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Abstract—State estimation is studied for a special class of flag
Hidden Markov Models (HMMs), which comprise 1) an arbitrary
finite-state underlying Markov chain and 2) a structured observa-
tion process wherein a subset of states emit distinct flags with some
probability while other states are unmeasured. For flag HMMs, an
explicit computation of the probability of error for the maximum-
likelihood filter and smoother is developed. Also, the form of the op-
timal filter is further characterized in terms of the time since the last
flag, and this result is used to further simplify the error-probability
computation. Some preliminary graph-theoretic insights into the
error probability and its computation are discussed. Finally, these
algebraic and structural results are leveraged to address sensor
placement in two examples, including one on activity-monitoring
in a home environment that is drawn from field data. These ex-
amples indicate that low error-probability filtering and smoothing
can be achieved with relatively few sensors.

Index Terms—Hidden Markov Models, state estimation, maxi-
mum likelihood estimation, estimation error, smart homes, wireless
sensor networks, infrared sensors.

I. INTRODUCTION

IDDEN Markov Models (HMMs) are used in diverse ap-

plications such as speech processing [1], sensor-network-
based activity monitoring [2], and mechanical failure prediction
[3]. These applications leverage classical algorithms for state
and parameter estimation of HMMs, including the forward-
backward algorithm (filtering and smoothing), Viterbi algorithm
(state-sequence estimation), and Baum-Welch algorithm (pa-
rameter estimation). Surprisingly, although these estimation al-
gorithms are used widely, basic questions about their structure
and performance remain unanswered.

Many emerging applications of HMMs, such as activity mon-
itoring for assisted living and event-tracking using social-media
data, demand 1) efficient performance analysis of estimators
and/or 2) simple tools for sparse sensor placement. These ap-
plications would thus benefit from formulaic characterizations
or computationally-friendly approximations for the estimation
error probability. As a further step, these applications would ben-
efit from simple insights into the estimator’s structure and per-
formance to facilitate effective sensor placement with or without
complete knowledge of the HMM graph and parameters.
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In this article, we study the probability of error of the maxi-
mum likelihood state estimator (both filter and smoother), for a
special class of flag HMMs. These flag HMMs may have an arbi-
trary underlying finite-state Markov chain, but are constrained to
have a specially-structured observation process wherein a sub-
set of states probabilistically emit distinct flag symbols while
the remaining states arc unmeasured. For these flag HMMs,
which are descriptive of several emerging sensing applications,
an explicit formula is derived for the estimation error prob-
ability. The explicit probability-of-error analysis is shown to
give insight into the form of the maximum likelihood estima-
tor, allow computationally-attractive computations of the error,
and enable development of relationships between the Markov
chain’s eigenstructure and the estimator/error. Via examples,
we also demonstrate that the simplifications in computing the
estimation error facilitate sensor placement. Specifically, sen-
sor placement is studied in a home-activity-monitoring example
based on real-world data, and for larger-dimension randomly-
generated Markov chains. These examples show that accurate
state estimation can be achieved while only using a small num-
ber of sensors.

The research presented here builds on a number of results in
the literature, which formally analyze the error probability for
HMM state and parameter estimators for narrow model classes.
Specifically, a couple of works ([4] and [5]) have addressed
Markov chains with asymptotically weak weights. Several other
studies ([6] and [7]) are focused on two-state HMMSs and their
generalizations. The article [6] computes the filtering error for
the two state case when the output is continuous-valued, but
gets quantized. In [7], the authors analyze the error for the two-
state chain with random unobserved outputs (random packet
losses). Complementary to the state-estimator error analysis,
several studies have pursued formal performance analysis of
other HMM inference problems. For instance, both [8] and [9]
bound the probability of error in model classification from ob-
served data. Specifically, [8] presents an efficient calculation of
the bound on the probability of error. The article [9] extends this
analysis to bound the maximum a posteriori (MAP) estimates for
different candidate HMMs, and studies how the bound changes
as the number of observations increases. Alternatively to an
error analysis, information-theoretic constructs such as condi-
tional entropy have been used as proxies for the error probabil-
ity and structural results have been obtained for these measures
([10]). Also relevant to our study is an important body of work
on identification of hidden Markov models from statistical data
[11]. Relative to these efforts, our study addresses HMMs with
general hidden chains but structured observations, and develops
algebraic results directly for the estimator error probability.

Object tracking and activity monitoring using wireless sensor
networks is often based on HMMs. Because states and sensors
correspond to physical-world locations in these applications, the
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flag HMM construct wherein a subsct of states are flagged is
often apt. Since sensor upkeep, and even the sensors themselves,
can be expensive, effective pruning, scheduling, and power
management of sensors is crucial. The probability of error
analysis developed here directly supports sensor selection and
placement for these applications. To contextualize the work, we
mention a sample of the literature on sensor networks focused
on HMM performance analysis. First, [12] provides algorithms
for dynamic sensors scheduling and sensor management, while
[13] addresses optimal data quantization in sensor networks.
[14] further looks at power efficiency in sensor networks that
usc data quantization. [15] also addresses power efficiency in
sensor networks, but with a focus on object tracking. Finally,
[16] focuses again on sensor scheduling, but approaches the
problem through a MAP state estimator framework.

The state estimation problem for HMMs can be approached
in several different ways, which can cnable characterization
of various error measures. Of importance to our work, [17]
approaches state estimation from a direct Bayesian perspective
rather than via an iterative approach, and characterizes an error
measure that is defined in terms of a Kullback-Liebler distance.
Meanwhile, alternates of the standard Viterbi algorithm have
been proposed (e.g. [18]), which optimize costs other than the
error probability.

The error probability analysis described here also connects to
aset of research on characterizing estimation error and designing
sensor placements in network processes (e.g., [19], [20]). These
studies are focused on linear systems with state and process
noise, for which the algebraic characterization of the minimum
estimation error is classical. The recent studies on network pro-
cesses specifically study local measurement of a process defined
on a graph (in analogy with the flag HMM considered here), and
pursue graph-theoretic characterizations of the estimation error
and, in turn, sensor placement to reduce the error. The algebraic
analysis of the filtering/smoothing error for flag HMMs pursued
here, which is more complicated than the classical analysis for
linear systems because of the filter’s nonlinearity, is a starting
point toward similar graph-theoretic results.

The paper is organized as follows. In Section 2, the flag HMM
model is described, and the maximum-likelihood smoothing
problem is reviewed. In Section 3, an explicit formula for the
filtering and smoothing probability of error is derived for perfect
sensors. Then, the probability of error is derived for the filter
and smoother when the sensors are imperfect. Further, the form
of the optimal state estimator is characterized, and this result is
used to further simplify the error-probability expression. Con-
nections of the error probability and its computation to Markov
chain’s graph are briefly discussed. Finally, in Section 4, the
probability-of-error analysis is applied to support sensor place-
ment in examples, including one example developed using data
from a real-world Smart Home.

II. PROBLEM FORMULATION

This article is concerned with state estimation performance
for a special class of hidden Markov models (HMMs), wherein
observations are flags of a subset of the Markov chain’s states. A
discrete time HMM with a finite-state underlying Markov chain
is considered. Formally, the state s [k] of the chain at each time
k (k =0,1,2,...) may take integer values between 1 and n, i.e.,
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s[k] € {1,...,n}. The transition matrix of the Markov chain is
denoted by A = [a;;], where a;; is the probability of transitioning
from state i to state j or P (s[k + 1] = j|s[k] =1). Here, A
is assumed to be the transition matrix for an ergodic Markov
chain, but otherwise may be arbitrary. The observation model
is specially structured. The Markov chain is assumed to have
a subset of states, denoted as sensed states, that are probed.
Specifically, when the current state is one of the sensed states, a
flag indicating the state is outputted with a certain probability,
and no flag is outputted otherwise. For all other states, no flag
is outputted. Formally, we define the set F' to contain all of the
sensed states, say m in total. The observation y [k] at time k
may either be a null symbol (denoted as 0), or may identify a
sensed state in F'. Specifically, if the current state s [k] = jis a
sensed state (j € F), then the observation symbol is governed
by the following probabilistic model:

q; fori =7
P(ylk] =ils[k] =j)=q 1—¢q; fori=0.
0, o/w

Meanwhile, if the current state s[k] =j is not a sensed

state, then the observation symbol is generated according to:
. . 1, =0

Pl =it =={5 L%,

We refer to the model as a whole as a flag HMM. The flag
HMM model is a specialization of the HMM model popularized
by Rabiner [1], which is apt when a subset of network states are
distinctly identified by (possibly imperfect) sensing capabilities.
The model is appropriate for many emerging sensor-networking
applications of HMMs, such as activity monitoring in complex
spaces and intrusion tracking, wherein sensors only sparsely
probe a measured space but allow precise identification of these
states. The special case where the sensors detect their corre-
sponding states without error (g; = 1 for j € F) is referred to
as a flag HMM with perfect sensors.

A number of different estimation problems for HMMs have
been studied in the literature. The focus here is on the filtering
and the smoothing problems. Filtering refers to the estimation
of the current state from the sequence of observations up to the
current time, while smoothing is concerned with estimation of
the state at a certain time from the sequence of observations up
to and beyond the current time. Formally, in the smoothing prob-
lem, the state estimator or detector secks to determine the current
state s [z] from the sequence of observations y [0] , ...,y [z + 2¢],
where z; is the number of future data points that the smoother
has access to, and zy > 0. The filtering problem is a specializa-
tion wherein zy = 0.

For this paper, a maximum likelihood (ML) detector is consid-
ered. The ML detector chooses as the time-z estimate the state
that has highest probability given the sequence of observations:
iq = argmax P (s[z] =iy [z + z/], ...,y [0]), where 4 is the

i=1,..., n
estimated state. The ML estimate is traditionally determined us-
ing a recursive computation of the conditional state-occupancy
probabilities via the forward and backward algorithms, see e.g.,
[1]. The filtering problem is addressed in exactly the same way,
however only the forward algorithm is needed.

Our interest here is in computing the probability of er-
ror of the estimate. An error event e[z] is said to oc-
cur at time z if the detected state is not the current state.



4446

e., ig # s[z]. Conditioned on the observation sequence, the
error probability is given by P (e[z]|y[z + zf],...,y[0]) =
1- max. Pr( [z] =ily [z + 2zf], ...,y [0]). As an aggregate

measure of detection performance, it is natural to compute
the average error probability over instantiations of the HMM
(i.e., over possible observation sequences). This ensemble av-
erage in general may be time-dependent. We are specifically
interested in the asymptotic value of this average error (equiv-
alently, the average error assuming the Markov chain’s ini-
tial state-occupancy probabilities are the asymptotic ones), or
P (e) =lim, ., P (e[z]). Alternately, this probability can also
be viewed as the probability of error in detection at a randomly-
selected time, which is sufficiently large to assume that the
asymptotic model is in force. While the error probability P (e)
is defined as an ensemble average, it is also easy to check that
the time average of the error probability for a single instantiation
also converges to this value.

For a general Hidden Markov Model, the average probabil-
ity of error P (e) does not admit an analytical characterization.
In this work, an algebraic expression for P (e) is obtained for
flag HMMs. This algebraic characterization enables calculation
of the error with low computational effort and hence also sup-
ports sensor placement, as also developed here. Additionally,
the analysis gives insight into the form or structure of the opti-
mal estimator, and the dependence of the error on the network’s
spectrum and topology.

III. ALGEBRAIC EXPRESSIONS FOR THE ESTIMATION ERROR

Explicit algebraic computations of the error probability are
presented for the filtering and smoothing problems, for flag
HMMs. For each problem, the perfect-sensor case is addressed
first, and then leveraged to develop an analysis for the general
(imperfect sensor) case. The filtering analysis for the perfect
sensors case was developed in our recent conference paper [21],
but is included here for completeness, and a further simplifica-
tion of the algebraic result is obtained.

For ease of analysis, we find it convenient to relabel the
Markov chain and rearrange the transition matrix so that the first
set of states are the sensed states, and the rest are the unsensed
states. Specifically, without loss of generality, the Markov chain
states can be relabeled so that the sensed states fi, ..., f,, € F
are identified as states 1, ..., m, while the remaining (unsensed
states) are labeled m + 1, ..., n. The transition matrix P = [p;]
for the modified chain can be obtained via a permutation of the
original transition matrix A, see e.g., [22].

Before presenting and proving the main results on estimation
error probabilities, it is useful to overview the approach taken to
develop the results. The error-probability computation centrally
depends on a special property of flag HMMs, that the ML detec-
tor only needs to use the observations since the last flag and up
to the next flag. This is true because the state of the underlying
Markov chain is known exactly at the times of the last and next
flag, hence the current state has no dependence on any other
measurement data. Further, only the time elapsed since the last
flag, the time until the next flag, and the values of the last and
next flag are relevant to detection. These simplifications allow
explicit characterizations of the probability of error.

The first result presented is for the filtering problem with per-
fect sensors. Specifically, this result characterizes a Maximum
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Likelihood Filter for a flag HMM with Perfect Sensors, which
we refer to as MLF-PS in short. Next, the maximum-likelihood
smoothing problem with perfect sensors, referred to as
MLS-PS is addressed. Lastly, results are obtained for the max-
imum likelihood filter and smoother for the general imperfect-
sensor case, which we refer to as MLF-IS and MLS-IS, respec-
tively.

A. Filtering Problem with Perfect Sensors

An expression for the probability of error is obtained for the
maximum likelihood filter for a flag HMM with perfect sensors,
which we call MLF-PS.

Theorem 1: The MLF-PS has the following average proba-
bility of error:

m o0
ZZ{«?? PP le—— max efPPl‘ -1
m+1<i<n

f=1k=1

| [ef vi]

(M

where P = [p;], such that p;=0Vi=1,..mVj=
17 ..77’L,V’i7éj, [5”:1VZ: 1,...,m, ﬁ,]:pUVZZm—i—l,
wyn,Vj=1,...,n; € is a column vector of all 0’s except

with a single 1 position, 7; ez is a column vector where
e (i) =0Vi=1,...,mand e (1) = 1Vi =m + 1,...,n; and
vy is the right eigenvector of the transpose of the transition
matrix P associated with the eigenvalue at 1 (scaled to
[villy =1).

Proof: The asymptotic average probability of error can be
computed as P (¢) = lim,_,~ P (e [z]). To do so, the probability
of error for the ML detector at time z must be found. This
can be done by finding the probability of error is for a specific
output sequence, and then finding the expectation over all output
sequences. For the flag HMM, this computation is equivalent to
finding the error probability given that the last flag was f and
was k steps back, and then averaging over the allowed [lags f
and time gaps k. We note here that the error probability is the
probability of the current state not being the ML detector’s state.
Formally:

P(e) = lim P(e[z])

Z2—00

lim

Z—00

I
hE
v
'ﬁ‘

f=1k=0

=0,.,ylz—k+1=0,ylz—k] = f)

xP(ylz] =0,...,ylz —k+1] =0ly[z — k] = f)

P(ylz = k] = f)] 2)
Next, the conditional probability in 2 can be written as
P(slz] #idaly[2] = 0,y z =k +1] = 0,y [z — k] = f) =

P@hkﬁmﬁd:&mwk—k+HZOWk—H:ﬁ

S oY Y Yy g e [y

3
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Substituting (3) into (2), we obtain the second equation,

m

Ple)=3 >
f=1k=0

Kl_P(S[Z]:id,y[Z]:0¢~~¢y[z—k+1]:0|y[z—k]:f)> y
Pylel =0,.ylz—k+ 1] =0ly[z— k| = f)

Pyle] =0, yle—k+ 1] =0y [z —k] = f) P (y [z = k] = [)]

which simplifies to:

Ple) =

[P(y[z] =0,....,y[z — k + 1] = 0ly[z — k] = f)—

P(slz] = ia,yz] = 0, ...,y[z =k + 1] = Oly[z — k] = f)]
“)

It remains for us to express the probabilities in 4 in terms of
the HMM’s parameters. To begin, notice that the £ = 0 term in
the sum falls out because P (s [z] = fly[z] = f) = 1. Now, let
us consider the probabilities in (4) for k #£ 0. In (4), the first
probability is the that of being in sensed state f at a single time
z — k. The second probability is the probability that there has
been no flag in the last k steps. The final (rightmost) probability
is the joint probability of the Markov chain being in the detected
state, iy and there being k time steps since the last flag. This is
cquivalent to the probability of being in the most likely state or
the one with the largest probability with the last flag.

Let us work from last to first. The last probability is
P(slz] =i,y[2] =0,..,y[z =k +1] =Oly [z — k] = f).
This equals the probability that the Markov chain is in state %
after k steps from a flag, however with the additional restriction
that the chain has not passed through a sensed state again in the
meantime. This probability can be computed recursively via a
modified state transition matrix which absorbs trajectories that
enter the sensed states, which is precisely the matrix P defined
in the theorem. Specifically, the probability can be computed as
P(slz] =i,y o] = 0,y lz— k4 1] = Oly [z — k] = f) =
P(s[z] =i # f) = e} PP" 'e,;. This is true because the first
part, e?P, computes the one-step transition probabilities out

Plylz — K = f)x

m. o0
=0

=1k

~

of the sensed state. After multiplication by PF1 the final
n — m elements of the resulting vector yields the probabilities
of being in each unsensed state while not transitioning through
a sensed state during those k steps. Finally, multiplication by
e; selects the 7" state’s probability. The estimated state is the
state with the largest probability that is not a sensed state. This

leads to the following equation: i; = arg maxel PP e,
m+1<i<n

Thus the probability of interest can be computed as:
P(slz] =iq.y[2] =0,..,ylz—k+1] =0ly[z — k] = f)

= max el PP g &)

m+1<i<n
The middle probability in 4 is found similarly. Since there
is no flag at the current time, the total probability of getting a
no-flag output sequence is equal to the sum of all probabilities of
being in each unsensed state with the no-flag output sequence.
ie., Pylz] =0,..,ylz—k+1]=0lyz — k] = f)=
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> st P(?N[A] =i4,ylz]=0,..,ylz—k+1] =0[y[z — k]
= [)= €] PP" 'eg. All together, the second probability is:

P(ylz] =0,.,ylz—k+1] =0ly[z — k] = f)
= e?PPkilef (6)

Finally, the first probability in (4) is the asymptotic probability
of being in the sensed state, where the asymptotic value can be
assumed since the limiting value of the error is being computed.
The asymptotic value of P (y [z — k] = f) is well known to
equal e vy, where vy is the right eigenvector of P” associated
with its (non-repeated) unity eigenvalue (scaled to have unity
I-norm || vi|; = 1). All together, the average probability of
error is:

m oC

Ple)=> Y [efvi] [e?PpkﬂeF

f=1k=1

—  max e? Ppklej]

m+1<i<n

|
Remark: The matrix P is related to the matrix P as follows.
The rows of P associated with the non-sensor states are identi-
cal to the corresponding rows of P. Meanwhile, the rows of P
associated with the sensor states have a single unity entry on the
diagonal, and are otherwise set to 0. Thus, P is the transition
matrix of a Markov chain which has the same transition char-
acteristics as the original chain for the non-sensor states, but
for which the sensor states are instead absorbing states (hence
further transitions to the non-sensor states are disallowed).
Remark: Our focus here has been on finding the ensemble-
average filtering error probability, which is also the asymp-
totic time-average error probability. However, the argument used
above also readily allows computation of the filtering error prob-
ability for a specified observation sequence. Specifically, given
the observation sequence, the probability of error at a particular
time z depends only on the time since the last flag (say k) and
the value of the last flag (say f). The error probability can then
be computed as

Pelz]lylz],....y[0]) = e?Ppkflef— max e?PI:’k’lej

m+1<i<n

An interesting further question is how quickly the time-averaged
error, for a single instantiation of the HMM, approaches the
asymptotic estimate, which can be viewed as a sample com-
plexity issue (how many samples are needed for the estimate
to be apt) [23]. We notice that the asymptotic (or ensemble-
average) probability of error is found as a weighed average of
the conditional error over the joint probability mass of the time
since the last flag, and the value of that last flag. The sample
complexity required to find the error thus depends on the rate
convergence of the sample joint probability mass to the actual.
Since the sequence of flags obtained and the times between them
are jointly Markov, the Kullback-Leibler distance between the
sample and actual distributions and hence the convergence rate
can be bounded using standard theory [24]. Details are omitted.
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B. Smoothing Problem

Next, the maximum likelihood smoother for a flag HMM with
perfect sensors, which we refer to as MLS-PS, is characterized.
In this analysis, we only consider the case where a flag has
occurred both before and after the current time, since this is the
typical case where new sensors data is being used to improve
detection. This analysis can easily be modified to the case that
no flag has yet occurred between times z and z 4 zy, we omit
the details in the interest of space.

Theorem 2: The maximum likelihood smoother for a flag
HMM with multiple perfect sensors (MLS-PS) has the following
average probability of error:

m m

oo o0
T T Pk +ky—2

Pl)=3 > > > lenv] {%PP T EpPey,
fi=1fa=1k =1ky=1

~ max ([eifl Ppk:1—1ei:| [egfpkzﬂEFP%D}

(7

where P = [p;], such that p;=0%i=1,..,m,Vj=

LonVi#j, pp=1Vi=1,..m, py=p¥Vi=m+1,..,

n,vj=1,...n; e is a column vector of all 0’s except

with a single 1 position, i; ez is a column vector where
eF()—OVz—l mandeF()—lw m+1,...,n; B
is a diagonal matrix W1th the entries of ez on the main diagonal;
and v; is the right eigenvector of the transpose of transition
matrix for P associated with the eigenvalue at 1 (scaled to
I vally = .

Proof: The proof for the smoothing error expression is simi-
lar to that for the filtering error, except that the optimal detector
and hence error computation accounts for future observations.
Because of the similarity, only key steps are presented here.
Specifically, the probability of error at time z can be computed
by conditioning on the time and value of the last flag before 2
as well as the time and value of the next flag after z, and then
averaging over the allowed flags f; and f> and time gaps k; and
ko. That is,

P(e) = lim P(e[z])

z—00

—tim Y (PCelllyle) o sO) Pyl s[O)
yleglie (0]
:EZZE (s[z] # ialy[z + k2]
fi=1fa=1k1=0ko=
= fg,y[z -+ k'g — 1] = 0, ey
ylz =k +1] = 0,y[z — k1] = f1)

xP(yle + ko] = fo,yle + ke — 1] =0, ...,

ylz =k + 1] = Olylz — k| — f1)IxP(ylz — k1] = f1)

®)

Using standard algebraic simplications and conditional-
probability concepts (see [25] for details), the error probability
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can be rewritten as:

m m

DI

Ji=1f2=1k;=0k,=0

[P(ylz + ko] = fo,ylz + ks —1] =0,...,.

Z—k‘l

J1)

ylz — k1 + 1] =0Oly[z — k1] = 1)

— P(s[z] = ia,y[z] = 0,...,y[z — k1 +1]
=0ly[z — k1] = f1)

X P(ylz + ko] = fo,ylz + k2 = 1] =0,...,y[z + 1]
= 0]s[z] =iq)] )

The various probabilities in (9) can be computed in a similar
way to those in the filtering analysis, so the details are omitted
to save space (see [25]). The error-probability expression in the
theorem statement results. |

C. Imperfect Sensors

The filtering and smoothing problems with imperfect sen-
sors are addressed next. Specifically, the problems are solved by
transforming them to the perfect-sensor problems for an aug-
mented hidden Markov model. Our main effort in this section is
to define the augmented hidden Markov model and then argue
for the equivalence between the two models. Thereupon, the
analysis for the perfect-sensor case can be applied directly to
characterize the detector and its performance, as we formalize
in a concluding theorem.

1) The Augmented Hidden Markov Model: An augmented
hidden Markov model with n + m states is defined. The aug-
mented model is defined so that each sensed state ¢ in the orig-
inal model corresponds to two states in the augmented model
(states ¢ and n + ), with one of these states being sensed per-
fectly and the other being unsensed; the remaining states have a
one-to-one correspondence between the two models. Precisely,
the (n+m) x (n+ m) transition matrix I’ = [pjj] for the
augmented model is defined as follows:

pij =qp;Vi=1,..,nVj=1,..m

pj=piVi=1,..,nVji=m+1..,n
pg‘,nﬂ =1 —-q)p;Vi=1,..,nVji=1,.,m
Py =pi¥i=1,..mVj=1,.,n+m

In the augmented hidden Markov model, perfect sensing of the
first m states is assumed, in analogy with the original perfect-
sensor case. In the augmented model, the pair of states ¢ and
i+ nfore=1,...,mare viewed as the aggregate state 1, which
corresponds to the sensed state ¢ in the original imperfectly-
sensed HMM. The unsensed states © = m + 1, ..., n, are defined
to be aggregate states by themselves. We note that the aggregate
states also define a Markov process, since the transition proba-
bilities from each state composing the aggregate are identical.
It is also assumed that the initial state occupancy probabilities
for the first n states of the augmented model are identical to the
state occupancy probabilities of the original chain.

The augmented hidden Markov model has been constructed
to be equivalent to the original hidden Markov model, in
a statistical sense. Specifically, the output sequence of the
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augmented hidden Markov model is statistically identical to
that of the original hidden Markov model. Further, the under-
lying state transition model is identical to that of the original
hidden Markov model, with only the difference that each sensed
state is replaced with two states in the new model—one indi-
cates that the sensed state is achieved and the flag is displayed,
while the other indicates that the chain is in the sensed state but
is not flagged. These probabilistic equivalences can be formally
verified through a detailed analysis of the transitions and outputs
of the augmented chain; however they are quite apparent from
the construction of the chain so we omit this detailed argument
here, see the report [25] for these details.

From the above equivalence, it follows immediately that the
maximum likelihood state estimate for the original HMM is
identical to the maximum likelihood estimate of the (aggregate)
state for the augmented HMM. However, the augmented HMM
is aflag HMM with perfect sensors. Thus, it follows immediately
that the ML estimate of the state and the aggregate state of the
augmented HMM, and associated probability of error, can be
computed; in this way, an explicit computation for the imperfect-
sensor case can be achieved. This result is formalized in the
following theorem:

Theorem 3: The maximum likelihood filter for the
imperfect-sensor case (MLEF-IS) has the following average prob-
ability of error:

m o
_ kil o L
P(@) _;k*l |:€j PP eF '/1L+1r£zaé}z+mef PP el’
(€] V] (10)

where P’ = [p;] , pij =qp¥i=1,...,m, pgj =piVj =
m-+1,..,n, p;(nﬂ) =1 —q)p;Vj=1,...,m, p/(nﬂ)j =
pVi=1,...,mVj=1,..,n,...,n+m; where P = [p;],
Py =0Vi#j, ph=1Vi=1,.,m, pj,=ppVi=m+]1,
...,n; where e’fT is a row vector of all 0’s except with a single 1
at the most recent sensor position, f; where e’F 1S a row vector
with e (i) = 0Vi = 1,...,mand e (i) = IVi=m+1,...,n;
where the index variable & represents the number of steps since
the last sensor event; and where v} is the eigenvector of the trans-
pose of transition matrix for the Markov chain, ', associated
with the eigenvalue of 1 (scaled to || v [[; = 1).

The maximum likelihood smoother and error probability for
the imperfect-sensors case (MLS-IS) can be obtained in exactly
the same way, and the result is that P is replaced with P’ in the
MLS-PS expression.

D. Detector Characterization and Simplification of the Error
Analysis

The maximum-likelihood filter for a flag HMM turns out
to have a special form, which allows some further simplifica-
tion of the filtering algorithm and also the probability-of-error
computation.

To identify the special filter structure, we first note that the
maximum likelihood estimate of the current (time z) state de-
pends only on: 1) the value f of the last flag and 2) the time k
since the last flag. We claim that, as the time since the last flag
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becomes large, the detector converges to a single state under
broad conditions.
To see why, notice that the maximum-likelihood
state is given by i =max P(s[z] =i|y[z] =0,...,y[z —
1

k+1] =0,y[z — k] = f). This probability can be computed
via a modified Markov chain, which tracks the probability of
each state given that none of the sensed states has been reached
(see proofs of Theorems 1 and 2). Preciscly, this conditional
Markov chain replicates the original chain, but: transitions to the
sensed states 1, ..., m are disallowed, and the remaining transi-
tion probabilities are scaled up to equal the conditional probabil-
ities given that no transitions to sensed states have occurred. The
transition matrix for this modified Markov chain, denoted as P,
thus is defined as follows: P; = Ofori =1,...,n,7 = 1,...,m;
and P = T—I:m fori =1,...,m,5 = m+ 1, ...,n. For this
modified Markov chain, the sensed states are by definition tran-
sient, while at least some of the unsensed states (m + 1, ...,n)
are recurrent. Under the condition that the unsensed states form a
single ergodic class, it follows immediately that the probabilities
P(s[z] =ilyle] =0,...y[z =k +1] =0,y [z — k] = f) for
i =m+1,...,n approach an asymptote as k is made large.
Thus, it follows that the maximum-likelihood state ¢4 is fixed
after some look-ahead horizon, i.e., for k > k' for some positive
integer k’. Further, this asymptotic estimate is the same for all
possible previous flags, although the time required to reach the
asymptote may differ from each. The result is formalized in the
following theorem:

Theorem 4: Consider a flag HMM whose modified Markov
chain with transition matrix P has a single recurrent class, which
is ergodic. The detected state, ¢4, converges as a function of the
time since the last flag, k. i.e., it is constant for all k& > k'
Further this asymptotic detected state is the same regardless of
the value of the last flag.

The fact that the detected state converges to a fixed value
(under the broad ergodicity conditions) has two interesting im-
plications. First, it allows off-line finite-memory storage of the
detector, which then allows detector deployment without any
on-line computation. Specifically, it is sufficient to maintain a
table which, for each possible previous flag value, stores the
optimal state estimate for 0 < k& < k. This then allows on-line
detection of the state without any real-time computation: only
look-up of the estimate in the table is required.

Second, the theorem allows simplification of the probability-
of-error computation. The infinite sum in the expression can
be eliminated, through an explicit summation of the terms for
k > k'. This can be done via a spectral (Jordan) decomposition
of the matrix P in the probability-of-error expression. Specifi-
cally, we decompose Pas P = VAW where V is a matrix con-
taining the right cigenvectors and generalized eigenvectors, 144
is a matrix containing the left eigenvectors, and A is the block-
diagonal Jordan matrix. To simplify the presentation, from here
on the Jordan blocks are all assumed to be size 1, i.e., P is di-
agonalizable; the analysis can be easily repeated for the general
case but the notation becomes cumbersome. Considering the
internal summation from A’ to infinity in (1), we get:

o0 oo
Z e;‘fPPk*l (eF —ei) = Z efPf/[\k*lVV (e7 —ei)
k=4 k=#'
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where i is the (unchanging) detected state after time &'.
We then define viv, = [eJTPQ,][x?v,T (e —e;)]. Using the
facts that viv; = 0 and |A,| < 1Vr = 2, ..., n, we find:

o0 [o'e] i
Z ev:fFPf/]Xk W(er —€) = Z varif
k=k'+1 k=k'+1 Lr=2
n x n k1
~ ’*k ~
=3 | 3 | = 3w ]
r—=2 k=k"+1 r—2

Substituting this back into (1), the probability of error thus
becomes:

m k-1
T p k-1 T ppk-1
Pe) = Z { Z {e,f PP" er — ,, max e; pPp el}
s=1 U\k= o
n ak+1
+ Vwr L (R
5] ) e

This analysis yields a probability of error expression without
an infinite sum, which may thus be viewed as a closed form
expression. The expression permits exact computation of the
probability of error using a finite computation, however it may
be cumbersome (o use in practice because 1) the time k' alter
which the detected state is fixed is unknown a priori and 2) the
computation requires finding the spectrum of P. However, in
practice, good approximations can be obtained without under-
taking the full spectral analysis. To see how, consider the case
that the time & since the last flag is large compared to =,

where Xy is the subdominant eigenvalue of P. In this case,
from standard linear systems theory, the detector output is fixed
and also probability of occurrence (the probability that the P
chain has not been absorbed into a sensor state) is small [26].
(We note here that A, can be guaranteed to be real and positive
since it is the dominant eigenvalue of the submatrix of P cor-
responding to the transient non-sensor states.) Thus, it suffices
to simply terminate the summation for some k >> ﬁ, since
the remaining infinite sum is negligible. This simple approxi-
mation can be further refined, if desired, by including only the
infinite-summation term corresponding to A,. If even comput-
ing the dominant eigenvalue is cumbersome, the summation can
instead be terminated when ]5"7_187 is sufficiently small. We
also point out several interesting iterative algorithms for finding
increasingly-tight lower bounds on asymptotic state occupancy
probabilities [27], which could be exploited in characterizing
the time k" and computing the infinite sum without undertaking
a full spectral analysis; details are omitted.

E. Discussion: Graph-Theoretic Analyses and
Sensor Placement

The algebraic and spectral analyses of the estimation error,
and the characterization of the detector form, are a starting
point toward developing graph-theoretic results on flag HMMs.
Graph-theoretic analyses of both the error-computation effort,
and the error itself, are potentially of interest. While stopping
short of presenting formal lemmas/proofs, we illustrate how al-
gebraic graph theory ideas can be used to develop such analyses.
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First, with regard to complexity, the computational effort to
find the error probability is seen to scale inversely with the dis-
tance of the subdominant eigenvalue of P from the unit circle
(see previous subsection). However, notice that the subdominant
eigenvalue of P is also the dominant ei genvalue of the principal
submatrix of P corresponding to the non-sensed states, which is
a substochastic matrix. A number of graph-theoretic characteri-
zations of this eigenvalue have been developed [28], [29], in the
context of the analyzing substochastic matrices, characterizing
absorption and recurrence times in Markov chains, or bounding
cigenvalues of M matrices. Based on [28], it follows that the
subdominant eigenvalue of P can be close to 1 only if there
is a non-sensed state which is isolated from the sensed states,
in the sense that the product of the probabilities on any path
to a sensed state is small. Formal bounds on the subdominant
eigenvalue and hence the computational effort can be obtained
in terms of such path products, but we do not pursue this further
here. Relevant to our effort here, this result suggests that plac-
ing at least one flag sensor in each strongly subnetwork of the
Markov chain eases computation.

The graph topology of the Markov chain, and the locations
of the sensed (flagged) states in the chain, also modulate the er-
ror probability itself. Understanding this dependence can assist
in developing simple rubrics for sensor placement, and deter-
mining how pervasively a chain has to be sensed for effective
detection. The dependence of the error probability on the graph
and sensor locations is rather subtle. Based on the algebraic
expression, we see that low-error filtering and smoothing are
achieved if: 1) the sensed (flagged) states are entered with high
frequency (since no error is incurred during these time steps),
and 2) in between flags the trajectory of the Markov chain is
highly deterministic (i.c., a particular sequence of states is highly
likely, so that the chance of deviating from the most-likely state
and hence incurring an error is low). The frequency with which
the Markov chain enters each sensed state is determined by the
asymptotic state occupancy probabilities, which are contained
in the left eigenvector of P associated with its dominant unity
cigenvalue; the dominant cigenvector is exactly characterized
in the reversible case, and numerous graph-theoretic results are
available in the general case [30], [31]. The uncertainty in the
between-flags trajectory is more difficult to characterize. At its
essence, this uncertainty has to do with the rate of mixing in
the non-sensed part of the Markov chain: if the mixing rate is
high, then the trajectory is uncertain and the error probability is
large (and vice versa). Densely connected chains are fast mixing
(see e.g., [32]), hence the probability of error is higher for such
chains compared to sparsely connected ones. A majorization ar-
gument for the error also could be used to derive graph-theoretic
results; details are again omitted.

The algebraic formula for the error, as well as the result-
ing spectral and graph-theoretic results, can in turn facilitate
sensor-placement design. First, the algebraic expression for the
error allows very rapid computation of the error probability,
thus allowing optimization over possible sensor configurations
whether via a combinatorial search or a greedy or other heuris-
tic. In the examples developed in the next section, we have
undertaken sensor selection via a greedy heuristic and via an
exhaustive combinatorial search for smaller examples. This ap-
proach takes advantage of the simplicity of the crror-probability
computation. The examples also make clear that effective sensor
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placement is closcly tied to the graph structure of the Markov
chain. The above preliminary graph-theoretic analysis suggests
that rubrics for placement based on the graph topology, in-
cluding degree and centrality measures, partition structure, and
connectivity, may achieve good sensor placements.

IV. EXAMPLES

Two numerical examples are presented. The first example,
which is based on the data gathered from a real-world smart
home, demonstrates the applicability of the error analysis in
activity monitoring in a home environment and also gives some
insight into sensor placement for activity monitor. The second
example addresses sensor placement in larger (30-100 state)
chains, and explores the dependence of detector performance
on chain size and connectivity.

A. Case Study—-Smart Home Activity Monitoring

The error-probability analysis has been used to design sen-
sor placements for monitoring elderly patients in a smart home
environment. Smart home environments are living spaces with
pervasive sensing (and perhaps actuation) capabilities, that can
systematically monitor and respond to residents’ needs. Smart
home technologies may be particularly valuable for the elderly,
as a means for providing cost-effective around-the-clock care
while allowing individuals to remain independent and in their
own homes [15] . However, implementing smart home tech-
nologies entails significant costs in terms of communication,
sensing, computation, maintenance, ctc. Thus algorithms are
needed that allow effective monitoring with limited cost and
overhead. Here, we study the problem of using sensor data on
a smart-home resident’s movement to estimate their activity
pattern. Because of cost constraints (including implementation,
maintenance, and communication costs, [2]) and the need for
reliability, it is often preferable that sensors are used at only a
subset of activity locations for persistent monitoring.

Using pervasive sensing data from an experimental smart
home testbed, a Markov chain model with 12 states has been
constructed for patient movement among activity states in the
home. The data used is from the Aruba testbed in the CASAS
project at Washington State University [33]. The following are
the activities captured as states: 1) Other Activity, 2) Sleeping, 3)
Bed to Toilet Transition, 4) Meal Preparation, 5) Relaxation, 6)
Housekeeping, 7) Eating, 8) Washing Dishes, 9) Leave Home,
10) Enter Home, 11) Work, and 12) Respirate. The Markov
chain is generated by only considering the activity transitions.

Our aim in this study was to evaluate activity monitoring from
sparse sensing of the activity states. Specifically, ML filtering
and smoothing of the activity state using perfect or imperfect
sensing of a subsct of the states was considered. The techniques
developed in this paper were used to characterize the detec-
tors’ error probabilities, and hence to inform sensor placement.
First, the MLF-PS algorithms were used to design and evalu-
ate sensor selections of different cardinalities, using a greedy
heuristic. These sets of sensors and the associated probabilities
of error for filtering arc shown in Table L. Since this is a rela-
tively small Markov chain, the optimal (minimum probability
of error) sensor selection for each desired cardinality was also
found through a combinatorial search. In this case, the global
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TABLE I
SIMULATED AND THEORETICAL P (e) FOR DIFFERENT SENSOR PLACEMENTS
IN SMART HOME EXAMPLE FOR THE MLF-PS

Number of Sensors Optimum Sensed States Theoretical P (e¢) Simulation P (e)

1 5 0.1865 0.1861
3 5,4, 10 0.1018 0.1015
5 5,4,10,2,7 0.0424 0.0424
7 5.4,10,2,7,3.9 0.0124 0.0124
9 5,4,10,2,7,3,9.8,6 0.0004 0.0004

TABLE II
SIMULATED AND THEORETICAL P (e) FOR DIFFERENT SENSOR PLACEMENTS
IN SMART HOME EXAMPLE FOR THE MLS-PS

Number of Sensors  Optimum Sensed States Theoretical P (¢) Simulation P (¢)

1 5 0.1712 0.1714
3 5,4,9 0.0898 0.0899
5 5.4,9,2,7 0.0358 0.0356
7 5,4,9,2,7,10.3 0.0112 0.0112
9 5,4,9,2,7,10,3.8,6 0.0004 0.0004

optimum matched exactly the results found using the greedy
search.

For comparison, the probability of error was also estimated
using a simulation of the hidden Markov model and detector
over 10° time steps. These simulation results are also shown
in Table I and closely match the theoretical results. The same
analysis was conducted for the MLS-PS case as well, except
that the global optimum was not determined. The results for the
smoother are shown in Table II. The optimal probabilities of
state-estimation error for the filtering and smoothing cases are
shown as a function of the number of sensors in Fig. 2.

The results show that small error probabilities can be achieved
with relatively sparse sensing. A 10% estimation error rate is
achieved using only 3 sensors, and only 7 sensors are required to
achieve a 1% error rate. Once there are 9 sensors, the error rate is
practically 0, and finally at 10 sensors, it is exactly 0. This case
study demonstrates that a relatively small number of sensors can
potentially allow effective activity monitoring in a smart home,
and hence shows a realizable solution for reducing the number
of sensors that collect/communicate Activity of Daily Living
(ADLs) datain a smart home. The case study also verifies that the
formal analysis of error probabilities matches error probabilities
determined via Monte Carlo simulation. Finally, from the graph
of the Markov chain (Fig. 1), it becomes clear that the optimal
sensor placement is closely tied to the graph structure of the
chain: in good designs, sensors are placed in different weakly-
connected partitions of the Markov chain’s graph. It is also
interesting to note that the best sensor sets for the filtering and
smoothing cases are similar but not identical.

We also studied how the error rate changes with the sensor
fidelity. We focused on the case where all sensors have the same
fidelity, i.e., ¢; = q¥i € F. The dependences of the error rate on
the sensor fidelity ¢ for the filtering and smoothing problems are
shown in Fig. 3. In both cases, 5 sensors were used. As expected,
the performance degrades with decreasing sensor fidelity. Also,
the “best” set of sensors (best greedy choice) were found for each
sensor fidelity level and compared to the “best” set if the sensors
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were perfect. For both filtering and smoothing, the g-specific set
and the perfect-sensors set achieved similar performance. Thus,
if the sensor fidelity is not known, there is not much performance
loss in using the perfect-sensor set even when the sensors are
imperfect. As a whole, detection with imperfect sensors was
surprisingly effective. Even with sensor fidelitics of only 10%,
the probability of error for 5 sensors was around 36.5% for the
filtering case and 31.5% for the smoothing case. This means
that the estimated state was only wrong about a third of the
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time even when the sensors were only 10% accurate. Again, the
Monte Carlo simulation matched the theoretical analysis.

B. Larger Examples

The flag HMM algorithms were applied to higher-
dimensional (30 and 100 state) randomly-generated Markov
chains, to gain further insight into sensor placement and to ex-
plore how chain characteristics impact detector performance.
For these examples, the Markov chains’ transition graphs were
constructed by assigning bi-directional edges between each pair
of states with some probability; the edge weights were also as-
signed stochastically (but subject to the constraint that the tran-
sition matrix is a stochastic matrix). Specifically, two 30-state
chains — a sparse chain with 55 edges and a denser chain with 83
edges—were considered, as was a larger 100-state chain with 229
edges (which has a similar edge density to the denser 30-state
chain). As in the smart home example, a greedy heuristic was
used to select sensors for low-error filtering and smoothing, for
a specified number of sensors. The performance of the MLF-PS
and MLS-PS algorithms are shown as a function of the num-
ber of sensors in Fig. 4, for both the sparse and dense 30-state
chains. It is seen that low probabilities of error can be achieved
with a small number of sensors. The higher density chain does
incur a larger filtering and smoothing crror, however effective
detection is still possible with fairly sparse sensing.

The performance of the MLF-IS algorithm was also analyzed
in a similar fashion to that of the smart home example. Specifi-
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cally, the greedy design was obtained for a set of 6 sensors, all
with the same fidelity (scc Fig. 5). As in the smart home exam-
ple, the probability of error is surprisingly small with a limited
number of sensors and low sensor fidelity, for both the sparser
and denser chains. Also, for the denser chain, there is not much
difference in error between the g-specific set of sensors (found
by a greedy heuristic) and the set found in the perfect-sensor
case. This leads us to believe that the difference between the
g-specific set and the perfect-sensor set depends on the struc-
ture and connectivity of the Markov chain. We leave it to future
work to show how the structure of the graph affects this differ-
ence.

The flag HMM error computations were also undertaken for
the larger (100-state) Markov chain, to study scalability of the
error-computation algorithm as well as sensor placement. The
filtering and smoothing performance for greedy sensor place-
ments, assuming perfect sensors, are shown in Fig. 6. Again,
cffective filtering and smoothing can be achicved with a rela-
tively small number of sensors (with the fraction of states which
must be sensed to achieve a given probability of error on par
with the denser 30-state chain). The larger example also demon-
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strates that the probability of error and sensor placement is still
relatively easy to compute.

V. FUTURE WORK

An important direction of future develop graph-theoretic and
structural results on the probability of error, to support sensor
placement. While some initial ideas toward a graph-theoretic
analysis have been advanced in this article, much remains to be
done. Specifically, simple bounds are needed on the error prob-
ability in terms of the transition matrix and flag locations, or
alternately on the. Building on these analyses, algebraic graph
theory tools can be brought to bear to obtain graph-theoretic re-
sults. Another direction of future work is to determine whether
the error probability is submodular with respect to the sen-
sor placement [20], with the aim of determining optimality or
bounding the performance of the greedy algorithm. In the exam-
ples considered, submodularity of the error with regard to sensor
selection has always been maintained (i.e., no counterexamples
have been found).
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