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ABSTRACT

It is long known that a user’s mobility pattern can be affected by
his social connections. Users tend to visit same locations visited by
their friends. In this paper we investigate the inverse problem: How
does a set of user trajectories reflect their social connections. To this
end, we define the social connection prediction problem. Given two
users, predict the probability that they are friends by mining their
historical trajectories. A first approach to do so is to exam how often
the two users visit the same location at the same time, which suffers
from the problem that different locations/times may have different
predictive power. We propose a comprehensive prediction model
that is able to capture this difference between locations and time
slots. To demonstrate its effectiveness, we trained the proposed
model using the publicly available Foursquare dataset. The result
shows the proposed model is able to predict existence of social
connections between randomly selected users significantly more
accurate comparing with the naive method.
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1 INTRODUCTION

In the past decade, with the rise of Location-Based Social Networks
(LBSN), huge amount of geo-spatial data is collected on a daily
basis. For example, the Foursquare[15] dataset contains more than
30 millions of self-reported check-ins from thousands of users. As a
result, it becomes possible to mine spatio-temporal data and study
human mobility pattern at unprecedented large scale.

Studies on human mobility patterns reveal that a user’s move-
ment can be affected to certain extent by his social connections [2,
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Figure 1: An illustration of spatio-temporal social connec-
tion prediction.

17]. The underlying hypothesis here is that friends are likely to visit
the same locations during the same time periods, which could be
the result of attending the same social events. As such, it is possible
to predict a user’s future movement by mining the historical trajec-
tory of his friends on a LBSN. These studies have since inspired a
series of research efforts towards the prediction of future individual
movements (e.g., [4, 7, 10, 12]). Another research direction (e.g.,
[14]) focuses on exploring historical trajectories to identify users
who share similar interests for locations.

Towards the goal of a more thorough understanding of human
mobility patterns, we propose to investigate the inverse problem:
How does a set of users’ trajectory reflect their social connections.
We define the social connection prediction problem: Given the
trajectories of two LBSN users u; and uj, we aim to model the
probability that u; and u; are friends on the LBSN using their
trajectories. Social connection prediction is a long standing research
topic. To the best of our knowledge, none of the existing approaches
exploit the users’ trajectories for link prediction. The focus of this
paper is not to compete with, but to supplement existing methods
by exploring a new dimension of data source.

A straightforward way to predict the social connection, or the
lack thereof, between two users is to examine the spatio-temporal
overlap of their trajectories, i.e., find events where the two users visit
the same location at the same time on their trajectories. We define
such an event as a co-visitation of the two users. The assumption
is, if two users frequently visit the same location during the same
time peroid, their likelihood of being friends increases. Thus the
occurance of co-visitations could reflect when and where they were
meeting. The same assumption is used to identify similar users
in [14]. Algorithms such as co-location mining [13] can be used to
discover co-visitations among users.

Although a solution for link prediction based on just the above
assumption is reasonable, it suffers from two problems. First, it
treats all locations equally in predicting social connections, which
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is not realistic. For example, if two users frequently meet at private
locations like someone’s house, or a small coffee shop, it is very
likely that they know each other. However, if they both check-in
to the same Walmart supermarket after work, it might be just an
coincidence simply because it is the only supermarket near their
home. Second, this method ignores the time difference of check-in
behaviours. If two users both check-in to a restaurant at 6:00pm, it
is not as significant as two users visit the same location at 10:00pm.
This is because most customer of the restaurant may choose to
dine there around 6:00pm, but if two users both decide to check-in
there at 10:00pm, the chances are higher that they may be attending
the same social event. Although the technique proposed in [14]
considered the impact of different granularity of locations (e.g., the
same state v.s. the same city), it does not explicitly distinguish the
predictive power of different locations/time for different users.
We propose a more comprehensive methodology to study the
social connection prediction problem. Unlike the naive solution,
we assume different locations and different time slots have different
predictive power. As such, we propose a social connection pre-
diction model in which the predictive power of each location and
time slot are modelled by latent variables. The proposed model is
based on a novel data structure termed Spatio-Temporal Co-visitation
Matrix. Additionally, our model also takes into consideration the
geographic distance between the user’s home/work location to
the co-visitation locations. Using the users’ social connections on
Foursquare as ground truth, we show that the proposed model
outperforms the naive algorithm that counts only the number of
co-visitations. We summarize our contributions as follows:

o We study how the trajectories of a set of users reflect their social
connections. To this end, we define the social connection predic-
tion problem: Given the trajectories of two LBSN users u and v,
model the probability that u and v are friends on the LBSN.

e Our key observation is: different locations and time may have
different predictive power, which is in accordance with common
sense. As such, we propose a social connection prediction model
that is able to capture this difference among locations and times
using latent variables.

o We evaluate effectiveness of the proposed model using the Foursquare

dataset. The result shows the proposed method outperforms the
naive trajectory overlap based solution.

The rest of the paper is organized as follows: Related works are
summarized in Section 2. We formally define the problem and give
an overview of our solution in Section 3. Section 4 presents the
proposed model in detail. Experiment results are showed in Section
5. And finally, Section 6 concludes the paper.

2 RELATED WORK

The spatio-temporal social connection prediction problem we study
in this paper is directly related to link prediction problem on social
networks. Given the snapshot of a social network at time t, the
goal of link prediction is to predict links, i.e., social connections,
that will emerge at a later time, or to identify missing links at ¢.
Such missing links could be the result of privacy settings, e.g., a
user may want to hide his friend list from the general public.
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Existing works in the field mainly explore two types of infor-
mation in predicting links: 1) Network structure, i.e., existing so-
cial connections, and 2) node attributes such as user profiles. We
briefly summarize some representative works. The relational learn-
ing [9, 11, 20] and matrix factorization-based [8] techniques both
leverage attribute information for link prediction. The Supervised
Random Walk (SRW) technique proposed in [1] combines networks
structure and edge attributes to improve prediction accuracy, but
does not fully explore node attributes. In [19], network structure
and node attributes are integrated with a Social Attribute Network
(SAN) model, which is later generalized in [5] to both predict links
and infer missing attributes.

Our problem is also closely related to [14], which proposes to
explore trajectory data to identify users who share similar interests
in locations, in order to make friend recommendations on LBSNs,
which is not the focus of our study. In a recent work [18], the au-
thors proposed a community discover method that leverage spatio
temporal co-occurrences. In their work, spatio temporal data is used
in complementary to other information, e.g., network proximity, to
discover how likely certain users belong to the same community. In
contrast, our work focus on answering the following fundamental
question: Is it possible (and to what extent) to predict the existence
of social connections among two users by only looking at their spa-
tio temporal information? Form this perspective, our work intends
to complement existing studies on human mobility patterns.

3 OVERVIEW
3.1 Problem Statement

We define a user’s trajectory as a series of timestamped check-ins,
where each check-in indicates the exact place (i.e., a restaurant, a
coffee shop, etc.) the user visits, instead of a geo-graphical coor-
dinate. The Foursquare dataset is an example of such trajectory
that consists of self-reported check-ins. Note that coordinate-based
trajectory can be converted into such check-ins by joining the coor-
dinates with a database of Point-of-Interests (Pol), such as provided
by Open-Street Map. For simplicity, we consider only check-in-
based trajectory in this paper. We formally define the notion of
Check-in and User Trajectory as follows.

Definition 3.1 (Check-in). Let U denote a set of unique user iden-
tifiers, I denote a set of locations, and T denote the time domain. A
check-in ¢ is a triple (u,1,t) € U X L X T, which indicates the user
u has visited location [ at time ¢.

Definition 3.2 (User-trajectory). Let C be a collection of check-ins
and let u € U denote a user, then the set Cy, := {(u, [, t) € C} is the
user-trajectory (or simply trajectory) of u.

The proposed social connection prediction model is based on the
concept of Co-visitation, which is defined as follows:

Definition 3.3 (Co-visitation). A co-visitation of two users u; and
uj to a location [ is defined as the event that u; and u; report two
check-ins (u;, [, ;) and (uj, I, t;) respectively, where |t; — t;| < 7.

Here 7 is an experience-based parameter called the co-visitation
time window. We formulate the social connection prediction prob-
lem as a classification problem. Given the trajectory of two users
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Figure 2: General steps of the proposed method.

u; and uj, the goal is to assign the pair of users (u;, #;) into one of
the two classes: Connected or Not-connected.

Note that the above problem formulation implicitly assumes the
social connection is symmetric, i.e., if u; is a friend of uj, then u; is
also a friend of u;. This type of social connection is common on most
social networks like Facebook. However, on some social networks,
the connection can be one-way. For example, on Foursquare, a user
can choose to “follow” other users and thus formulates a one-way
social connection, where one user is the follower and the other
being the followee. The one-way social connection can be model
by treating (u;, u;) and (uj, u;) as different instance which can be
assigned into different classes.

3.2 Methodology

We model the probability of the existence of social connection
between two users based on the hypothesis that socially connected
users tend to visit same locations at same time periods, which is
defined as co-visitations. However, we observe that in reality not
all co-visitations are equally important in terms of predicting user’s
social connections. We propose a three step model learning process
to capture this difference (Figure 2).

e Co-visitation Matrix formulation Given the trajectories of
two users u; and uj, we first convert their trajectories into a
spatio-temporal co-visitation matrix that records the time and
location of their co-visitations.

o Probability estimation The probability that u; and u; are so-
cially connected is computed based on their co-visitation matrix.

e Model learning The latent variables in the model are estimated
by optimizing a loss function, which measures the prediction
error between actual class and predicted class for each pair of
users in the training set.

We present details of these three steps in the next section.

4 PROPOSED SOLUTION

4.1 Spatio-Temporal Co-visitation Matrix

Given the trajectories Cy,, and Cy, of two users u, and up, respec-
tively, their spatio-temporal co-visitation matrix M(a,b)isam X n
matrix where m is the total number of locations in L and n is the
number of time slots. The i-th row in M(a, b) corresponds to the
i-th location while the j-th column corresponds to the j-th time
slot. As such, if the two users had x € N co-visitation to the i-th

location that occurred within the j-th time slot, M(a, b); ; equals x.
Figure 2 illustrates a co-visitation matrix generated for two users.
Note that the co-visitation graph is usually highly sparse.

The granularity of locations and time slots used to build the
co-visitation matrix can be adjusted as needed, i.e., each location
can be an exact Pol or a geographic region with arbitrary size.
The purpose of this mechanism is to provide the users with the
flexibility to control the number of model parameters need to be
learnt from training data. If a large and diverse set of check-in is
available, more locations and time slots can be used. However, if
the number of labelled instance is limited, using a large number
of parameters may risk over-fitting the model. The appropriate
location granularity and partition of time slots can be empirically
selected based on experiment results on the specific dataset, i.e.,
starts from a large location and time granularity, then gradually
increase the granularity settings in a cross-validation process until
the desired prediction accuracy is achieved. The regularization
terms introduced later in the proposed model is in place to assure
the appropriate setting parameters can be reached in this process.

Efficient co-visitation detection: The co-visitations of two given
users can be detected by exhaustive searching, i.e., for each check-
in of a user u,, exams every check-in of uy, to see if they formulate
a co-visitation. This is obviously inefficient especially when the
number of users are large in generating the training instances. Here
we design a more efficient co-visitation detection algorithm. Due
to limited space, we give a high-level description of the algorithm:

(1) Each check-in ¢ = (u,[,t) is converted into two tuples cs =
(u,l,t — F)and ce = (u,1,t + %), where 7 is the co-visitation
time window. As such, the time of each check-in is seen as a
time period [t — %, ¢ + Z]. Two check-ins to the same location
I is a co-visitation if and only if their time periods overlap.

(2) All tuples are sorted by the time stamp in ascending order.

(3) For each possible co-visitation location, initialize an empty list.
Initialize the co-visitation matrix to be all zeros.

(4) The algorithm then performs a running count by scanning
through the sorted tuples one by one.

(5) When c¢; is encountered for some check-in ¢, it is is added to
the list of location [. If [ is not empty, a co-visitation is detected.
Update the co-visitation matrix accordingly.

(6) When c, is encountered for some check-in ¢, remove cg of the
same check-in from the list of location /.
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Note that the proposed algorithm is a time-sweep-algorithm
which has log-linear complexity to the total number of check-ins
(O(nlog(n)) to sort the check-ins and O(n) to sweep, where n is the
total number of check-ins). More importantly, it is able to detect
co-visitation for a set of users in a parallel manner. Let Cy;, 45 denote
the maximal number of check-ins reported by a single user. In order
to find all co-visitations among a set of users, the exhaustive search
algorithm needs to process each pair of users one by one, thus have
an overall complexity of O(|U|? * CZ,,,). In contrast, the proposed
algorithm has complexity O(JU| * Cpygx * log(|U]| * Ciax)), which
is much faster than exhaustive search.

4.2 Social Connection Prediction Model

In our model, both locations and time slots are mapped into a
multidimensional latent feature space. We use X € R™ and Y € R”
to denote the latent variables for locations and time slots, where
x; € X can be seen as a weight that measures the significance of
the i-th locations. Similarly, y; € Y measures the significance of
the j-th time slot. Given the co-visitation matrix M(a, b), we can
then estimate how likely u, and u;, are socially connected using a
weighted sum over the matrix, defined as follows:

s(a,b) =

M=

n
xiyjM(a, b); j (1)
i =1

L

J

Il
—-

where s(a, b) can be seen as a “score”. The higher the score, the
more likely u, and uy, are socially connected. We employ a logistic
transformation, using the sigmoid function to convert s(a, b) into
an estimated probability for the classification problem.

1
1+ e5@b)

Pr((uq, up) is connected) = (2)
If the predicted probability is higher than a decision threshold,
denoted by A (which is to be learnt from the data), the user pair is
classified as connected, otherwise non-connected.

The above model, however, does not take into consideration ge-
ographic distance between locations. The same location may have
different significance for users living in different areas. The geo-
graphic distance between a user’s home/work and the co-visitation
locations can been seen as a personalized parameter to adjust the
significance of a location. To this end, we modify Equation 1 by
adding the distance coefficients W = {w1, wz} to our model:

m n

s(a,b) = Z Z (Xiyj +wiD(i, a) + w2 D(i, b) |M(a, b)i,;  (3)

i=1 j=1

Here, wi and wy are the two distance coefficients, and D(i, a) mea-
sures the geographic distance between the i-th locations and u,’s
home base. For simplicity, we use the geographic center of u,’s all
check-ins as the estimated home base. Nevertheless, more complex
method such as algorithms proposed in [2, 16] can also be used
for more strict estimation. Note that by introducing the distance
coeflicients we only added two more parameters into our model,
but it allows the classification results to be “personalized” to some
extent by involving the two users’ home base locations into the
model.
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4.3 Model Learning

Parameters in Equation 3 can be learned from a set of labelled
training data by optimizing the following function:

argmin > E(pgp,fa,p) + OX, ) @
X, Y,w Yug,upelU

In the above function, E(-) denotes a loss function that measures
the prediction error. In this paper we use the indicator function as
loss function, which is commonly used for classification problems.
pi,j is the label of a training instance (uq,up) while p, j is the
predicted result using the proposed model. Finally, ©(X, Y) is the
regularization term, defined as:

A A
O(X.Y) = - IXII; + 1Yl %)

The regularization term is in place to prevent the model from over-
fitting. It provides a trade-off mechanism between model complex-
ity (in terms of number of learnt parameters) and model perfor-
mance. As showed in the equation, the regularization coefficients
Ax and Ay are used to adjust the “penalty” of using more param-
eters, so that a larger number of parameters will be encouraged
only when it significantly improves the prediction outcomes. These
two coeflicients are usually selected through a cross-validation pro-
cess on training data. Since W contains only two parameters, no
regularization term is introduced for it in the learning process.

Note that in the co-visitation matrix, we assigned a latent variable
to each location and each time slot. As a result, it may appear
that a total number of m + n + 2 parameters need to be learnt
from the training data. However, the actual number of parameters
can be much smaller. This is because the the co-visitation matrix
is usually highly sparse. If the two users have never reported a
co-visitation to certain location /, then the corresponding latent
variable does not need to be learnt. The value of the variable is
simply set to 0. Similarly, the latent variable for a time slot is set
to 0 if no co-visitations occurred within the time slot. Eventually,
only those locations and time slots that are significant will have a
non-zero latent variable value. This makes the model parameters
easily interpretable by a human.

5 EXPERIMENTS
5.1 Dataset Description

We evaluate the proposed model on the widely-used Foursquare
check-in dataset [15]. In our experiments, we mine the check-in
data from two of the most popular cities, including New York City
(NYC), USA and Tokyo, Japan. The dataset contains about 227,428
check-ins reported in NYC and 573,703 in Tokyo. The check-ins
were collected for about 10 months. From each check-in, we extract
the user ID, location ID, and a time stamp. Using the user ID
or location ID, we retrieve the profile of that user or location on
Foursquare. The user profile includes the social connection between
users (“follower - followee”) and the location profile includes its
category (Food, Coffee, Nightlife, Fun, and Shopping), coordinates,
and user rating. The check-ins are grouped by user ID/location ID
and sorted by their timestamps. We assume the social connections
are static, i.e., the friendship states between users are not dynamic
changing during the period the check-ins are collected. Modelling
the formulation of new social connections is of interest per se,
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Table 1: Symmetric social connection prediction results

. 7=15min 7=30min 7=45min 7=60min
City Scheme — — — —
precision | F1-Score | precision | F1-Score | precision | F1-Score | precision | F1-Score
Random 0.1102 0.1755 0.1102 0.1755 0.1102 0.1755 0.1103 0.1755
Count 0.1527 0.2098 0.1545 0.2132 0.1566 0.2159 0.1540 0.2101
NYC Matrix Factorization 0.2127 0.3005 0.2127 0.3005 0.2127 0.3005 0.2127 0.3005
Co-visitation 0.2220 0.2917 0.2619 0.3516 0.3001 0.3781 0.2519 0.3314
Co-visitation+Distance 0.2279 0.2998 0.2759 0.3700 0.3057 0.3850 0.2779 0.3621
Random 0.1008 0.1679 0.1008 0.1679 0.1008 0.1679 0.1008 0.1679
Count 0.1507 0.2020 0.1525 0.2051 0.1522 0.2044 0.1505 0.2019
Tokyo Matrix Factorization 0.2227 0.2791 0.2227 0.2791 0.2227 0.2791 0.2227 0.2791
Co-visitation 0.2405 0.3019 0.2562 0.3110 0.2490 0.3114 0.2220 0.2817
Co-visitation+Distance 0.2670 0.3134 0.2759 0.3312 0.2407 0.3099 0.2177 0.2725
Table 2: One-way social connection prediction results
. 7=15min 7=30min 7=45min 7=60min
City Scheme — — — —
precision | F1-Score | precision | F1-Score | precision | F1-Score | precision | F1-Score
Random 0.1202 0.1851 0.1202 0.1851 0.1202 0.1851 0.1202 0.1851
Count 0.1555 0.2140 0.1537 0.2119 0.1540 0.2123 0.1535 0.2125
NYC Matrix Factorization 0.1723 0.2419 0.1723 0.2419 0.1723 0.2419 0.1723 0.2419
Co-visitation 0.1696 0.2389 0.1818 0.2750 0.1820 0.2771 0.1702 0.2393
Co-visitation+Distance 0.1777 0.2501 0.1925 0.2858 0.1925 0.2809 0.1795 0.2505
Random 0.1115 0.1710 0.1115 0.1710 0.1115 0.1710 0.1115 0.1710
Count 0.1621 0.2208 0.1630 0.2219 0.1643 0.2222 0.1622 0.2217
Tokyo | Matrix Factorization 0.1707 0.2253 0.1707 0.2253 0.1707 0.2253 0.1707 0.2253
Co-visitation 0.1659 0.2250 0.1714 0.2323 0.1759 0.2336 0.1657 0.2029
Co-visitation+Distance 0.1715 0.2309 0.1771 0.2404 0.1804 0.2451 0.1693 0.2249

which is beyond the scope of this paper and we intent to explore in
future work. For our experiments, we select a subset of users that
satisfy the following two conditions:

e Check-in Active Actively report check-ins for a time period of
at least 1 month. The average number of check-ins reported per
day is no less than 1.

e Socially Active The user has followers and also follows others.

These two conditions are in place to filter out the users who do
not have enough data or lack the ground truth to test the proposed
model. In the user selection process, we applied community de-
tection algorithm [3] among most active users from the two cities
and selected two communities for our experiments. Among ap-
proximate 2660 users in NYC and 3100 users in Tokyo, the two
communities we selected contain 173 and 165 users respectively.
The users in one community are from the same city who satisfy
both conditions. The two communities have no overlap. Each user
has on average 14 social connections. The total number of locations
visited by these users is approximately 350 but not all the locations
have been co-visited by friends. We show in the following subsec-
tions that this small set of users is sufficient to demonstrate the
effectiveness of the proposed model.

5.2 Experimental Settings

For comparison purpose, we have implemented the following schemes:

e Random This scheme randomly assigns a user pair as friends
or non-friends, each with a probability of 50%.

e Count This scheme counts the number of co-visitations of two
users. If the number is higher than a threshold, the two users are
predicted to be friends, and otherwise non-friends. The threshold
is set to be the average number of co-visitations of each pair of
friends among the selected users.

e Matrix Factorization We implement the standard Matrix Fac-
torization [6] algorithm. Each user is represented by a latent
vector of size I, and whether two users are friends is predicted by
the product of their latent vectors. The latent vectors are learnt
with a user-user rating matrix, which is a n X n matrix M where
n is the number of users. if u; is a friend of u; then M; ; is set to
1 otherwise 0. Readers are referred to [6] for details about the
learning process. In our experiment, we set [ = 5.

e Co-visitation The proposed co-visitation matrix-based model
using Equation 1. This model does not take into consideration
the geographic distance factor.

e Co-visitation + Distance The proposed co-visitation matrix-
based model using Equation 3, which involves the geographic
distance factor.

The following granularity settings are empirically selected to
generate the co-visitation matrix, as they yield the best prediction
results. 1) Each location is a specific Pol, but the total number of
Pols used for each pair of users is limited to 25. We observe that
in the Foursqaure dataset it is very rare that two users have co-
visited more than 25 different locations. Therefore we set this limit
to reduce the number of unnecessary model parameters. 2) We
partition each day into 6 time slots:(12:00am to 6:00am), (6:01am
to 10:00am), (10:01am to 2:00pm), (2:01pm to 5:00pm), (5:01pm to
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8:00pm), and (8:01pm to 11:59pm). Note that these time slots are
not evenly partitioned. Instead, we choose this typical time slot
that reflects different period of a day for work or social events. As
such, we use a total of 42 time slots, because each day of a week
has 6 slots.

We consider two types of prediction tasks: Predicting one-way
social connections and predicting symmetric social connections. Recall
that for one-way social connections, the class of (ug, up) may be
different from (up, u4) while for symmetric social connections, their
class must be the same. The social connections on Foursquare are
originally one-way. A user u, can choose to follow another user u,
but meanwhile uj, may not be a follower of u,. Nevertheless, we can
extract a subset of symmetrically connected users, i.e., users who
follow each other mutually, as training/testing set for symmetric
social connection prediction task.

5.3 Experimental Results

The dataset we used is strongly skewed, i.e., about 90% of user-pairs
are not socially connected. As such, we choose precision and F1-score
as performance metrics. This is because recall and accuracy does
not reflect the number of false positives in the prediction results,
thus a predictor that makes 100% positive prediction will have the
highest recall but has little value. We adjust the co-visitation time
window 7 from 15 mins to 60 mins and show its impact on these
metrics. For each experiment run, we do a 3-fold cross-validation
on the dataset and report the average performance. The result of
symmetric social connection prediction is showed in Table 1 and
that of one-way social connection prediction is showed in Table 2.
Note that Random and Matrix Factorization are not affected by ¢
since they do not rely on co-visitations.

The proposed techniques demonstrate clear advantage in all
experiments over the naive count-based and random scheme. It
also outperforms Matrix Factorization based scheme in most setting.
To summarize, our techniques have the best performance given
that an appropriate 7 value is selected to accurately capture co-
visitations. In our experiments, when 7 is either too small or too
large, it will cause the performance to drop.

We observed that some users have never co-visited any location
with some of his friends, which indicate it is impossible for any
model to predict such social connections by only looking at their
check-ins. Nevertheless, our experiments confirms that users’ social
connections are, to some extent, reflected by the occurrence of co-
visitations. We find it is possible to predict some social connections
with spatio-temporal data, but not all of them. This result is in
accordance with our common-sense that people do visit certain
locations with their friends but not all the time. However, it is not
clear what is the limit of the predictive power of co-visitations in
this context, which is worth further exploration.

6 CONCLUSION

Human mobility pattern is a long standing research topic. In this
paper, we study the predictive power of user trajectories in estimat-
ing their social connections. Based on the hypothesis that friends
tend to visit same locations at same time, we propose to model the
probability that social connection exists between two users using
their co-visitations. We design a comprehensive model that takes
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into consideration that co-visitations occur at different locations
and at different time slots may have different predictive power.
Using a selected subset of users in the Foursquare dataset, our ex-
periments reveal that it is possible to predict some, but not all, social
connections between LBSN users. The gain a deeper understanding
of the problem and its inherent hardness, we plan to explore other
predictive methods on large scale and more diversified datasets in
our future work.
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