delling and Werneck 2015; Geisberger 2011]. Contrarily, in Re-
Hub we only store the k + 1 pairs per hub ordered by distance, using an adjacency list
representation for improving performance. In cases where k is not known in advance,
we can store kmax+1 pairs per hub, where kmax is the maximum value of k we will ser-
vice for RkNN queries. This optimization originally appeared in [Abraham et al. 2012;
Foti et al. 2012] but with different implementations: On [Abraham et al. 2012] it was
implemented on a relational database and therefore the authors there do not provide
any implementation details on how to efficiently do this calculation in main memory.
Moreover, that work used the original vertex IDs of the targets (which makes sense
in a database), whereas ReHub uses the target array indexes to accelerate subsequent
computations. Likewise, the [Foti et al. 2012] work is based on Contraction Hierarchies
(CH) [Geisberger et al. 2008b; Geisberger et al. 2012] and thus for computing the k+1
best pairs per hub, requires |P | (one per target) backward CH searches which will be
significantly slower than the main-memory implementation proposed here.

3.1.2. Batch kNN calculations from targets. After creating the kNN backward labels (co-
lumn 4, Table II), we need to calculate the k-nearest neighbors (kNN) of each target.
This is in stark contrast with the work of [Yiu et al. 2006] that needs to calculate the
kNN of every graph vertex in the offline phase of the EagerM algorithm. For calculat-
ing the kNN of each target, we perform a total of |P | × kNN calculations, using the
created kNN backward labels. Each of those kNN computations uses the method im-
plicitly described in [Abraham et al. 2012] (but in a database context and thus no main
memory implementation details were provided there), with the additional constraint
that for each target when traversing the kNN backward labels of one of its hubs, we
skip the labels corresponding to this specific target index.

The simplified pseudocode for the batch kNN calculations from targets is shown
in procedure BATCHKNNCALC. The kNNResults are also stored in a |P |-sized vector
of bounded priority queues of size k that store pairs in the form (idx, dist) ordered
by distance. For each target, when traversing the kNN backward labels of one of its
hubs, we skip the pairs corresponding to the index of this specific target (Line 9 in the

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:8 A. Efentakis et al.

Forward Labels kNN Backward kNN Results
Target of targets Labels (k=1) for ReHub (k=1)

ID (hub,dist) Hub (idx,dist) (idx, dist)
4 (0,1), (4,0) 0 (0,1), (1,2) (1,1)

1 (2,2)

10 (0,2), (4,1), (10,0) 4 (0,0), (1,1) (0,1)
6 (2,1)

12 (0,3), (1,2), (6,1), (12,0) 10 (1,0) (0,4)
12 (2,0)

Table III: Batch kNN calculations process for the example graph G, k = 1 and
P = {4, 10, 12}

pseudocode). Moreover, every time a new pair is pushed to the corresponding queue
(Line 11), our customized push operation checks if the “pushed” target index already
exists in the queue with a smaller or equal distance value than the pushed pair. If
yes, we can safely ignore this pair. If, on the other hand, this target index exists in
the queue with a larger distance value, we update this distance value and resort the
queue. If the pushed target index does not already exist in the queue, our custom
push operation checks if the queue has less than k items. In that case, the new pair
enters the queue and the queue is resorted. If the queue has already k items, our push
operation checks if the new pair is better (i.e., corresponds to a smaller distance) than
the last (k) element of the queue. If yes, the last element is popped, the new pair enters
the queue at the end and the queue is resorted. Since each queue is basically a vector
of size k, popping back, pushing back and resorting this (rather small) priority queue
are very fast operations.

BATCHKNNCALC (P , |P |, k , forwLab, kNNLab, kNNResults)
1 // Create a |P |-sized vector of empty bounded priority queues of size k
2 Initialize(kNNResults, (|P |, BoundPQue(k)))
3 parallel for i = 0 to |P |
4 for j = 0 to forwLab[P [i]].size
5 hub = forwLab[P [i]][j].hub
6 d = forwLab[P [i]][j].dist
7 for l = 0 to kNNLab[hub].size
8 idx = kNNLab[hub][l].idx
9 if idx 6= i

10 d2 = d+ kNNLab[hub][l].dist
11 kNNResults[i].push(idx, d2)

Similar to [Geisberger 2011], every time a new pair (idx, d2) enters the
kNNResults[i] queue for a specific target, we check if the queue already has k-items;
In that case we store the worst label distance as a separate variable. If the distance d
(Line 6) or the distance d2 (Line 10) are greater than this worst distance, we can safely
skip this particular pair. Especially, in the second case (distance d2, Line 10) we can
exit the third loop (Line 7) completely, since the kNN backward label of each hub is
ordered by distance. This optimization (not shown in the pseudocode for readability)
accelerates significantly each individual kNN calculation.

The results of this process are shown on Table III, where the combination of the
forward labels of the targets {4, 10, 12} with the kNN backward labels shows that the
kNN of target 4 is the target with index 1, i.e., target 10, with distance 1. The kNN
of target 10 is the target with index 0 (target 4) with the respective distance 1 and

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:9

kNN Results Forward Labels RkNN Labels
Target (k=1) of targets (k=1)

ID (idx, dist) (hub,dist) Hub (idx,dist)
4 (1,1) (0,1), (4,0) 0 (0,1), (2,3)

1 (2,2)

10 (0,1) (0,2), (4,1), (10,0) 4 (0,0), (1,1)
6 (2,1)

12 (0,4) (0,3), (1,2), (6,1), (12,0) 10 (1,0)
12 (2,0)

Table IV: RkNN labels construction for the example graph G, k = 1 and
P = {4, 10, 12}

finally, the kNN of target 12 is the target with index 0 (target 4) with the respective
distance 4. To facilitate faster computation, each kNN computation may be performed
in parallel (Line 3 of procedure BATCHKNNCALC) since there is no interaction between
the individual kNN calculations. Considering this is the slower substage of the offline
phase (see Section 3.3), employing parallelism significantly drops the total preprocess-
ing time required for ReHub’s offline phase. This is also an important advantage of
ReHub in comparison to EagerM, since the offline phase of EagerM requires a com-
bined network expansion from all targets at once, that cannot be parallelized.

3.1.3. The RkNN labels construction. After calculating the kNN of each target, for an-
swering RkNN queries it would suffice to run a one-to-many HL query from the query
vertex q to all targets, by constructing and using the labels-to-many of targets P (see
column 2, Table II) and then loop through the calculated distances to see if they are
smaller or equal to the kNN distances calculated by the previous step. In our exper-
imental section (See Section 4.3), we will refer to this naive approach as the Naive-
ToMany algorithm. But we can do much better in ReHub. We construct an alternative
data structure, referred hereafter as the RkNN labels, based on the observation that
we need to calculate distances to a specific target, if and only if those distances are
equal or smaller than the distance of the kNN of this target. If the targets are uni-
formly distributed in the graph, this optimization ensures that only hubs of relatively
small distances from each target are added to the RkNN labels. Therefore, during the
online phase, if the query vertex q is faraway from some targets, there would be no
matching hubs between those targets and the query vertex.

The resulting pseudocode for the RkNN labels construction is shown in proce-
dure RKNNLAB and the entire process is highlighted in Table IV. When we build the
RkNN labels for target 10, we skip the pair (0, 2) because the NN of target 10 is within
distance of 1 and therefore pairs with greater distances than that (for this particu-
lar target) may be safely ignored. Again, when building the RkNN labels we use the
targets’ array indexes, instead of their IDs.

RKNNLAB (P , |P |, k , forwLab, kNNResults,RkNNLab)
1 Initialize(RkNNLab, (|V |, vector < (idx, dist) >))
2 for i = 0 to |P |
3 for j = 0 to forwLab[P [i]].size
4 d = forwLab[P [i]][j].dist
5 if d ≤ kNNResults[i][k − 1]
6 hub = forwLab[P [i]][j].hub
7 RkNNLab[hub].push back(i, d)

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:10 A. Efentakis et al.

Several interesting observations can be made by comparing Tables II and IV. Firstly,
as expected, the size of the RkNN labels (column 5, Table IV) is smaller than the labels-
to-many (column 2, Table II). Although for our small example graph G this difference
is minimal, for larger graphs it becomes significant. Therefore, using the RkNN labels
will significantly improve the online phase of the ReHub algorithm. This will be clearly
showcased in our experimentation presented in Section 4.3 where we compare ReHub
with the NaiveToMany algorithm. Second, the kNN backward labels (column 4, Ta-
ble II) are different than the RkNN labels (column 5, Table IV). Note that by using the
kNN backward labels we can still answer kNN queries for any query vertex q ∈ V and
by using the RkNN labels we can answer RkNN queries within the same framework.

3.2. Online Phase
The offline phase of the ReHub algorithm runs only once for a specific set of targets P .
Its final output is (i) The kNN Results, i.e, a matrix of size |P |×k of (ordered by distance
per row) (idx, dist) pairs that contain the kNN of each target and (ii) the RkNN labels.
The following online phase of the ReHub algorithm is basically a modified one-to-many
HL query from the query vertex q that operates on the RkNN labels and is described
by the pseudocode of procedure ONLINEPHASE. The output of the online phase is a
vector (denoted out in the pseudocode) of size |P | with all values set to infinity, except
those that belong to the indexes of the targets of the RkNN set; those values are set
to the correct distances from query vertex q to the respective targets. In our running
example of the example graph G, for P = {4, 10, 12} and k = 1, the online phase for
a RkNN query from vertex 0 would only have to visit the RkNN labels of hub 0 (see
Tables I and IV), the kNN Results for targets 4 and 12 (see Table III) and would finally
output the result out = {1,∞, 3}, meaning that the targets 4, 12 belong to the RkNN
set of vertex 0 with distances 1 and 3 respectively.

We have also experimented with a hash map implementation of results (instead of
using a |P |-sized vector) but our experiments showed that the proposed vector imple-
mentation was consistently faster for all tested datasets. This is attributed to several
facts (i) At line 8 we have to check if the distance calculated for object Pi is better
than previously calculated distance for the same object, which is faster using a vec-
tor (ii) Since the |P |-sized vector stores distances which are unsigned 8 − bit integers
the corresponding size of the vector is quite small (at least for our tested datasets)
and especially for small values of target density D. (iii) Modern compilers optimize
the initialization of vectors (Line 1) using SIMD instructions for fill operations. Thus,
initializing the vector is also a very fast operation.

ONLINEPHASE (q,P , |P |, k , forwLab, kNNResults,RkNNLab, out)
1 Initialize(out, (|P |,∞))
2 for i = 0 to forwLab[q].size
3 hub = forwLab[q][i].hub
4 d = forwLab[q][i].dist
5 for j = 0 to RkNNLab[hub].size
6 idx = RkNNLab[hub][j].idx
7 d2 = d+RkNNLab[hub][j].dist
8 if d2 < out[idx] &

d2 ≤ kNNResults[idx][k − 1].dist
9 out[idx] = d2

THEOREM 3.1. The ReHub algorithm is correct.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:11

PROOF. Building the kNN backward labels and then performing the batch kNN
calculations to calculate the kNN of each target is correct, because it is based on the
methodology of Abraham et al. [Abraham et al. 2012] who proved its correctness. Build-
ing the RkNN labels is also correct, since we just reorder all labels of the targets ac-
cording to hub, except those that correspond to distances greater than the kNN of each
target. This ensures that we can calculate correct distances to any of those targets
from any query vertex, except when this query vertex is farther than the kNN of a spe-
cific target. The online phase is also correct, since it operates on the RkNN labels and
updates the result vector out for a specified target, only when the calculated distance
is smaller or equal than the distance of the kNN of this target (Line 8, procedure ON-
LINEPHASE). Therefore the ReHub algorithm is also correct.

The main advantage of the ReHub algorithm, in comparison to previous works, is the
separation between the costlier offline phase, which runs only once for a specific set of
targets and its very fast online phase. Although the EagerM algorithm of [Yiu et al.
2006] was based on the same principle, its corresponding online phase still needs to
perform a slow BFS-like graph traversal from the query vertex q, which cannot be fast
enough for real-time applications. Contrarily, ReHub’s online phase is orders of mag-
nitude faster that its offline phase and thus rarely takes more than 1ms. An additional
benefit of ReHub compared to the works of [Yiu et al. 2006; Borutta et al. 2014] is that
not only ReHub calculates the RkNN set of the query vertex but it also calculates the
correct network distances from the query vertex to any of the targets belonging in the
RkNN set. Regarding the online phase, operating on the RkNN labels is significantly
faster, since for large graphs the size of the RkNN labels is significantly smaller than
the labels-to-many. This will be clearly showcased in our experiments (see Section 4.3)
where the online phase of ReHub will be significantly faster than the NaiveToMany
implementation. Also the usage of target array indexes instead of the target IDs accel-
erates the whole process, since the final results vector out is of size |P | instead of |V |
which makes its initialization faster (Line 1, procedure ONLINEPHASE), especially for
smaller values of D. Also, accessing the kNN results of each target (Line 9) and the
previous best value of results table (Line 8) are very cheap operations, since they op-
erate on smaller vectors of size |P |. Moreover, the memory required for storing these
intermediate data structures is also significantly smaller. This will be further quanti-
fied in the next section, where we analyse the complexity and memory requirements
of the ReHub algorithm.

3.3. Complexity Analysis and Memory Requirements

If D is the target density, defined as D = |P |
|V | , then the number of targets is D · |V |.

The forward label of each vertex has an average of |HL|
|V | hubs, where |HL| is the total

number of labels created by the hub labeling algorithm (PLL in our case). For this spe-
cific algorithm, Akiba et al. [Akiba et al. 2013] have shown that the ”size of the created
labels does not differ much for different vertices and few vertices have much larger la-
bels than the average”. Since we have D · |V | targets and |HL|

|V | hubs per target, then
the labels-to-many will have on average D · |HL| pairs. Regarding the offline phase,
the kNN backward labels construction needs to access all those D · |HL| pairs (same
as the labels-to-many) to construct the kNN backward labels that have a maximum
of k + 1 pairs per hub. In the batch kNN calculations, we have a total of D · |V | kNN
queries that each needs to access on average (k + 1) · |HL||V | pairs to create the kNN re-
sults of size of k ·D · |V |. Therefore, the complexity of the batch kNN calculations will be
(k+1) ·D · |HL|. Finally, for the RkNN labels construction we need to access all D · |HL|

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:12 A. Efentakis et al.

Memory for
Stage Complexity storing result (B)

kNN backward labels construction D · |HL| 5 · (k + 1) · |V |
Batch kNN calculations (k + 1) ·D · |HL| 5 · k ·D · |V |
RkNN labels construction D · |HL| 5 · ε ·D · |HL|

Online Phase ε ·D · (|HL|
|V |)

2 (lower bound)
D · |V |

ε ·D · |HL| (upper bound)

Table V: ReHub complexity and memory requirements

pairs (same as the labels-to-many) and the k · D · |V | results (to retrieve the worst k
label per target). Conclusively, both the kNN and RkNN backward labels construction
have a complexity of D · |HL| each (since |HL| � |V |), where the most costly batch kNN
calculations stage has a complexity of (k + 1) · D · |HL|. In all previous calculations,
we assume that using and maintaining the bounded priority queues of size k+1 (kNN
backward labels construction) or size k (batch kNN calculations) has no impact on the
corresponding complexity due to the relatively small value of k.

Regarding the online phase, for large values of k, at the worst case, the online phase
of ReHub will degrade to a one-to-many query between the query vertex q and the
set of targets P . Therefore, we will first analyze the complexity of a one-to-many HL
query. As showed earlier, the labels-to-many will have on averageD ·|HL| pairs. On the
best case, those pairs will be equally distributed per hub and each hub on the labels-to-
many will have an average ofD· |HL||V | pairs. Since the forward label of the query vertex q

will have on average of |HL|
|V | hubs, on the best case a one-to-many query from the query

vertex will access on averageD·(|HL||V |)
2 pairs. At the worst case, the corresponding one-

to-many query will have to access all D · |HL| pairs of the labels-to-many. Hence, the
complexity of a one-to-many query will range betweenD·(|HL||V |)

2 (best case) andD·|HL|
(worst case). Likewise, the online phase of ReHub will access between ε·D·(|HL||V |)

2 (best
case) and ε ·D · |HL| (worst case) pairs, where ε < 1 (since the size of the RkNN labels is
smaller than the labels-to-many) and ε = f(k,D, |B|), i.e., the value of ε for a specific
graph depends on the target density D, the cardinality k of the RkNN result and the
distribution |B| of targets. In fact, our experimentation has shown that ε becomes
smaller for larger values ofD and smaller values of k and |B|. Our experimental results
of Section 4.3 will also show that for the largest datasets and for small values of k,
ReHub’s online phase complexity is close to the lower bound ε · D · (|HL||V |)

2, whereas
the NaiveToMany algorithm’s complexity converges to the upper bound D · |HL|. The
aforementioned theoretical results are summarized in Table V where we also report
the memory required for storing the results of each stage, considering that each pair
requires 5 bytes for storage (4 bytes for target index + 1 byte for distance due to the
small-world nature of large-scale graphs) and the output of the online phase is a D · |V |
sized vector of distances.

3.4. Extension to Directed and Weighted Graphs
Throughout this work and the experimentation described in Section 4, we use undi-
rected and unweighted graphs. However, the ReHub algorithm may be easily extended
to directed graphs with the following changes: (i) In the offline phase the kNN back-
ward labels must be constructed from the backward labels (ii) In the online phase we
must use the backward labels of query vertex q. As before, the RkNN labels will still
be constructed from the forward labels, even for directed networks. Note that most

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:13

previous methods like [Yiu et al. 2006; Borutta et al. 2014] have only been applied on
undirected networks. For weighted graphs ReHub will work out of the box, without
requiring any further modifications.

3.5. The All-RkNN problem
Another alternative for answering RkNN queries for a static set of targets and a fixed
value of k is to precompute the Reverse k-Nearest Neighbors for every graph ver-
tex q ∈ V . We will refer hereafter to this variant of the RkNN query as the All-RkNN
problem. With ReHub or EagerM (the best RkNN alternatives for a static set of objects)
that would require to run the offline phase once and then perform the online phase for
every graph vertex, for a total of |V | iterations. As our experimentation will show (see
Section 4.4), ReHub is the only viable solution for such an effort, since it will require
less than 25min at the worst case, while EagerM would require as much as 123 days.

However, although precomputing the Reverse k-Nearest Neighbors for every graph
vertex is now feasible with ReHub, is not always advisable. During the offline phase
of the All-RkNN computation, we will need to have access to all ReHub’s data struc-
tures (kNN backward labels, kNN results and the RkNN labels), including the for-
ward labels. Storing the complete RkNN results for all graph vertices would require
an additional vector (denoted hereafter as the RkNN results vector) of memory size
5 · |V | · |RkNN | bytes (since each RkNN of a vertex requires 5 bytes for storage), where
the number of the RkNN per vertex (contrary to kNN results where the respective size
is at most k) is hard to predict. As expected, our experimentation has shown that the
number of RkNN per vertex typically increases for larger values of k, D or |B|.

When we compared the necessary data structures for strictly answering RkNN
queries for ReHub (kNN results and the RkNN labels) and the All-RkNN variation
(the RkNN results vector), results showed that ReHub requires as little as 700× less
memory (see Section 4.4). Moreover, in case of a live-online system that answers RkNN
queries where objects might change at infrequent intervals, ReHub will require less
than 1s (offline phase) to accommodate updates when targets change, whereas in the
All-RkNN variation the system will have to stay offline for several minutes, rendering
the corresponding solution totally impractical. Note that although the All-RkNN vari-
ation will still have faster query times (as the RkNN query will just require an O(1)
access to the RkNN results vector), ReHub would require typically less than 1ms for
the same query. For a typical web service this difference is minimal, considering that
for such short query times the true bottleneck of the service would be to construct and
return the (JSON or XML) response (i.e, the RkNN result) to the end user and not the
actual RkNN query times. Thus, ReHub will still be the most pragmatic solution for
RkNN queries on large-scale graphs, even compared to the All-RkNN variation.

4. EXPERIMENTS
To evaluate the performance of ReHub on various large-scale graphs, we conducted
experiments on a workstation with a 4-core Intel i7-4771 processor clocked at 3.5GHz
and 32 GB of RAM, running Ubuntu 14.04. Our code was written in C++, with GCC 4.8
and optimization level 3. We used OpenMP for parallelization. For benchmarking Re-
Hub, we also implemented optimized, main-memory versions of the state-of-the-art
Eager and EagerM algorithms [Yiu et al. 2006] for unweighted, undirected graphs (re-
placing Dijkstra with faster BFS expansions) and using adjacency arrays [Mehlhorn
and Sanders 2008] (instead of adjacency lists) for the main-memory graph representa-
tion to facilitate faster performance. Note that our versions of the Eager and EagerM
algorithms are significantly faster than the original paper, even after considering the
fact that we are using a superior workstation for testing.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:14 A. Efentakis et al.

PLL Graph HL
AVG Preproc. Size Size

Graph | V | | E | degree | HL | / | V | Time (s) (Mb) (Mb)
Amazon 334,863 925,872 3 689 230 9 1,101
Citeseer 268,495 1,156,647 4 408 110 10 523
Citeseer2 434,102 16,036,720 37 4,457 5,946 124 9,229
DBLP 540,486 15,245,729 28 3,628 5,720 118 9,352
Facebook 4,039 88,234 22 26 0.03 1 1
Gowalla 196,591 950,327 5 100 13 8 95
NotreDame 325,729 1,090,108 3 55 6 10 87
Slashdot 77,360 469,180 6 204 11 4 76
Slashdot2 82,168 504,230 6 216 13 4 85
Youtube 1,134,890 2,987,624 3 167 123 27 906

Table VI: Networks graphs statistics

The network graphs used in our experiments are taken from the Stanford Large
Network Dataset Collection [Leskovec and Krevl 2014] and the 10th Dimacs Im-
plementation Challenge [Bader et al. 2014]. All graphs are undirected, unweighted
and connected. We used collaboration graphs (DBLP, Citeseer, Citeseer2) [Geisberger
et al. 2008a], social networks (Facebook [McAuley and Leskovec 2012], Slashdot and
Slashdot2 [Leskovec et al. 2009]), networks with ground-truth communities (Amazon,
Youtube) [Yang and Leskovec 2012], web graphs (Notre Dame) [Albert et al. 1999] and
location-based social networks (Gowalla) [Cho et al. 2011]. The graphs’ average degree
is between 3 and 37 and the PLL algorithm creates 26 − 4, 457 hub/distance pairs per
vertex, requiring 0.03 − 5, 950s for the hub labels’ construction (see Table VI). We also
report the memory size occupied for storing the original graphs (forward star represen-
tation) and for storing the labels, assuming that each (id, dist) pair requires 5 bytes for
storing, since distance is an unsigned 8− bit integer (an optimization also used in the
original PLL code), due to the small-world nature of the datasets. In fact, for our test
datasets the graph diameter was less than 100. For each individual RkNN experiment
we generate randomly 20 sets of targets of size D · |V | and then we generate 50 random
query vertices per set (for a total of 1000 test cases), making sure that each query ver-
tex q does not belong to the corresponding target set. For all experiments, we measure
the running times of the offline and online phases of ReHub and EagerM separately.
For those algorithms, the reported total time is the sum of the average running times
of the online and offline phases.

4.1. Overall Performance
In this section, we evaluate the performance of ReHub in comparison with the Eager
and EagerM algorithms of [Yiu et al. 2006] for ad-hoc RkNN queries. For ReHub and
EagerM we report the total time required for both the offline and online phases. For
ReHub’s offline phase, we only parallelized the batch kNN computations from targets.
Contrarily, the EagerM offline phase cannot be parallelized, since it uses a single com-
bined network expansion from all targets at the same time. Online phase is always
sequential for all algorithms. Note that the PLL algorithm preprocessing time should
not be added to ReHub’s offline phase, because it will take place only once for any set
of targets P for the same graph. This makes sense, especially for ad-hoc queries or ap-
plications in which users may want to perform multiple RkNN queries over different
sets of targets for the same graph. Moreover, with the PLL preprocessing we can still
answer vertex-to-vertex queries, which is not possible with either Eager or EagerM. In
addition, ReHub will work with any correct HL algorithm, and thus, for any forthcom-
ing, faster HL algorithm, ReHub will still work without requiring any modifications.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:15

Fig. 2: ReHub, Eager and EagerM performance for k = 1 and varying values of D

Fig. 3: ReHub, Eager and EagerM performance for k = 4 and varying values of D

4.1.1. Impact of target density D. In our first round of experiments we evaluate the per-
formance of ReHub in comparison to Eager and EagerM, according to the target den-
sity D = |P |/|V |, i.e., for k = 1 and D = {0.001, 0.005, 0.01, 0.05, 0.1} similar to the
methodology followed in [Yiu et al. 2006]. Results are shown in Figure 2.

Similar to EagerM, ReHub is mainly optimized for static sets of targets, i.e., run-
ning the offline phase once and run multiple iterations of the online phase for different
query vertices q ∈ V . However, the main advantage of ReHub is that its online phase is
orders of magnitude faster than its offline phase (see Section 4.2), whereas in EagerM
the running times of the offline and online phases are comparable to each other. But
even for ad-hoc queries (where the targets change), results show that ReHub is faster
for all values of D except D = 0.1 (i.e., for very dense targets) than both Eager and
EagerM for the smallest datasets (Facebook, Gowalla, Slashdot, Slashdot2). For the
remaining datasets (Amazon, CiteSeer, CiteSeer2, DBLP, Notredame, Youtube) results
are evenly mixed: ReHub is typically faster for sparser targets (D = 0.001, D = 0.005)
and Eager is faster for D = 0.1 and D = 0.05. However, on the majority of cases, Re-
Hub still surpasses EagerM’s performance. Note that although ReHub’s performance
degrades for larger values of D, it is more stable than Eager and thus only exceeds 1s
only for the worst performing graphs (DBLP 1.9s, Citeseer2 2.34s) and dense targets
(D = 0.1). Contrarily, for sparse targets (D = 0.001) Eager’s performance is much
worse, requiring more than 1s for Citeseer2 (1.09s), DBLP (2.1s), Gowalla (2.0s), Slash-
dot2 (1.2s) and YouTube (4.9s).

Repeating the previous experiments for k = 4 (see Fig. 3) further highlights the per-
formance advantages of ReHub. Now ReHub is faster than both Eager and EagerM on
Facebook, Gowalla, Slashdot, Slashdot2, YouTube for all values of D, faster on Cite-
seer, Notredame for D = 0.001, 0.005, 0.01 and faster on Amazon, CiteSeer2, DBLP for
D = 0.001, 0.005. Note that for the YouTube dataset and D = 0.001 (the worst perform-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:16 A. Efentakis et al.

Fig. 4: ReHub, Eager and EagerM performance for D = 0.01 and varying values of k

Fig. 5: ReHub, Eager and EagerM performance for D = 0.1 and varying values of k

ing case for the family of Eager algorithms), Eager requires more than 25s, EagerM
requires 2.5s, while ReHub always requires less than 2.8s on all datasets.

4.1.2. Impact of cardinality k. In our second round of experiments, we assess the per-
formance of the ReHub, Eager and EagerM algorithms in comparison to k. Again, for
ReHub and EagerM we report the total time required for both the offline and online
phases and for ReHub’s offline phase, we parallelized only the batch kNN computa-
tions from targets. Similar to the methodology of [Yiu et al. 2006], Figure 4 reports
the corresponding results for D = 0.01 and k = {1, 2, 4, 8, 16, 32}.

Results show that ReHub exhibits excellent and stable performance, regardless of
the value of k, contrarily to Eager and EagerM’s performance which degrades polyno-
mially with increasing values of k. As a result, ReHub is faster than both Eager and
EagerM for k ≥ 8 on all datasets and faster than EagerM for all tested values of k.
Especially for large values of k (k = 16, k = 32) ReHub is 2-3 orders of magnitude faster
than both Eager and EagerM on all tested datasets, except Amazon, Citeseer2 and
DBLP (there ReHub is still 3 − 8× faster than Eager). Moreover, for the datasets of
Citeseer, Facebook, Gowalla, NotreDame, Slashdot, Slashdot2 and YouTube, ReHub is
the fastest algorithm for all values of k. Furthermore, ReHub requires more than 1s
only for the Citeseer2 and DBLP datasets and k = 32, whereas Eager requires more
than 1s for k = 32 on all datasets except Facebook and Notredame. In addition, Eager
requires 4 − 25s for k = 32 on the datasets Citeseer2, DBLP, Gowalla, Slashdot2 and
YouTube, with EagerM’s performance being slightly better. Overall, ReHub exhibits
excellent and stable performance for all values of k, contrary to Eager and EagerM
who do not scale well for increasing values of k.

We repeat the previous experiments for D = 0.1 (see Fig. 5) which is the most favor-
able value of D for the Eager and EagerM algorithms (as shown previously in Fig. 2
and 3). However, ReHub still outperforms EagerM for k ≥ 8 on all datasets and Eager

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:17

Fig. 6: ReHub, Eager and EagerM performance for D = 0.01, k = 1 and varying values
of |B|

on Facebook, Gowalla, Slashdot, Slashdot2, YouTube for k ≥ 2. Contrarily, Eager is
better than ReHub on the datasets with the largest |HL|/|V | ratio (Amazon, Citeseer,
Citeseer2, DBLP).

4.1.3. Impact of target distribution. In our third experiment, we evaluate the impact of
targets distribution to the performance of ReHub, Eager and EagerM. To that purpose,
we adapt a methodology similar to [Delling et al. 2011]. We pick a vertex at random
and run BFS from it until reaching a predetermined number of vertices |B|. If B is the
set of vertices visited during this search, we pick our targets P as a random subset
of B, i.e., we select our targets from a ball of fixed size |B|. Hence, smaller values of |B|
correspond to targets that are closely together, whereas |B| = 1 represents random
selected targets scattered uniformly in the graph network. We keep the density of
targets steady at D = 0.01 and for k = 1 we experiment with different values of |B|
represented as percent of the total graph vertices. Figure 6 reports the corresponding
results for D = 0.01, k = 1 and |B| = {0.01, 0.04, 0.16, 0.64, 1}.

Results show that again, ReHub is the most stable algorithm, requiring less
than 0.4s on all cases and always outperforming EagerM (which also provides stable
performance), whereas Eager’s performance fluctuates with the value of |B|, requiring
more than 1s on multiple occasions. In addition, ReHub (and EagerM to a lesser de-
gree) seems to benefit from denser distribution of targets (i.e., |B| = 0.01), since the
more closely together are the targets, the more closer are the kNN of each target and
thus the smaller is the size of the RkNN labels (see Section 3.1.3). Contrarily, Eager
performs significantly worse on the largest datasets for those cases, since it has to
visit largest portion of the graph if the query vertex q is faraway from the targets.
Overall, on the majority of cases, ReHub is the fastest algorithm, exhibiting excellent
performance for all values of |B|. Conclusively, ReHub provides the most stable perfor-
mance regardless of the values of D, k or |B| and outperforms Eager and EagerM on
the majority of cases, especially for larger values of k where ReHub is 2 − 3 orders of
magnitude faster than its competitors.

4.2. Online and offline phase performance and memory requirements
In the previous section, we have demonstrated that ReHub outperforms the Eager and
EagerM algorithms on the majority of cases for ad-hoc queries and varying values
of D, k or |B|. However the main advantage of ReHub is the separation between the
costlier offline phase which takes place only once for a fixed set of targets P and the
very fast online phase with depends on the query vertex q. Accordingly in this section,
we will compare the offline and online phases of ReHub and EagerM (Eager’s perfor-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:18 A. Efentakis et al.

Time (µs)
Offline Online

Dataset 0.001 0.005 0.01 0.05 0.1 0.001 0.005 0.01 0.05 0.1
Amazon 11,124 22,661 33,945 113,102 307,270 12.4 18.4 21.9 41.3 73.9
Citeseer 9,492 18,161 27,388 75,191 168,775 11.1 16.4 26.4 51.2 100.9
Citeseer2 65,733 156,484 248,521 847,910 1,926,590 94.3 132.2 171.2 302.6 628.8
DBLP 80,396 239,673 372,245 1,072,020 2,479,130 119.2 205.1 232.9 345.4 572.7
Facebook 30 71 125 432 705 0.1 0.2 0.3 0.7 0.9
Gowalla 3,935 8,567 12,463 31,550 65,445 2.9 8.0 12.9 51.5 89.5
Notredame 4,468 7,200 9,829 27,461 49,058 1.6 3.7 6.1 20.9 33.2
Slashdot 1,654 4,096 5,659 15,117 26,705 6.2 14.5 22.9 79.2 133.9
Slashdot2 1,728 4,462 6,194 16,579 31,006 6.2 15.6 26.5 83.9 155.5
YouTube 28,019 49,553 71,925 194,560 459,870 19.1 87.9 164.0 492.4 1,179.3

Table VII: ReHub offline and online phase performance for k = 1 and
D = {0.001, 0.005, 0.01, 0.05, 0.1}

D

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.1

S
p
e
e
d
u
p

0.125

0.25

0.5

1

2

4

8

16

32

64
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to EagerM for
the offline phase

D

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.1

S
p
e
e
d
u
p

10

100

1000

10000

100000
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to EagerM for
the online phase.

Fig. 7: Offline and online phases of ReHub and EagerM for k = 1 and varying values
of D

mance will be exactly the same, since it does not use any preprocessing) for a static set
of targets and varying values of D, k or |B|.

4.2.1. Impact of target density D. In our first set of experiments we evaluate the perfor-
mance of the offline and online phases of ReHub and EagerM, in comparison to the
target density D = |P |/|V |. Figure 7 reports the speedup of ReHub in comparison to
EagerM for the offline and online phases for k = 1 and D = {0.001, 0.005, 0.01, 0.05, 0.1}.
Table VII also reports the corresponding absolute times (µs) for ReHub and we high-
light in bold (i) the offline times when they surpass 1s and (ii) the online times when
they surpass 1ms for easier reference.

Regarding the offline phase, ReHub is faster on all datasets and values of D, except
Amazon, Citeseer2 and DBLP for D = 0.05 and D = 0.1. Moreover, for sparse targets
(D = 0.001) ReHub’s offline phase is 4 − 33× faster than EagerM. As for the online
phase, ReHub is 1 − 5 orders of magnitude faster than EagerM with this difference
amplified for sparser targets, where ReHub’s online phase is 447− 12, 642× faster than
EagerM. On all datasets and values of D, ReHub’s online phase takes less than 1.2ms
and thus ReHub is fast enough for real-time applications, contrary to EagerM’s online
phase which may require as much as 232ms.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:19

(a) Index size (Mb) for ReHub

D

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

M
e
m

o
ry

 R
a
ti

o
 (

E
a
g

e
rM

 /
 R

e
H

u
b

)

0.125

0.25

0.5

1

2

4

8

16

32
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Memory requirements of EagerM in compar-
ison to ReHub

Fig. 8: Memory footprint of ReHub for k = 1 and varying values of D

Time (µs)
Offline Online

Dataset 0.001 0.005 0.01 0.05 0.1 0.001 0.005 0.01 0.05 0.1
Amazon 16,116 31,798 48,143 142,840 251,600 21.6 33.9 46.5 87.8 109
Citeseer 12,475 25,345 36,862 104,669 176,461 17.3 33.9 50.3 122.7 202
Citeseer2 114,043 238,733 357,143 1,129,250 2,303,340 219.9 339.1 409.9 652.9 947
DBLP 144,484 361,241 545,826 1,421,240 2,682,460 290.3 525.1 636.3 881.3 1,122
Facebook 29 75 141 587 1,014 0.1 0.2 0.3 0.9 1
Gowalla 4,368 10,757 15,986 44,618 81,588 3.1 10.3 18.6 110.7 207
Notredame 4,757 8,226 11,491 31,752 53,541 2.1 5.5 10.2 35.7 56
Slashdot 1,887 5,199 7,182 21,521 37,483 6.7 19.7 36.5 183.3 369
Slashdot2 2,016 5,712 7,917 23,738 47,431 7.1 22.3 42.3 211.6 442
YouTube 29,648 61,782 105,365 265,353 448,440 27.8 157.7 315.5 1,151.9 2,457

Table VIII: ReHub offline and online phase’s performance for k = 4 and
D = {0.001, 0.005, 0.01, 0.05, 0.1}

In terms of memory requirements, Figure 8 reports the memory required for storing
the additional data structures for ReHub (kNN backward labels, kNN results and the
RkNN labels) and the memory requirements of EagerM materialized information (Ea-
gerM’s materialized information always requires (5×k×|V |) bytes [Yiu et al. 2006]) in
comparison to ReHub, for the same setting as our previous experiment (i.e., for k = 1
and D = {0.001, 0.005, 0.01, 0.05, 0.1}). Note that (i) EagerM will require the original
graph and (ii) ReHub will require the forward labels (see Section 3.2) for answering
RkNN queries. The corresponding memory required for storing those data structures
was reported in Table VI. Since, both the original graph and the forward labels may
also be used for answering vertex-to-vertex queries, we omit them from the memory
comparison to highlight only the overhead of the additional data structures required
for answering RkNN queries. Results show that the memory required for the addi-
tional data structures for ReHub is always less than 13Mb even for the worst perform-
ing graphs (DBLP, Citeseer2). In comparison to EagerM, ReHub requires less memory
for sparser targets (D = 0.001, D = 0.005) and EagerM requires less memory for denser
distribution of targets (D = 0.1, D = 0.05).

We repeat the previous experiment by increasing k to 4. Figure 9 reports the speedup
of ReHub in comparison to EagerM for the offline and online phases and Table VIII
reports the corresponding absolute times (µs) for ReHub. Again, we highlight in bold
ReHub’s offline and online times when they surpass 1s and 1ms respectively.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:20 A. Efentakis et al.

D

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.1

S
p
e
e
d
u
p

0.5

1

2

4

8

16

32

64

128

256
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to EagerM for
the offline phase

D

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.1

S
p
e
e
d
u
p

10

100

1000

10000

100000
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to EagerM for
the online phase.

Fig. 9: Offline and online phases of ReHub and EagerM for k = 4 and varying values
of D

Results show that increasing the value of k to 4 further augments the performance
difference between ReHub and EagerM. Regarding the offline phase, for sparse distri-
bution of targets (D = 0.001) ReHub’s offline phase is 13 − 167× faster than EagerM
and ReHub’s online phase is 1, 382− 28, 873× faster than EagerM. On all datasets and
values of k, ReHub’s online phase takes less than 2.5ms, contrary to EagerM’s online
phase which may require as much as 1s for D = 0.001 and the YouTube dataset.

In terms of memory requirements, Figure 10 reports the memory required for sto-
ring the additional data structures for ReHub (kNN backward labels, kNN results and
the RkNN labels) and the memory requirements of EagerM materialized information
in comparison to ReHub, for the same setting as our previous experiment (i.e., for
k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}). Results show that the memory required
for the additional data structures for ReHub is always less than 24Mb. In comparison
to EagerM, ReHub requires less memory in most cases for sparser targets (D = 0.001,
D = 0.005) and EagerM requires less memory for denser targets (D = 0.1, D = 0.05)
and the majority of datasets.

4.2.2. Impact of cardinality k. In our second round of experiments we evaluate the per-
formance of the offline and online phases of ReHub and EagerM, in comparison to k.
Figure 11 reports the speedup of ReHub in comparison to EagerM for the offline and
online phases forD = 0.01 and k = {1, 2, 4, 8, 16, 32}. Table IX reports the corresponding
absolute times (µs) for ReHub for easy reference. Again, we highlight in bold ReHub’s
offline and online times when they surpass 1s and 1ms respectively.

Regarding the offline phase, ReHub is always faster on all datasets and values of k,
with this difference amplified for larger values of k. For k = 2, ReHub’s offline phase
is 2 − 24× faster than EagerM. For k = 32, ReHub’s offline phase is 15 − 310× faster
than EagerM. Regarding the online phase, ReHub is 1 − 4 orders of magnitude faster
than EagerM with the difference amplified for k = 32, whereas ReHub’s online phase
is 965 − 32, 916× faster than EagerM. On all datasets and values of k, ReHub’s online
phase takes less than 2.7ms, whereas EagerM’s online phase might require as much
as 9s for the YouTube dataset and k = 32.

In terms of memory requirements, Figure 12 reports the memory required for sto-
ring the additional data structures for ReHub and the memory requirements of Ea-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:21

(a) Index size (Mb) for ReHub (b)
Mem-
ory
re-
quire-
ments
of
Ea-
gerM
in
com-
par-
i-
son
to
ReHub

Fig. 10: Memory footprint of ReHub for k = 4 and varying values of D

Time (µs)
Offline Online

Dataset 1 2 4 8 16 32 1 2 4 8 16 32
Amazon 33,945 39,957 48,143 60,210 97,838 199,641 21.9 30.3 46.5 71.8 113.1 181.7
Citeseer 27,388 33,016 36,862 45,109 68,236 114,299 26.4 38.5 50.3 86.2 124.5 191.8
Citeseer2 248,521 288,211 357,143 464,198 823,735 1,387,480 171.2 246.1 409.9 749.3 1,399.7 2252.9

DBLP 372,245 480,933 545,826 677,085 1,074,350 1,787,630 232.9 425.8 636.3 1,100 1,724.1 2725.7
Facebook 125 130 141 160 183 315 0.3 0.3 0.3 0.4 0.4 0.4
Gowalla 12,463 14,315 15,986 18,148 20,721 27,191 12.9 15.6 18.6 22.9 24.4 24.6

Notredame 9,829 10,657 11,491 12,728 16,530 30,058 6.1 7.1 10.2 13.2 16.7 21.6
Slashdot 5,659 6,507 7,182 8,126 10,002 15,260 22.9 29.8 36.5 42.2 45.7 49.2
Slashdot2 6,194 7,069 7,917 8,960 11,032 16,943 26.5 33.6 42.3 49.5 51.4 54.9
YouTube 71,925 91,094 105,365 112,468 125,870 186,024 164.0 227.7 315.5 406.9 496.2 553.9

Table IX: ReHub offline and online phase’s performance for D = 0.01 and
k = {1, 2, 4, 8, 16, 32}

gerM materialized information in comparison to ReHub, for the same setting (i.e., for
D = 0.01 and k = {1, 2, 4, 8, 16, 32}). Results show that the memory required for the ad-
ditional data structures for ReHub is less than 50Mb even for k = 32. In comparison to
EagerM, ReHub always requires less memory for k > 4 with this difference intensified
for k = 32 where ReHub may require 39× less memory than EagerM.

We repeat the previous experiment by increasing the value of D to 0.1, which is
the most favorable value for the EagerM algorithm. Figure 13 reports the speedup of
ReHub in comparison to EagerM for the offline and online phases and Table X reports
the corresponding absolute times (µs) for ReHub. Again, we highlight in bold ReHub’s
offline and online times when they surpass 1s and 1ms respectively.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:22 A. Efentakis et al.

k

1 2 4 8

1
6

3
2

S
p
e
e
d
u
p

1

2

4

8

16

32

64

128

256

512
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to EagerM for
the offline phase

k

1 2 4 8

1
6

3
2

S
p
e
e
d
u
p

10

100

1000

10000

100000
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to EagerM for
the online phase.

Fig. 11: Offline and online phases of ReHub and EagerM for D = 0.01 and varying
values of k

(a) Index size (Mb) for ReHub

k

1 2 4 8

1
6

3
2

M
e
m

o
ry

 R
a
ti

o
 (

E
a
g

e
rM

 /
 R

e
H

u
b

)

0.5

1

2

4

8

16

32

64
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Memory requirements of EagerM in compar-
ison to ReHub

Fig. 12: Memory footprint of ReHub for D = 0.01 and varying values of k

Time (µs)
Offline Online

Dataset 1 2 4 8 16 32 1 2 4 8 16 32
Amazon 307,270 230,203 251,600 294,161 440,271 918128 74 77 109 181 341 826
Citeseer 168,775 160,628 176,461 209,395 315,282 610,787 101 138 202 327 563 1211
Citeseer2 1,926,590 1,993,760 2,303,340 2,560,850 3,157,690 5,434,290 629 646 947 1,449 2,460 4,506
DBLP 2,479,130 2,404,150 2,682,460 2,849,190 3,970,470 6,062,680 573 700 1,122 1,932 3,418 6,642
Facebook 705 808 1014 1362 2171 4547 1 1 1 1 1 1
Gowalla 65,445 71,988 81,588 94,582 131,292 221,960 90 127 207 297 363 438
Notredame 49,058 48,983 53,541 63,151 91,755 207,321 33 39 56 80 111 158
Slashdot 26,705 33,186 37,483 48,750 70,912 119,654 134 228 369 566 733 892
Slashdot2 31,006 37,075 47,431 54,893 80,008 128,524 155 258 442 660 883 1,089
YouTube 459,870 379,139 448,440 622,434 879,281 1,444,430 1,179 1,435 2,457 4,318 5,825 7,202

Table X: ReHub offline and online phase’s performance for D = 0.1 and
k = {1, 2, 4, 8, 16, 32}

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:23

k

1 2 4 8

1
6

3
2

S
p
e
e
d
u
p

0.125

0.25

0.5

1

2

4

8

16

32
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to EagerM for
the offline phase

k

1 2 4 8

1
6

3
2

S
p
e
e
d
u
p

10

100

1000

10000
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to EagerM for
the online phase.

Fig. 13: Offline and online phases of ReHub and EagerM for D = 0.1 and varying values
of k

(a) Index size (Mb) for ReHub

k

1 2 4 8

1
6

3
2

M
e
m

o
ry

 R
a
ti

o
 (

E
a
g

e
rM

 /
 R

e
H

u
b

)

0.125

0.25

0.5

1

2

4

8
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Memory requirements of EagerM in compar-
ison to ReHub

Fig. 14: Memory footprint of ReHub for D = 0.1 and varying values of k

Although increasing the value of D to 0.1, closes the performance gap between Re-
Hub and EagerM, ReHub’s offline phase is still faster for k > 4. For k = 32, ReHub’s
offline phase is 3− 28× faster than EagerM. As for the online phase, ReHub is signifi-
cantly faster than EagerM on all cases. For k = 32, ReHub’s online phase is 79−4, 392×
faster than EagerM. For all datasets and values of k, ReHub’s online phase takes less
than 7.2ms, contrary to EagerM’s online phase which may require as much as 8s for
k = 32 and the YouTube dataset.

Regarding memory requirements, Figure 14 reports the memory required for storing
the additional data structures for ReHub and the memory requirements of EagerM ma-
terialized information in comparison to ReHub, for the same setting (i.e., for D = 0.1
and k = {1, 2, 4, 8, 16, 32}). Results show that the memory required for the additional
data structures for ReHub is less than 101Mb even for k = 32. In comparison to Ea-
gerM, ReHub always requires less memory for k > 8 and EagerM requires less memory
for most datasets and k ≤ 2.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:24 A. Efentakis et al.

Time (µs)
Offline Online

Dataset 0.01 0.04 0.16 0.64 1 0.01 0.04 0.16 0.64 1
Amazon 20,590 22,768 27,227 30,914 33,945 7.0 9.6 15.9 20.5 21.9
Citeseer 14,574 17,287 20,728 24,572 27,388 7.2 12.3 17.0 23.2 26.4
Citeseer2 114,165 130,117 144,524 200,649 248,521 81.1 107.7 136.4 157.9 171.2
DBLP 179,615 196,323 229,409 332,143 372,245 81.0 112.4 141.0 212.2 232.9
Facebook 91 90 107 134 125 0.2 0.2 0.2 0.3 0.3
Gowalla 6,387 6,862 8,223 10,990 12,463 7.3 7.3 8.7 12.0 12.9
Notredame 6,151 7,348 8,392 9,532 9,829 4.4 5.2 6.4 6.5 6.1
Slashdot 3,635 3,999 4,724 5,254 5,659 8.0 10.1 13.9 20.9 22.9
Slashdot2 3,868 4,352 5,089 5,714 6,194 8.4 11.0 16.1 22.3 26.5
YouTube 41,454 45,322 48,880 66,930 71,925 47.7 65.5 111.9 136.4 164.0

Table XI: ReHub offline and online phase’s performance forD = 0.01, k = 1 and varying
values of |B|

|B|

0
.0
1

0
.0
4

0
.1
6

0
.6
4 1

S
p
e
e
d
u
p

1

2

4

8

16
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to EagerM for
the offline phase

|B|

0
.0
1

0
.0
4

0
.1
6

0
.6
4 1

S
p
e
e
d
u
p

10

100

1000

10000
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to EagerM for
the online phase.

Fig. 15: Offline and online phases of ReHub and EagerM for D=0.01, k=1 and varying
values of |B|

4.2.3. Impact of target distribution. In our third experiment, we evaluate the impact of
targets distribution to the performance of the offline and online phases of ReHub and
EagerM. Again, we keep the density of targets steady at D = 0.01 and for k = 1 we ex-
periment with different values of |B| represented as percent of the total graph vertices.
Figure 15 reports the speedup of ReHub in comparison to EagerM for the offline and
online phases for D = 0.01, k = 1 and |B| = {0.01, 0.04, 0.016.0.64, 1}. Table XI reports
the corresponding absolute times (µs) for ReHub for easy reference.

Regarding the offline phase, ReHub is always faster on all datasets and values of |B|,
with this difference amplified for smaller values of |B| (more concentrated targets).
This is due to the fact that when targets are closely together, the more closer are the
kNN of each target and hence the size of the RkNN labels is smaller (see Section 3.1.3).
Considering the online phase, ReHub is always at least 17× faster than EagerM for
all values of |B| with the difference amplified for |B| = 1 (random targets), whereas
ReHub’s online phase is on average 830× faster than EagerM.

Considering memory requirements, Figure 16 reports the memory required for sto-
ring the additional data structures for ReHub and the memory requirements of Ea-
gerM materialized information in comparison to ReHub, for the previous setting (i.e.,
for D = 0.01, k = 1 and varying values of |B|). Results show that the memory re-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:25

(a) Index size (Mb) for ReHub

|B|

0
.0

1

0
.0

4

0
.1

6

0
.6

4 1

M
e
m

o
ry

 R
a
ti

o
 (

E
a
g

e
rM

 /
 R

e
H

u
b

)

0.5

1

2

4

8

16
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Memory requirements of EagerM in compar-
ison to ReHub

Fig. 16: Memory footprint of ReHub for k=1, D=0.01 and varying values of |B|

quired for the additional data structures for ReHub remains less than 5Mb. In fact,
more skewed distributions of targets (i.e., smaller values of |B|) favor ReHub more and
thus ReHub may require 5× less memory than EagerM for |B| = 0.01. Conclusively,
ReHub’s online phase never takes more than 7.2ms on all experiments, regardless of
the values of D, k and |B| and is therefore orders of magnitude faster than EagerM
which may require up to 9s for k = 32, while requiring less memory than EagerM
on many cases. Therefore for a static set of targets, ReHub’s online phase is orders of
magnitude faster than either Eager or EagerM, and is thus, the only RkNN solution
fast enough for real-time applications.

4.3. Comparison to NaiveToMany and theoretical insights
In the previous section we have shown that ReHub vastly outperforms EagerM for a
static set of targets. In Section 3.1.3, we have also stated that RkNN queries may also
be answered by keeping the two initial stages (i.e., the kNN backward labels construc-
tion and the batch kNN calculations from targets) of ReHub’s offline phase untouched
and then construct the labels-to-many data structure. Then, we could run a one-to-
many query using the labels-to-many, while checking which of the calculated distances
to a target are smaller than the distance of the kNN of this specific target. We referred
to this RkNN alternative solution as the NaiveToMany algorithm. In this section, we
will compare ReHub and the NaiveToMany algorithm and provide additional informa-
tion about ReHub’s online phase complexity to highlight how the ReHub’s online phase
performs in comparison to the theoretical bounds presented in Section 3.3.

4.3.1. Impact of target density D. In our first round of experiments we evaluate the per-
formance of the offline and online phases of ReHub in comparison with the Naive-
ToMany algorithm for varying values of target density D. Figure 17 reports the
speedup of ReHub in comparison to NaiveToMany for the offline and online phases
for k = 1 and D = {0.001, 0.005, 0.01, 0.05, 0.1}.

Results show that ReHub’s offline phase is always faster than NaiveToMany with
this difference amplified for denser targets (i.e., larger values of D), where ReHub’s
offline phase is 2 − 4× faster for the largest datasets. The same pattern is even more
prominent for the online phase, where ReHub is 52 − 221× faster for D = 0.1 and
the datasets with the highest |HL|/|V | ratio (i.e., Amazon, Citeseer, Citeseer2, DBLP).
Considering that large values of D is the least favourable case for ReHub compared

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:26 A. Efentakis et al.

D

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.1

S
p
e
e
d
u
p

1

2

4

8
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to Naive-
ToMany for the offline phase

D

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.1

S
p
e
e
d
u
p

1

2

4

8

16

32

64

128

256
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to Naive-
ToMany for the online phase.

Fig. 17: Offline and online phases of ReHub and NaiveToMany for k = 1 and varying
values of D

D

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

S
iz

e
 o

f
L

a
b

e
ls

 (
N

a
iv

e
T

o
M

a
n

y
 /
 R

e
H

u
b

)

1

2

4

8

16

32

64

128
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Size of RkNN and to-Many labels for ReHub.
D

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

M
e
m

o
ry

 R
a
ti

o
 (

N
a
iv

e
T

o
M

a
n

y
 /
 R

e
H

u
b

)

1

2

4

8

16

32

64

128
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Memory requirements of NaiveToMany in com-
parison to ReHub.

Fig. 18: Memory footprint of ReHub vs NaiveToMany for k=1 and varying values of D

to the previous Eager and EagerM algorithms, this clearly showcases how ReHub is
clearly a much better alternative than the NaiveToMany algorithm.

In terms of memory requirements, Figure 18(a) reports the size of the RkNN labels
in comparison to the labels-to-many (i.e., the inverse of the variable ε introduced in
Section 3.3). Results show that the construction of the RkNN labels is very efficient,
since RkNN labels may be 35 − 115× smaller than the labels-to-many for D = 0.1
and the datasets with the highest |HL|/|V | ratio. Overall, the variable ε decreases
with increasing values of D. Figure 18(b) shows the total memory required for storing
the corresponding data structures (kNN backward labels, kNN results) and the RkNN
labels (ReHub) or labels-to-many (NaiveToMany) for the two algorithms. Again, ReHub
occupies significantly less memory, requiring 22−80× less memory for D = 0.1 and the
datasets with the highest |HL|/|V | ratio.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:27

Fig. 19: Online phase complexity of ReHub and NaiveToMany in comparison to theo-
retical bounds for k = 1 and varying values of D

k

1 2 4 8

1
6

3
2

S
p
e
e
d
u
p

1

2

4
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to Naive-
ToMany for the offline phase

k

1 2 4 8

1
6

3
2

S
p
e
e
d
u
p

1

2

4

8

16

32

64

128
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to Naive-
ToMany for the online phase.

Fig. 20: Offline and online phases of ReHub and NaiveToMany for D = 0.01 and varying
values of k

In Section 3.3 we have shown that the complexity of the online phase of ReHub is
expected to be between ε · D · (|HL|

|V |)
2 (best case) and ε · D · |HL| (worst case). Like-

wise the complexity of the online phase of the NaiveToMany algorithm is the same as
the one-to-many query and hence between D · (|HL|

|V |)
2 and D · |HL|. Figure 19 shows

the number of (id, dist) pairs accessed during the online phase by the two algorithms,
in comparison to ε · D · (|HL|

|V |)
2 (lower bound for ReHub) and D · |HL| (upper bound

for NaiveToMany). Results show that for the datasets with the highest |HL|/|V | ratio
and for D = 0.1, ReHub’s performance is very close to its lower bound, while the cor-
responding NaiveToMany performance converges to its upper bound. Thus, for those
datasets the complexity of ReHub’s online phase is significantly better than the Naive-
ToMany algorithm, while in the smaller datasets although ReHub still performs better,
the performance gap between the two algorithms is not that prominent.

4.3.2. Impact of cardinality k. In our second round of experiments we evaluate the per-
formance of the offline and online phases of ReHub and NaiveToMany, in comparison
to k. Figure 20 reports the speedup of ReHub in comparison to EagerM for the offline
and online phases for D = 0.01 and k = {1, 2, 4, 8, 16, 32}.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:28 A. Efentakis et al.

k

1 2 4 8

1
6

3
2

S
iz

e
 o

f
L

a
b

e
ls

 (
N

a
iv

e
T

o
M

a
n

y
 /

 R
e

H
u

b
)

1

2

4

8

16

32

64
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Size of RkNN and to-Many labels for ReHub.
k

1 2 4 8

1
6

3
2

M
e

m
o

ry
 R

a
ti

o
 (

N
a

iv
e

T
o

M
a

n
y

 /
 R

e
H

u
b

)

1

2

4

8

16

32
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Memory requirements of NaiveToMany in com-
parison to ReHub.

Fig. 21: Memory footprint of ReHub vs NaiveToMany for D=0.01 and varying values
of k

Fig. 22: Online phase complexity of ReHub and NaiveToMany in comparison to theo-
retical bounds for D = 0.01 and varying values of k

For the offline phase, ReHub is always faster on all datasets and values of k, with
this difference increased for smaller values of k. For k = 1, ReHub’s offline phase is 3×
faster for the datasets with the highest |HL|/|V | ratio (Amazon, Citeseer2, DBLP). As
expected, this advantage diminishes for larger values of k, since for those values of k
ReHub will converge to the NaiveToMany algorithm. Considering the online phase,
ReHub is 30 − 43× faster than NaiveToMany for k = 1 and the datasets with the
highest |HL|/|V | ratio, while for k = 32, ReHub is still 3 − 7× faster for the same
datasets. Again, considering that small values of k is the least favourable case for
ReHub in comparison to the previous Eager and EagerM algorithms, again our results
demonstrate that ReHub is a much better solution than the NaiveToMany algorithm.

In terms of memory requirements, Figure 21(a) reports the size of the RkNN labels
in comparison to the labels-to-many (i.e., the inverse of the variable ε). Results show
that for k = 1, RkNN labels may be 11 − 42× smaller than the labels-to-many and
the datasets with the highest |HL|/|V | ratio. Overall, the variable ε increases with
increasing values of k. Figure 21(b) shows the total memory required for storing the
corresponding data structures (kNN backward labels, kNN results) and the RkNN
labels (ReHub) or the labels-to-many (NaiveToMany) for the two algorithms. Again,
ReHub occupies significantly less memory, requiring 6−26× less memory for k = 1 and
the datasets with the highest |HL|/|V | ratio.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:29

|B|

0
.0
1

0
.0
4

0
.1
6

0
.6
4 1

S
p
e
e
d
u
p

1

2

4

8
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Speedup of ReHub in comparison to Naive-
ToMany for the offline phase

|B|

0
.0
1

0
.0
4

0
.1
6

0
.6
4 1

S
p
e
e
d
u
p

1

2

4

8

16

32

64

128
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Speedup of ReHub in comparison to Naive-
ToMany for the online phase.

Fig. 23: Offline and online phases of ReHub and NaiveToMany for D=0.01, k=1 and
varying values of |B|

Finally, Figure 22 shows the number of (id, dist) pairs accessed during the online
phase by the two algorithms, in comparison to ε ·D · (|HL||V |)

2 (lower bound for ReHub)
and D · |HL| (upper bound for NaiveToMany). Results show that for the datasets with
the highest |HL|/|V | ratio and for small values of k, ReHub’s performance is close to
the theoretical lowest bound, while the corresponding NaiveToMany performance con-
verges to the corresponding upper bound. For the remaining datasets, the complexity
of ReHub’s online phase is marginally better than the NaiveToMany algorithm.

4.3.3. Impact of target distribution. In our third experiment, we evaluate the impact of
target distribution to the performance of the offline and online phases of ReHub and
NaiveToMany. We keep the density of targets steady at D = 0.01 and for k = 1 we ex-
periment with different values of |B| represented as percent of the total graph vertices.
Figure 23 reports the speedup of ReHub in comparison to NaiveToMany for the offline
and online phases for D = 0.01, k = 1 and |B| = {0.01, 0.04, 0.016.0.64, 1}.

Regarding the offline phase, ReHub is consistently faster on all datasets and values
of |B|, with this difference slightly amplified for smaller values of |B|. This is due to the
fact that when targets are closely together, the more closer are the kNN of each target
and hence the size of the RkNN labels is smaller in comparison to the labels-to-many
(see Section 3.1.3). For the online phase, ReHub is 58−101× faster than NaiveToMany
for |B| = 0.01 and the datasets with the highest |HL|/|V | ratio, while for |B| = 1,
ReHub remains 13− 45× faster for the same datasets.

Figure 24(a) reports the size of the RkNN labels in comparison to the labels-to-many
(i.e., the inverse of the variable ε). Results show that the variable ε decreases with
decreasing values of |B| (denser distribution of objects). Figure 24(b) shows the total
memory required for storing the corresponding data structures (kNN backward labels,
kNN results) and the RkNN labels (ReHub) and labels-to-many (NaiveToMany) for the
two algorithms. Again, ReHub occupies significantly less memory, requiring 15 − 30×
less memory for B = 0.01 and the datasets with the highest |HL|/|V | ratio.

Finally, Figure 25 shows the number of (id, dist) pairs accessed during the online
phase by the two algorithms, in comparison to ε ·D · (|HL||V |)

2 (lower bound for ReHub)
and D · |HL| (upper bound for NaiveToMany). Results show that for the datasets with

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:30 A. Efentakis et al.

|B|

0
.0

1

0
.0

4

0
.1

6

0
.6

4 1

S
iz

e
 o

f
L

a
b

e
ls

 (
N

a
iv

e
T

o
M

a
n

y
 /
 R

e
H

u
b

)

1

2

4

8

16

32

64

128

256
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) Size of RkNN and to-Many labels for ReHub.
|B|

0
.0

1

0
.0

4

0
.1

6

0
.6

4 1

M
e

m
o

ry
 R

a
ti

o
 (

N
a

iv
e

T
o

M
a

n
y

 /
 R

e
H

u
b

)

1

2

4

8

16
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) Memory requirements of NaiveToMany in com-
parison to ReHub.

Fig. 24: Memory footprint of ReHub vs NaiveToMany for k=1, D=0.01 and varying
values of |B|

Fig. 25: Online phase complexity of ReHub and NaiveToMany in comparison to theo-
retical bounds for D = 0.01, k = 1 and varying values of |B|

the highest |HL|/|V | ratio and for small values of |B| (i.e., for |B| ≤ 0.04), ReHub’s
performance is very close to the theoretical lowest bound, while the corresponding
NaiveToMany performance converges to the corresponding upper bound.

Conclusively, ReHub not only outperforms the previous state-of-the-art Eager and
EagerM algorithms but also exhibits optimal performance, especially for the least
favourable cases (i.e., for small values of k and large values of D). Hence, it will be
very hard to provide a better hub labeling solution for RkNN queries than ReHub.

4.4. The All-RkNN problem
As stated in Section 3.5, for the All-RkNN variation (i.e., precomputing the RkNN for
every graph vertex v ∈ V for a static set of targets P and a known value of k), we
can use either ReHub or EagerM. For both algorithms that would require to run the
offline phase once and then perform the online phase for every graph vertex, for a
total of |V | iterations. In this section, we will provide the approximate query times
for running the online phase for |V | iterations for EagerM and ReHub, based on the
average query times reported on the previous sections. We have omitted the offline
phase in those calculations, since it will have negligible impact on the calculated times.
We use the aforementioned approximation, because running the complete experiments
for EagerM would require several months that would be infeasible.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:31

Fig. 26: All-RkNN preprocessing time with ReHub and EagerM for k = 1 and varying
values of D

Fig. 27: All-RkNN preprocessing time with ReHub and EagerM for D = 0.01 and vary-
ing values of k

Figure 26 shows the calculated query times (in minutes) for running the online phase
for ReHub and EagerM for a total of |V | iterations for k = 1 and varying values of D
(i.e., for D = {0.001, 0.005, 0.01, 0.05, 0.1}). Results show that, ReHub is the only viable
solution for the All-RkNN problem. For all datasets and values of D, ReHub would
require less than 9.3min, while EagerM would require more than 3 days (73 hours) for
the YouTube dataset and D = 0.001. Even for D = 0.1 which is the most favourable
case for EagerM, the corresponding calculation would still require more than 21 hours.
For Citeseer2 and DBLP and for D = 0.001, EagerM would require 5 and 12 hours
respectively, while ReHub would only require less than 1.1min on both cases.

Figure 27 shows the calculated query times for running the online phase for ReHub
and EagerM for a total of |V | iterations for D = 0.01 and varying values of k (i.e., for
k = {1, 2, 4, 8, 16, 32}). Here, results favour ReHub even more. For all datasets and
values of k, ReHub would require less than 25min, while for k = 32 EagerM would re-
quire 123, 23 and 11 days for the YouTube, DBLP and Citeseer2 datasets respectively.
Hence, ReHub is the only practical solution for solving the All-RkNN query variation
for increasing values of k.

Finally, Figure 28 shows the calculated query times (in minutes) for running the
online phase for ReHub and EagerM for a total of |V | iterations for k = 1, D = 0.01
and varying values of |B| (i.e., for |B| = {0.01, 0.04, 0.16, 0.64, 1}). Once again, ReHub
would never require more than 3min for all datasets and values of |B|, while EagerM
would require 2.2days for the YouTube dataset and |B| = 1. Conclusively, ReHub is the
only RkNN algorithm fast enough to make the computation of the RkNN of all graph
vertices for large-scale networks practical, requiring less than a few minutes for all
tested values of D, k and |B|.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:32 A. Efentakis et al.

Fig. 28: All-RkNN preprocessing time with ReHub and EagerM for D = 0.01, k = 1 and
varying values of |B|

D

0
.0

0
1

0
.0

0
5

0
.0

1

0
.0

5

0
.1

M
e

m
o

ry
 R

a
ti

o
 (

A
ll

-R
k

n
n

 /
 R

e
H

u
b

)

2

4

8

16

32

64

128

256

512
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(a) For k = 1 and varying values of
D

k

1 2 4 8

1
6

3
2

M
e

m
o

ry
 R

a
ti

o
 (

A
ll

-R
k

n
n

 /
 R

e
H

u
b

)

4

8

16

32

64

128

256
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(b) For D = 0.01 and varying va-
lues of k

|B|

0
.0

1

0
.0

4

0
.1

6

0
.6

4 1

M
e

m
o

ry
 R

a
ti

o
 (

A
ll

-R
k

n
n

 /
 R

e
H

u
b

)

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024
Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot

Slashdot2

Youtube

(c) For k = 1, D = 0.01 and vary-
ing values of |B|

Fig. 29: Memory requirements of All-RkNN in comparison to ReHub

4.4.1. Memory requirements. Our previous experimentation has clearly shown that Re-
Hub is the only practical solution for precomputing the RkNN for every graph ver-
tex v ∈ V for a static set of targets and a known value of k. This section will compare
the memory requirements of storing those RkNN results for all graph vertices (i.e.,
the RkNN results vector - see Section 3.5) with the necessary ReHub data structures
(kNN results and the RkNN labels) for answering RkNN queries. Note that this com-
parison is already unfair for ReHub because the All-RkNN variation will still require
all ReHub’s data structures (including the forward labels) during its offline phase. For
fairness, we also excluded the forward labels from the comparison, because the for-
ward labels for both algorithms should be kept in main memory, in case that the set
of targets P or the value of k changes. However, since running the complete All-RkNN
experiments even by ReHub for all datasets, values of k, D and |B| would require sev-
eral days, we approximated the number of RkNN results returned per vertex by the
same 1000 RkNN queries used in the previous sections and hence the size of the RkNN
results vector is approximated by 5 · |V | · |RkNN | bytes (since for storing each RkNN of
a graph vertex requires 5 bytes). Figure 29 shows the corresponding results.

Figure 29(a) shows that for k = 1 and varying values of D, ReHub requires 2− 256×
less memory than the All-RkNN variation. Although, this difference decreases with
larger values of D, for the YouTube dataset ReHub still requires 86× less memory,
even for D = 0.1. Likewise, Figure 29(b) shows that for D = 0.01 and varying values
of k, ReHub requires 2 − 241× less memory than the All-RkNN variation, with this
difference amplified with larger values of k. Interestingly enough, on the YouTube
dataset and k = 32 the All-RkNN storage takes as much as 2.5GB, whereas ReHub

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:33

only requires 10Mb. Finally, Figure 29(c) shows that for k = 1, D = 0.01 and varying
values of |B|, ReHub requires up to 708× less memory than the All-RkNN variation,
with this difference amplified for |B| between 0.16 and 0.64.

Hence, although ReHub’s online phase will always be slower than the All-RkNN so-
lution, ReHub requires significantly less main memory. On the practical scenario of a
static graph (with no vertex or edge updates) where targets may change in infrequent
intervals or applications in which users perform multiple concurrent RkNN queries
over different sets of targets, ReHub would typically require less than 1s (for its of-
fline phase) when targets change, whereas in the All-RkNN variation the system will
have to stay offline for a few minutes, rendering the corresponding solution totally im-
practical. Thus, ReHub is still the most practical solution for real-world applications,
combining fast query performance and applicability.

4.5. Summary
Our extensive experimentation has shown that ReHub exhibits excellent query perfor-
mance and requires very small additional memory for all tested networks, regardless of
the target density, the cardinality k of the RkNN result or the distribution of targets.
In comparison to previous works, ReHub clearly outperforms all previous solutions
(Eager, EagerM) tested on large-scale graphs on the majority of cases, especially for
increasing values of k, where the performance of previous state-of-the-art methods de-
grades polynomially. Especially for static sets of targets, the online phase of ReHub is
orders of magnitude faster than EagerM, making ReHub the only RkNN algorithm fast
enough for real-time applications on large-scale networks. Moreover, we have demon-
strated that ReHub is the only practical solution for precomputing the RkNN of every
graph vertex, requiring less than a few minutes on all cases. In addition, Efentakis et
al. [Efentakis et al. 2015a] have showed that the online phase of ReHub may be easily
translated to a simple SQL query on a open-source database engine, making ReHub
the only RkNN solution that may also be used on a pure-SQL context, for even greater
versatility and scalability.

Moreover, we showed that ReHub can easily handle networks where the size of the
created labels are more than three thousand hubs per vertex (e.g., Citeseer2, DBLP)
and hence, the proposed algorithm will be even more efficient and faster when applied
to sparser graph classes (e.g., road networks), where the size of the created labels are
less than a few hundred hubs per vertex for well behaving metrics (e.g., travel times).
We have also provided theoretical bounds for ReHub’s performance and have demon-
strated how ReHub actually performs in practice, in comparison to those bounds. Com-
pared to the specialized RkNN solutions presented in road networks [Safar et al. 2009;
Borutta et al. 2014] ReHub may handle two orders of magnitude larger, denser net-
works (those previous methods were only tested on very small road networks of 110k
arcs and 50k vertices respectively), may scale easily for k = 32, where previous sec-
ondary storage methods have only been tested for up to k = 8 [Borutta et al. 2014] or
k = 20 [Safar et al. 2009]. But even then, e.g., for k = 8 those methods require more
than 300ms [Borutta et al. 2014], whereas for similarly small networks (e.g. Gowalla)
ReHub’s offline phase requires < 20ms and the online phase < 0.02ms. Even for larger
networks, the online phase typically requires less than 1ms, i.e., ReHub is at least 3 or-
ders of magnitude faster. Therefore, it is safe to say that ReHub will be the best overall
RkNN algorithm for any network where HL algorithms typically perform well.

5. CONCLUSION AND FUTURE WORK
This work introduced ReHub, a novel main-memory algorithm that extends the Hub
Labeling approach to efficiently handle RkNN queries on large-scale graphs. Our expe-
rimentation showed that ReHub provides excellent query performance, has minimal

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:34 A. Efentakis et al.

additional memory requirements and scales very well with the network size, the tar-
get density, the target distribution, the size of the labels and the cardinality of the
reverse k-nearest neighbor result. Given these results, ReHub clearly outperforms all
previous methods on the majority of cases and is thus, the best overall and most com-
plete solution for RkNN queries with the added advantage that it is the only solution
which is fast enough for use in real-time applications. Moreover, our experimentation
has shown that ReHub is the only practical solution for precomputing the RkNN of
every graph vertex, requiring less than a few minutes on all cases, while previous so-
lutions would require days for the same computation. As later extension papers have
already demonstrated, ReHub’s online phase may be easily translated to a simple SQL
query, for use in cases where a pure secondary storage database solution is preferable.

Directions for future work are to extend ReHub towards handling targets updates,
i.e., vertices may be added or deleted from the targets’ set. Not having to redo the
offline phase from scratch for such updates will significantly increase the practical
applicability of the algorithm. Also testing our results on directed graphs and road
networks will further showcase the algorithm’s performance with respect to a wider
range of graph classes, additional hub labelling algorithms and domains.

REFERENCES
Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. 2012. HLDB:

Location-based Services in Databases. In Proceedings of the 20th International Conference on Ad-
vances in Geographic Information Systems (SIGSPATIAL ’12). ACM, New York, NY, USA, 339–348.
DOI:http://dx.doi.org/10.1145/2424321.2424365

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2011. A Hub-Based Labeling
Algorithm for Shortest Paths in Road Networks. In Experimental Algorithms, PanosM. Pardalos and
Steffen Rebennack (Eds.). Lecture Notes in Computer Science, Vol. 6630. Springer Berlin Heidelberg,
230–241. DOI:http://dx.doi.org/10.1007/978-3-642-20662-7 20

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2012. Hierarchical
Hub Labelings for Shortest Paths. In Algorithms ESA 2012, Leah Epstein and Paolo Ferrag-
ina (Eds.). Lecture Notes in Computer Science, Vol. 7501. Springer Berlin Heidelberg, 24–35.
DOI:http://dx.doi.org/10.1007/978-3-642-33090-2 4

Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. 2014. Fast Shortest-path Distance
Queries on Road Networks by Pruned Highway Labeling. In 2014 Proceedings of the Sixteenth Workshop
on Algorithm Engineering and Experiments, ALENEX 2014, Portland, Oregon, USA, January 5, 2014.
147–154. DOI:http://dx.doi.org/10.1137/1.9781611973198.14

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path distance queries
on large networks by pruned landmark labeling. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 2013, New York, USA. 349–360.
DOI:http://dx.doi.org/10.1145/2463676.2465315

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2015. Pruned Landmark Labeling [Online]. https://github.
com/iwiwi/pruned-landmark-labeling. (2015).

Rka Albert, Hawoong Jeong, and Albert-Lszl Barabsi. 1999. The diameter of the world wide web. CoRR
cond-mat/9907038 (1999). http://dblp.uni-trier.de/db/journals/corr/corr9907.html\#cond-mat-9907038

David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea Kappes, and Dorothea
Wagner. 2014. Benchmarking for Graph Clustering and Partitioning. In Encyclopedia of Social
Network Analysis and Mining, Reda Alhajj and Jon Rokne (Eds.). Springer New York, 73–82.
DOI:http://dx.doi.org/10.1007/978-1-4614-6170-8 23

Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter
Sanders, Dorothea Wagner, and Renato F. Werneck. 2015. Route Planning in Transportation Networks.
CoRR abs/1504.05140 (2015). http://arxiv.org/abs/1504.05140

Felix Borutta, Mario A. Nascimento, Johannes Niedermayer, and Peer Kröger. 2014. Monochromatic RkNN
Queries in Time-dependent Road Networks. In Proceedings of the Third ACM SIGSPATIAL Interna-
tional Workshop on Mobile Geographic Information Systems (MobiGIS ’14). ACM, New York, NY, USA,
26–33. DOI:http://dx.doi.org/10.1145/2675316.2675317

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

ReHub. Extending Hub labels for reverse k-nearest neighbor queries on large-scale networksXXXX:35

Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Xuefei Li. 2012. Continuous Re-
verse K Nearest Neighbors Queries in Euclidean Space and in Spatial Networks. The VLDB Journal
21, 1 (Feb. 2012), 69–95. DOI:http://dx.doi.org/10.1007/s00778-011-0235-9

Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility: user movement in
location-based social networks. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011. 1082–1090.
DOI:http://dx.doi.org/10.1145/2020408.2020579

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability and Distance Queries via
2-hop Labels. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’02). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 937–946. http:
//dl.acm.org/citation.cfm?id=545381.545503

Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. 2015. Public Transit Labeling. In Ex-
perimental Algorithms, Evripidis Bampis (Ed.). Lecture Notes in Computer Science, Vol. 9125. Springer
International Publishing, 273–285. DOI:http://dx.doi.org/10.1007/978-3-319-20086-6 21

Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck. 2011. PHAST: Hardware-
Accelerated Shortest Path Trees. In 25th IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May, 2011 - Conference Proceedings. 921–931.
DOI:http://dx.doi.org/10.1109/IPDPS.2011.89

Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck. 2013. PHAST:
Hardware-accelerated shortest path trees. J. Parallel Distrib. Comput. 73, 7 (2013), 940–952.
DOI:http://dx.doi.org/10.1016/j.jpdc.2012.02.007

Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. 2014. Robust Distance
Queries on Massive Networks. In Algorithms - ESA 2014, AndreasS. Schulz and Dorothea Wag-
ner (Eds.). Lecture Notes in Computer Science, Vol. 8737. Springer Berlin Heidelberg, 321–333.
DOI:http://dx.doi.org/10.1007/978-3-662-44777-2 27

Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2011. Faster Batched Shortest Paths
in Road Networks. In ATMOS 2011 - 11th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems, Saarbrücken, Germany, September 8, 2011. 52–63.
DOI:http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.52

Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2013. Hub Label Compression. In Ex-
perimental Algorithms, Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela
(Eds.). Lecture Notes in Computer Science, Vol. 7933. Springer Berlin Heidelberg, 18–29.
DOI:http://dx.doi.org/10.1007/978-3-642-38527-8 4

Daniel Delling and Renato F. Werneck. 2015. Customizable Point-of-Interest Queries
in Road Networks. IEEE Trans. Knowl. Data Eng. 27, 3 (2015), 686–698.
DOI:http://dx.doi.org/10.1109/TKDE.2014.2345386

Alexandros Efentakis. 2016. Scalable Public Transportation Queries on the Database. In Proceedings of
the 19th International Conference on Extending Database Technology, EDBT 2016, Bordeaux, France,
March 15-18, 2016. 527–538. DOI:http://dx.doi.org/10.5441/002/edbt.2016.50

Alexandros Efentakis, Christodoulos Efstathiades, and Dieter Pfoser. 2015a. COLD. Revisiting Hub Labels
on the Database for Large-Scale Graphs. In Advances in Spatial and Temporal Databases, Christophe
Claramunt, Markus Schneider, Raymond Chi-Wing Wong, Li Xiong, Woong-Kee Loh, Cyrus Shahabi,
and Ki-Joune Li (Eds.). Lecture Notes in Computer Science, Vol. 9239. Springer International Publish-
ing, 22–39. DOI:http://dx.doi.org/10.1007/978-3-319-22363-6 2

Alexandros Efentakis and Dieter Pfoser. 2014. GRASP. Extending Graph Separators for the Single-
Source Shortest-Path Problem. In Algorithms - ESA 2014, Andreas S. Schulz and Dorothea Wag-
ner (Eds.). Lecture Notes in Computer Science, Vol. 8737. Springer Berlin Heidelberg, 358–370.
DOI:http://dx.doi.org/10.1007/978-3-662-44777-2 30

Alexandros Efentakis, Dieter Pfoser, and Yannis Vassiliou. 2015b. SALT. A Unified Framework for All
Shortest-Path Query Variants on Road Networks. In Experimental Algorithms, Evripidis Bampis
(Ed.). Lecture Notes in Computer Science, Vol. 9125. Springer International Publishing, 298–311.
DOI:http://dx.doi.org/10.1007/978-3-319-20086-6 23

Fletcher Foti, Paul Waddell, and Dennis Luxen. 2012. A Generalized Computational Framework for Accessi-
bility: From the Pedestrian to the Metropolitan Scale. In Proceedings of the 4th Transportation Research
Board Conference on Innovations in Travel Modeling (ITM), Tampa, Florida, USA.

Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. 2001. Distance Labeling in Graphs. In Pro-
ceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’01). Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 210–219. http://dl.acm.org/citation.cfm?
id=365411.365447

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

XXXX:36 A. Efentakis et al.

Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. 2004. Distance Labeling in Graphs. J. Algo-
rithms 53, 1 (Oct. 2004), 85–112. DOI:http://dx.doi.org/10.1016/j.jalgor.2004.05.002

Robert Geisberger. 2011. Advanced Route Planning in Transportation Networks. Ph.D. Dissertation. Insti-
tute of Theoretical Informatics, Algorithmics II - Karlsruhe Institute of Technology (KIT).

Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008a. Better Approximation of Betweenness
Centrality.. In ALENEX, J. Ian Munro and Dorothea Wagner (Eds.). SIAM, 90–100. http://dblp.uni-trier.
de/db/conf/alenex/alenex2008.html\#GeisbergerSS08

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008b. Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In Experimental Algorithms, 7th Inter-
national Workshop, WEA 2008, Provincetown, MA, USA, May 30-June 1, 2008, Proceedings. 319–333.
DOI:http://dx.doi.org/10.1007/978-3-540-68552-4 24

Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. 2012. Exact Routing in
Large Road Networks Using Contraction Hierarchies. Transportation Science 46, 3 (2012), 388–404.
DOI:http://dx.doi.org/10.1287/trsc.1110.0401

Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and Yanyan Xu. 2014. Hop Doubling Label
Indexing for Point-to-Point Distance Querying on Scale-Free Networks. PVLDB 7, 12 (2014), 1203–
1214. http://www.vldb.org/pvldb/vol7/p1203-jiang.pdf

Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner. 2007. Computing
Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of the Nine Workshop on
Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6,
2007. DOI:http://dx.doi.org/10.1137/1.9781611972870.4

Flip Korn and S. Muthukrishnan. 2000. Influence Sets Based on Reverse Nearest Neighbor Queries. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD
’00). ACM, New York, NY, USA, 201–212. DOI:http://dx.doi.org/10.1145/342009.335415

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http:
//snap.stanford.edu/data. (June 2014).

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009. Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet
Mathematics 6, 1 (2009), 29–123. DOI:http://dx.doi.org/10.1080/15427951.2009.10129177

Ling Liu and M. Tamer Özsu (Eds.). 2009. Encyclopedia of Database Systems. Springer US.
Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles in Ego Networks. In Ad-

vances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States. 548–556. http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks

Kurt Mehlhorn and Peter Sanders. 2008. Algorithms and Data Structures: The Basic Toolbox. Springer,
Berlin.

Maytham Safar, Dariush Ibrahimi, and David Taniar. 2009. Voronoi-based reverse nearest
neighbor query processing on spatial networks. Multimedia Systems 15, 5 (2009), 295–308.
DOI:http://dx.doi.org/10.1007/s00530-009-0167-z

Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou. 2015. Efficient Route Planning on
Public Transportation Networks: A Labelling Approach. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 967–982.
DOI:http://dx.doi.org/10.1145/2723372.2749456

Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Communities Based on Ground-
Truth. In 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, Decem-
ber 10-13, 2012. 745–754. DOI:http://dx.doi.org/10.1109/ICDM.2012.138

Man Lung Yiu, D. Papadias, Nikos Mamoulis, and Yufei Tao. 2006. Reverse nearest neighbors in
large graphs. Knowledge and Data Engineering, IEEE Transactions on 18, 4 (April 2006), 540–553.
DOI:http://dx.doi.org/10.1109/TKDE.2006.1599391

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article XXXX, Publication date: November 2016.

