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Sparse Resource Allocation for Linear Network
Spread Dynamics

Jackeline Abad Torres, Member, IEEE, Sandip Roy, Member, IEEE, and Yan Wan, Member, IEEE

Abstract—Sparse resource allocation to shape a network
dynamical process is studied. Specifically, we consider
allocating limited distributed control resources among a
subset of a network’s nodes, to minimize the dominant
eigenvalue of a linear dynamical spread process associ-
ated with the network. Structural characterizations of the
closed-loop dynamics at the optimum are obtained. These
results are then used to 1) develop constructive algorithms
for optimal resource allocation, 2) identify limits on the
control performance, and 3) understand the relationship
between the network’s graph and the optimal resource
profile. While the focus here is on a simplified linear model,
an exploratory study of the design’s applicability to realistic
stochastic and nonlinear spread processes is undertaken,
via simulation examples. As a whole, this study advances
a research thrust on disease spread control in networks,
toward the realistic paradigm that control resources can
only be allocated at a subset of network locations.

Index Terms—Control of networks, network theory
(graphs), optimal control, spread processes.

[. INTRODUCTION

NUMBER of recent studies in the network controls com-

munity have considered optimal deployment of limited
control resources to mitigate diffusion and spread processes in
nctworks [1]-{8]. Thesc cfforts follow on an extensive litcra-
ture on modeling and simulation of network spread dynam-
ics, mostly published in applicd-mathematics and computing
forums (e.g., [9]); as well as a wide literature on diffusion
and synchronization processes in the physical sciences and
engineering (e.g., [10]). The study of sprcad management in
the network-controls community was originated in [1], which
formulated a basic design problem in the context of multi-group
and contact-network models for spread, and provided structural
characterizations and designs for symmetric and diagonally-
symmetrizable interaction topologics. Several studies have ad-
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dressed more general design problems and obtained results
for broader graph classes, using a mix of numerical methods
[2], [3], [S] and structural approaches [5]-[7]. In particular,
[2]-{5] use optimization algorithms including geometric pro-
gramming and the Distributed Euler Replicator Algorithm to
minimize either the total resource cost or the spectral radius
of the network’s dynamics, under broad assumptions. The
article [5] also describes a decentralized implementation of
the resource-placement algorithm, and identifies an interesting
structure (line-sum symmetry) that facilitates design. Mean-
while, the article [6] provides graph-theoretic results on the
performance cost of using fair controllers and [7] suggests a
dynamic (trend-driven) control scheme. Recently, our group
has pursued application of these design techniques in managing
the spread of zoonotic (mixed animal and human) discases in
agricultural communities [11] as well as hospital settings [12].
In complement with the network-controls approaches, optimal
controls and game-theoretic approaches to spread management
have also been proposed. Additionally, the important work
[8] has proposed an efficient dynamic policy for containing
epidemics in networks, which is near-optimal in the sense
that the extinction time is within a multiplicative factor of the
optimal for large networks.

The structural studies of optimal sprecad management in
the network-control literature have assumed that resources can
be applied at all network nodes. In many practical spread-
management contexts, control capabilitics are blunt and lim-
ited, effecting changes in spread patterns in a subset of network
nodes, or in constrained ways. For example, when spread
among multiple communities or states is considered, only some
may have the wherewithal to deploy vaccination or control
resources, of surveil for the disease [ 13]. Similarly, the ability to
effect controls may differ among the multiple species involved
in a spread [11], the ages or other personal characteristics of
the infectives, or the locations visited by the infectives, among
other factors. Also, in many circumstances, cost constraints
dictate that resources can only be placed in a subset of network
locations, although these location may be the choice of the
control designers. This article addresses spread control when
only a subset of network locations allow control.

While the design of sparse controls can be addressed using
numerical methods (see e.g., the broad formulation in [2]), there
is a need for 1) simple design algorithms that are catered
for sparse-control problems and 2) simple structural insights
into good control placements and performance bounds. The
rescarch presented here addresses these needs. Specifically, we
study the optimal distributed allocation of control resources
over a subset of network nodes to shape a lincar network
spread dynamics, subject to a total resource constraint. For
this class of control problems, we characterize the dominant
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cigenvalue and corresponding cigenvectors of the closed loop,
upon use of an optimal control scheme. These characterizations
arc then used to obtain explicit designs for the optimizing
controller. The analyses and design procedures also provide
some insight into the relationship between the network’s graph
and control performance. Our development draws on structural
results given in [1] and [5], but generalizes these approaches to
the sparse-control case. In the process, the work also obtains
structural design results for more general (specifically, directed
irreducible) graph topologies.

The design method presented here potentially can inform
management of infectious discase outbreaks, as well as spread
and diffusion processes in the cyber world. However, these
processes are in reality much more complex than captured by
the linear network model, involving significant nonlincarities,
intrinsic stochastics, topological variations, dclays, ctc [14].
Thus, applying the optimization methods requires, at the least,
cvaluation of the design by detailed simulation, and consider-
ation of whether the design provides simple structural insights
that are informative to real-world management. In this article,
an exploratory study of the method’s applicability to infectious-
discase management is undertaken, using two examples. First,
the optimal control policy is implemented and evaluated in the
context of a stochastic nonlinear multi-group model for spread
[15],[16], for a 100-node nctwork. Second, a small-scale casc
study of the spread of the vector-borne Chikungunya virus is
developed, which gives some structural insight into resource
placement when control locations are limited.

The research described here also connects to a much broader
literature on decentralized and network control. Decentralized
control of large-scale dynamical systems has been addressed
extensively in the classical controls literature [17]-{20]; we par-
ticularly point out the important works giving non-conservative
conditions for stabilization of gencral lincar decentralized sys-
tems (c.g., [17]). However, much remains to be done in con-
structing practical high-performance decentralized controllers
that exploit the network’s interconnection topology, and also
in relating control performance to topological parameters. In
a complementary direction, there has been also an extensive
graph-theoretic study of dynamical networks, centered on their
modeling and analysis rather than control [21]{23]. Over the
last 15 years, an exciting literature has developed that meshes
these two perspectives, and approaches decentralized control
from a graph-theoretic perspective [24]-{28]. However, this
literature on graph-exploiting decentralized controllers has pri-
marily focused on autonomous-agent systems, where network
nodes or agents are only interconnected via communications
(nothard-wired), and controllers can be developed for all agents.

The results for autonomous-agent systems have found wide
usc (c.g., in robotics and sensor-network computations), but
many infrastructural applications demand control of an existing
hard-wired network process using sparse localized controls,
perhaps subject to stringent resource constraints. Applications
requiring such sparse control include not only the discase-
spread processes that are our focus here [29], but also swing
dynamics in the electric power grid [30], air traffic flow man-
agement [31], etc. Although control schemes have been im-
plemented in the real world for many of these infrastructures,

research on these hard-wired control problems for a graph-
exploiting perspective is surprisingly sparse. The literature on
pinning control is an important contribution in this direction
[32]{34]. however these studies do not model resource con-
straints, and largely do not explicitly consider tuning of control
gains. Recently, the problem of designing a subset of edge
weights in a graph to shape a dynamics has been considered
[35], which shows interesting relationships between the unde-
signable network structure and the network’s spectrum. How-
ever, this study was focused on edge-weight design rather than
control. The growing drive toward fine control of infrastructural
processes (e.g., for building energy management, coordination
of air traffic management initiatives, and epidemic mitigation)
motivates the study of graph-exploiting control of hardwired
processes under resource constraints. The research presented
here contributes to this direction, with a focus particularly on
controlling spread dynamics with limited control flexibility.

In terms of the methods used, this study particular draws
on, and advances, a research effort on line-sum symmetry
and dominant eigenvalue minimization under trace preserving
diagonal perturbation [36], [37]. This work also builds on the
broad literature related to nonnegative matrices and stability
analysis of nonnegative systems (e.g., [38], [39]). Relative to
these studies, our efforts are concerned with optimizing the
dominant eigenvalue over a constrained set of diagonal pertur-
bations, particularly for the special case where only a subset of
diagonal entries can be designed.

The remainder of this article is organized as follows. In
Section II, we formulate the problem of allocating control
resources to manage a linear network spread dynamics. In
Section III, results on the optimal allocation of control re-
sources are presented. Finally, an exploratory study of the
method’s applicability to nonlinear infectious-disease spread
processes is undertaken, in Section IV.

[l. MODEL AND PROBLEM FORMULATION

A wide range of network spread and diffusion processes
have been modeled, including disecase spread, computer virus
dissemination, population dynamics, oil spills on oceans, data
multicast, etc. [40]{44]. These studies have introduced non-
linear deterministic and stochastic models for network spread
dynamics, and considered linear approximations of these mod-
cls in detail. Since there is already an extensive literature, we
directly present a generic lincar model that encompasses a
varicty of linearized spread processes, without re-deriving the
models and approximations. The described model is particu-
larly closcly connected with the models for infection spread
givenin[1],[2], and [5], sec these works for detailed derivations
of the linearized network dynamics.

Formally, let us consider a network with n nodes. Each
network node, labeled 7 € 1,2, ..., n, has a non-negative scalar
state x;(t) associated with it which indicates the prevalence
of an infective (spreading quantity) in that node. Nominally,
the states arc approximated as cvolving according to an au-
tonomous linear differential equation

i(t) = Ax(t) (1
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where t > 0 and x(t) = [x1(t) ,..., x,(t)]. The off-diagonal
entries A;; = «y; of the state matrix A, which indicate the
unitized transmission rate of the infection from j to ¢, are
assumed to be nonnegative («;; > 0 Vi # j). Meanwhile, the
diagonal entrics may be either positive or negative, reflecting
the possibility for local spread as well as prevalence reduction
due to local control or intrinsic “healing.” State matrices of this
form, known as essentially-nonnegative or Metzler matrices,
arise in a wide range of network dynamics (including synchro-
nization, discase sprcad, and flow processes) [ 1], [21],[45]. The
model encompasses both stable and unstable processes. When
essentially-nonnegative matrices arc used to represent network
processes, it is common to associate a directed graph with the
matrix, which indicates direct influences among the nodes (as
indicated by «v;; > 0). Relationships between the connectivity
propertics of this graph and certain cigenvalues/cigenvectors
of A are well-known, see ¢.g. [46]. For many of the analyses
here, we will assume that the state matrix A is irreducible, i.c.,
corresponding to a strongly-connected graph. Notice that a non-
negative irreducible matrix has a real dominant eigenvalue with
algebraic and geometric multiplicity one. We do not include a
detailed review of the graph-theoretic analysis, see [47].

We are concerned with the allocation of distributed control
resources to a subset of the nodes in a network. Our main
goal is to allocate these resources, subject to limits, so as to
optimize a performance measure. Specifically, without loss of
generality, we assume that control resources may be placed in
nodes 7 € 1,2,...,m (m < n). The resources placed at each
node ¢ are modeled as enacting a local lincar feedback in node ¢
(i € 1,...,m), whose strength is proportional to the amount of
resource placed. Specifically, for a resource level D; in node i,
the ith row of the nominal state cquation is modified by the
additive feedback input w;(t) = —D,x;(t) for i = 1,...,m.
We note here that a more positive D; indicates a larger resource
allocation, which enacts a stronger negative feedback to curtail
the spread.

Upon placement of the control resources, the closed-loop
dynamics are

i) = (A~ K)a(t) @
where
D 0
w=[o

and D = diag(D,, ..., Dy,). The closed-loop state matrix re-
mains an essentially-nonnegative matrix, with the same graph
(and hence same irreducibility property) as the original state
matrix. In the case where the open-loop state matrix is irre-
ducible, it follows that the closed-loop state matrix is irre-
ducible for any K, and hence has a purely real eigenvalue
whose real part is strictly larger than that of any other cigenval-
ues. We refer to this eigenvalue as the dominant eigenvalue, and
use the notation Apax for it. The dominant eigenvalue may be
cither positive or negative. We also refer to the corresponding
left- and right-cigenvectors at wmax, Umax and the ith node of
these eigenvectors as Wmax,i» Umax,i respectively.

Our focus here is on reducing (making more negative) the
dominant eigenvalue of the closed-loop dynamics subject to

resource constraints, since this dominant cigenvalue determines
stability/instability and specifies the convergence rate of the
dynamics. Specifically, we seck to design the diagonal matrix
D to minimize dominant (maximum) eigenvalue of A — K,
Amax(A — K), subject to the total resource constraint 0 <
>, D; <T. We also address this design problem under
the further constraint that only negative feedback is allowed,
ie., D; > 0Vi=1,2,...,m. Formally, the design problem of
interest is the following:

Amax(4 — K)

min

1yeesm

m
s.t. Z D; <T
i=1

D;>0 Vi=1,2,....m 3)

where both the case with the individual constraints on I; and
the case without are considered. The cigenvalue-optimization
problem considered here closely follows on the formulations
given in [1], [2], and [5], but addresses the case that only a
subset of network nodes can be allocated control resources from
a structural perspective.

Although the above problem formulation focuses on a linear
model, outcomes of the design have some bearing on more
accurate nonlinear models for spread processes. Importantly,
the stability vs. instability of the linear model is known to
correspond to elimination vs. persistence of spread in the
nonlinear model under broad conditions [9], [14], hence the
asymptotics of spread for the closed-loop nonlinear model are
characterized. Specifically, the stability of the lincar model
guarantees that the basic reproduction ratio (average number
of new infections caused by a randomly-chosen infective) is
less than onc for the non-linear stochastic multi-group model,
which is sufficient for stability of the origin for the nonlincar
model; similarly, instability implies that the nonlincar model
will have a stable fixed point away from the origin, i.c., a
persistent spread. Also, for multi-group and certain contact-
network models for spread, the state dynamics of the linear
model are known to majorize those of the nonlinear one, so
the design for the lineariation bounds the performance of the
nonlincar model. However, it is important to stress that the
transient dynamics of the nonlinear and linear models differ
significantly, and thus evaluation of designed controls for the
nonlinear model is necessary. An exploratory evaluation of the
design in the context of a stochastic nonlinear model for spread
is undertaken in Section I'V.

IIl. STRUCTURAL AND ALGORITHMIC RESULTS

We refer to the design problem introduced in Section II as
the subset design problem since only a subsct of network nodes
(states) have control input capabilitics. We also distinguish the
special case when m = n, i.e., all the network nodes have
control input capabilities, as the network-wide design problem.
Additionally, we find it convenient to distinguish: 1) uncon-
strained design, where the D;, for ¢ = 1,...,m, are uncon-
strained except for the total resource constraint (Section I1I-A);
and 2) constrained design, where the additional constraint that
D, is non-positive for¢ = 1, ..., m, is enforced (Section I1I-B).
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For convenience, we refer to the diagonal matrix K that mini-
mized the dominant eigenvalue of A — K as K (unconstrained
design) or K* (constrained design). The dominant eigenvalue
and corresponding eigenvectors of A — K* (or A — K) are
referred to as Al,.» Winaxs and v3,, . (or equivalently as Amax,
Wmax, and Umax).

Conceptually, the unconstrained design differs from the con-
strained one in that resources can be “taken away” (ncga-
tive resources allocated) to some network locations, to allow
provision of sufficient resources at other locations. In many
cases, such reallocation of resources is not realistic, since the
ab initio resources may reflect intrinsic healing capabilities or
unchangeable policies. However, the unconstrained design may
be relevant in some applications (e.g., computational ones), and
it is also important as a performance bound and stepping stone
for the constrained design.

A. Unconstrained Design: Optimal Resource Allocation

In this subsection, the unconstrained design is addressed
from a structural perspective. Specifically, Lemma | charac-
terizes the structure and sign pattern of the left- and right-
cigenvectors associated with the dominant eigenvalue, for the
optimal design. Using this result, an algebraic method for
computing the subset optimal control resource allocation is
developed in Theorem 2, for arbitrary essentially non-negative
irreducible matrix A. Discussions about the network-wide opti-
mal resource distribution and about the minimum resource level
necessary for stabilization are also included.

Let us start by analyzing the dominant eigenvalue and cigen-
vectors of A — K, when an optimal control resource allocation
K = K is used:

Lemma 1—(Unconstrained Optimization: Spectral Condi-
tion): Consider the matrix A — K, where K = diag(Ds, ...,
D,,,0,...,0) and A is an essentially-nonnegative matrix as
defined in the problem formulation (which may or may not be
irreducible). Consider any K = K that minimizes the dominant
cigenvalue of A — K subject to Y.~ D; <T. Assume that
A — K has a real simple dominant eigenvalue. The optimizing
K and the corresponding dominant cigenvalue/cigenvectors

Amaxs Wmaxs and Uax satisfy one of the following conditions:

1) >, D; = I'. In this case, Vi = 1,...,m, we have that
Wmax,iUmax,i = fb

2) ZZI D; < T.1In this case, Vi = 1,...,m, we have that

Wmax,iVUmax,i — 0.

Furthermore, if A is irreducible, then A — K has a real simple
dominant eigenvalue, and the optimizing K and the dominant
cigenvectors always satisfy condition 1.

Proof: We usc cigenvalue sensitivity analysis and con-
strained optimization concepts [48], [49] for this proof. To find
the optimum K under the total resource constraint, we form the
Lagrangian: L= Apx(A — K) +u(Z;-n:1 D;—T'+n?), where
1 1s the Lagrange multiplier and 7 the slack variable. Then we
recognize that the derivative of L with respect to cach variable
(D;, i, and n) is zero at the optimum (Karush-Kuhn-Tucker
(KKT) conditions). Since the dominant eigenvalue of A-K
is assumed real and nonrepeated, we can usc the standard

cigenvaluc sensitivity formula for the derivative of Apax
with respect to the parameters, i.c., (OAmax(A — K))/0D; =

—Wmax,iVmax,i for + = 1,2, ..., m. This leads to the following
equations:
U_/’max,i'(_}max,q) - ,l_t =0 Vi= 1,2, R 11
m
Z D7 + 772 =T
j=1
2nn = 0. (4)

The two cases in the Lemma follow directly from (4). First,
we note that either i or 1 is zero. If n =0 and i > 0 then
S D; =T and Wmax,iUmax,i = i whereas if 7 =0 and
fi=0then 7" D; =T and Wmax,imax.; = 0. Otherwise,
M D; < T and Wmax,iPmax,i = 0. The two conditions in
this Lemma provide a necessary condition on K to minimize
the dominant eigenvalue of A — K. However, this condition is
also sufficient since the dominant eigenvalue of an essentially-
nonnegative matrix is a convex function of its diagonal entries
[50]. Additionally, if A is irreducible, then the dominant eigen-
value is non-repeated, and the corresponding eigenvectors are
entry-wise positive. Hence, condition 1 is always satisfied. W

Remark 1: Condition 2 in Lemma | corresponds to the
case that any increment/decrement in D; for i = 1,... m will
not change the maximum/dominant eigenvalue of A — K. This
case arises if the matrix A is reducible and the locations in the
network of all the controls are such that they do not affect the
dominant eigenvalue, i.e., Wmax,iUmax,i = 0 for i =1,..., m.
In such a casc, any matrix K such that E:”:l D;,<TI,is a
solution, including the trivial one K = 0. This is, however, an
atypical case.

In the typical case that the control inputs can move the
dominant cigenvalue, the entirety of the resources are allo-
cated in such a way as to equalize the participation factors
Wmax,iUmax,i» 1.€., to equalize the impact of cach network node
on the spread. In this case, the entirety of the available resources
are necessarily used, i.e., >/", D; =T,

Remark 2: We stress that, for the case where A is irreducible,
the dominant eigenvalue of A — K is necessarily simple and
hence the theorem is applicable (as is explicit in the theorem
statement). In the reducible case, a simple dominant eigenvalue
is also typical and can be guaranteed in subcases, however
specialized examples can be developed with repeated (semi-
simple) dominant cigenvalue. The theorem can be generalized
to encompass these cases, but the treatment becomes rather
technical and is not included here.

Let us now present an algorithm for designing the optimal
resource allocation, for irreducible state matrices A. The design
result draws on an interesting transformation for irreducible
essentially-nonnegative matrices. Specifically, there always ex-
ists a unique (up to scale factor) diagonal similarity transforma-
tion matrix P such that PAP 'T=P ' A’ P1, where 1 is the all
ones vector of the appropriate dimension. These kind of matrices,
called line-sum symmetric, have interesting propertics that arc
important in the development of our results (see [36], [51] for
details on the existence and computation of P). We note that
the line-sum symmetry concept differs from diagonal sym-
metrizability. Line-sum symmetry simply requires cach row
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sum to equal the corresponding column sum, and in fact every
irreducible nonnegative matrix has a diagonal transformation
that achieves line-sum symmetry. In contrast, a matrix is said to
be diagonally symmetrizable only if it has a diagonal transfor-
mation which makes it truly symmetric. Also, we note that line-
sum symmetry was exploited in optimizing a spread controller
in [5], however their design did not achicve design for an
arbitrary irreducible state matrix (arbitrary dirccted graph).

The following theorem gives an algorithm for computing
the optimal resource allocation, for the unconstrained subsct
design problem. This development requires some further no-
tation. Specifically, we partition the topology matrix into four
submatrices A1, Ao, Aoy, and Agy which are commensurate
with the designable and undesignable control channels (i.c.,
Ajqis an m X m matrix).

Theorem 2—(Unconstrained Subset Optimal Design):
Consider the matrix A — K, where K = diag(Ds, ..., Dy, 0),
and A is an irreducible essentially-nonncgative matrix as de-
fined in the problem formulation. The control design K = K
that minimizes the dominant eigenvalue of A — K subject to
the only constraint that ZZI D,; < T can be found as follows:

1) Solve the following system of equations for P and Apax:

PA(Amax)P T — P 1A (Amax)' P1 = 0

U'PAMmax)P 11— T — Apax 'T =0 (5)

where A, (Amax) = A1 + Ai2(Amax] — A2o) Aoy,
and P = diag(p1, ..., pm)_

2) Calculate D = diag(PAr()\maX)P’lf — j\maxf) and
D 0]

k[P0

Proof:  Since the optimal solution satisfies that
Wmax,iUmax,; are identical for all 4 = 1,...,m, we can use a
diagonal similarity transformation such that ¢th right- and
left-cigenvector component are identical, or equivalently

P 0 _An - D Ao (P! 0] _1 - /—\ 1
0 I L A21 A22 L 0 I_ _’17 o max v
and
P! 0] AH 7D Alg_l P 0] _T - 5\ T
0 I_ A21 A22_ 0 I_ _’117 o rmax ’lﬁ

where « and v are the entries of the left- and right-cigenvectors
related with the entriecs ¢ = m + 1,...,n. From the above
cigenvalue cquations, we find that PA,(Amax)P 1 =
P’lAr(j\maX)’PT, i.e., PA,(Amax)P ! is line-sum symmet-
ric. Furthermore, the last equation of the system of equations (5)
and the expression for D are derived from PAT(/_\maX)P’l 1
DI = Amaxl. ]

The system of equations (5) can be solved quickly using
simple numerical methods. Specifically, the first m equations
in (5) involve finding a diagonal matrix P’ that transforms
the matrix A, (Apnay) into a line-sum symmetric matrix: this
problem can be solved using a fast algorithm [51], [52], and
hence it only remains to scan over possible values of Xmax to
find the optimum.

Remark 3: If the matrix A is symmetric, it is clear that P = [
in (5), and hence the system of equations is reduced to only a
single polynomial cquation whose unknown is Amax.

The above result specializes in the case that control resources
arc available everywhere, i.c., anetwork-wide design is possible.

Corollary 1—(Unconstrained Network-Wide Optimal De-
sign): Consider the matrix A — K, where K is a diagonal
matrix and A is an cssentially-nonnegative irreducible matrix,
as defined in the problem formulation. The matrix K that
minimizes the dominant eigenvalue of A — K subject to the
constraint y " ; D; = I" can be found as follows.

1) Find a diagonal matrix P such that PAP 'l =
P AP

2) Compute Apax = (1/n)(I'PAP '1—T).

3) Compute K = D = diag(PAP’lf — Xmaxf).

The design result also immediately allows us to determine
the minimum resource level necessary for stability of the spread
dynamics:

Corollary 2: The minimum resource level I" such that a con-
troller satisfying Y " ; D; = I, achieves stability (i.e., makes
Amax < 0) i8 Tin = 'PAP 1. If I'PAP 1 < 0, then the
open-loop network model is already stable.

Conceptually, Corollary 2 indicates that the disease can
be eliminated if enough resources are available to make the
average row sum of the network matrix (average rate of new-
infection generation compared to healing) negative, upon line-
sum-symmetrization. We note that it is sufficient for the average
row sum of the original (non line-sum-symmetrized) network
matrix to be negative, although not necessary. For large net-
works with homogencous inter-individual spread rates, it is
casy to check that the required resource budget grows lincarly
with the density of interconnections, and the number of ver-
tices; this is in contrast with the dynamic allocation considered
in [8], which allows for a sublincar resource budget.

Theorem 2 and its associated lemmas/corollarics reflect a
structural characteristic of the optimal design, namely that the
optimal D equalizes the row sum of PA(Amax)P ' — D.
Such an optimal design equalizes the participation of cach
network node on the dominant eigenvalue, and hence satisfics
the conditions of the optimal solution given in Lemma 1. The
minimal resource I required for stability therefore makes all of
the row sums of the line-sum-symmetrized state matrix equal to
ZEero.

The design presented in Theorem 2 also admits a graph-
theoretic interpretation. To explain this, let us consider the ma-
trix Ar(j\max) = A+ Al‘z(;\maxl — A22)71A21 as defined
in the theorem statement. This Schur form-matrix is essentially
nonnegative, and can be viewed as defining a graph with
vertices corresponding to the designable subset, which we call
the effective contact network graph. We note that A, (Amax)
encapsulates influences among designable nodes, but includes
indirect influences via the undesignable part. Specifically, an
edge (7, ) in the effective contact network graph describes the
transmission rate of the infection from ¢ to j considering not
only the direct influence of ¢ over j but also the influence
through the undesignable part of the network. According to
Lemma 1, the participation factor of every designable network
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node (state) in the dominant mode is identical at the optimum.
Then, Theorem 2 admits the following interpretation: in the
contact network dynamics for virus spread, the optimal control
resource distribution injects control resources in the designable
subset such that influence of these nodes is equalized with
respect to the effective contact network graph.

B. Constrained Design: Optimal Resource Allocation

Next, the constrained design problem is addressed, by build-
ing on the results for the unconstrained design. First, the
structure and sign pattern of the left- and right-cigenvectors
associated with the dominant eigenvalue at the optimum are
characterized in Lemma 3. Next, in Lemma 5, we present
intrinsic structural limitations on control performance, for the
constrained subset design problem. A necessary and sufficient
condition for checking whether a control resource allocation is
globally optimal is then presented in Lemma 4, based on the
clement-wise product of the cigenvector components associated
with the dominant cigenvalue of A — K. Finally, a finite-
stage iterative method is developed based on these lemmas, to
compute the optimal control resource allocation when the state
matrix is diagonally symmetrizable (Theorem 6).

The following lemma characterizes the dominant eigenvec-
tors of the optimal closed-loop state matrix A — K* for the
constrained design problem, for both the network-wide and
subset design cases.

Lemma 3—(Constrained Optimization: Spectral Analy-
sis): Consider the matrix A—K, where K = diag(Dy,

.3 D, 0,...,0)and Aisan cssentially-nonnegative matrix as
defined in the problem formulation. Consider any KX = K™ that
minimizes the eigenvalue of A — K subject to the constraints:
DY " D;<T'and2)D,<0Vi=1,2,...,m,andassume that
A—K has a real simple dominant cigenvalue for K = K*.
The optimizing K* and the corres‘ponding dominant eigen-
value/eigenvectors A}, .. and v}, satisfy one of the
following conditions.

wr

max? max

1) ET 1 Di = I'. In this case, for cach ¢, we cither have that
D: >0 and Whax,iVmax.i — K or Df = 0.

2) ZZ 1 D; < I'. In this case, for each i, we either have that
D*>0andw v =0,orD; = 0.

max,? '’ max,?

Furthermore, if A is irreducible, then the optimizing K and the
dominant eigenvectors always satisfy condition 1.

Proof: Letusexpress D; as D; = d?, since D; > 0 for all
1 =1,2,...,m. We will use eigenvalue sensitivity analysis and
constrained optimization [48], [49]. That s, to find the optimum
K under the mentioned constraints, we form the Lagrangian:
L= Amax(A = K) + p(>27L d7 — T+ 9?), where p is the
Lagrange multiplier and 7 the slack variable. Then we set the
derivatives of L with respect to all variables (d;, u, and 7) to
zero (KKT conditions), which leads to the following equations:

—2d; (WhaxiVimax.s — H) =0 Vi=1,2,....m
m
Zd;d =T
j=1
2u'n" = 0. (6)

The two cases in the theorem follow directly from (6). First,
we note that either n* or p* is zero. If n* =0 and p* >0
then 327" Dy = I and w},, iVnax; = #° for cach i, where
D;>0o0r D;=0.1f =0 and =0 then )", D, =T
and Wy, Vnax; = 0 for each ¢ where D; >0 or D; = 0.
On the other hand, if 7 # 0 and g =0 then »." |, D; <T
and wy,,.vn,. = 0 for each @ where D; >0 or D; = 0.
Addltlonally, if A is irreducible then the dominant eigen-
vectors are entry-wise positive and hence condition 1 is
always satisfied. |

Remark 4: Similar to the unconstrained case, the typical
circumstance (which always holds for the irreducible case) is
that the entirety of the available resource is used, whereupon
the designable locations’ participations are cither equalized or
zero resources are allocated. If none of the control variables
affect the dominant eigenvalue, which can only possibly happen
if the state matrix is reducible, then trivially the resources can
be allocated at will to achicve the optimal.

In the following lemma, we give a further characterization
of the dominant cigenvector’s components. This analysis is a
stepping stone toward our design since it allows us to check
whether or not a solution K for the constrained design is
optimal.

Lemma 4—(Global Optimum: Spectral Condition/Pattern):
Consider the matrix A — K where K = diag(Dy, ..., Dy,,0),
and A is the irreducible matrix defined in the problem formu-
lation. A matrix K = K™ minimizes the dominant eigenvalue
of A~ K subject to Y ." | D; =T and D; >0 for all i =
1,...,m, if and only if the product of the sth entries of the
left- and right-dominant cigenvectors wy, .. Zumax ; forall i =
1,...,m has a special pattern: spemﬁcally, Winax,iVmax.i <
wmax’jumax,] for all 4,57 €1,...,m such that D; =0 and
D3 > 0.

Proof: Let K* be the matrix that minimizes the optimal
eigenvalue of A— K. Let K — K*=A, where A =diag(dy, ...,
6m,0,...,0)suchthat ) 7" 6; = 0.Letthe set Z  be the index
set containing the indices i such that D; = 0 fori = 1,...,m.
Without loss of generality, let §; = —0 for an arbitrary [ € Z_,
i.c., the diagonal entry [ of K is less than 0, and 6, =0 for i #£1
and i € Z . Then OAmax(A — K*)/(’)(S = ~Whax.Vmaxt T
Zzn 1,i#l wmax i max L(r)(s (5)/05 =~ Whax, lvmaxl + ", Be-
cause of the optimality condition for convex functions, i.e.,
OAmax(A — K*)/06 > 0, and the fact that wy . v5 ) 7# 17,
we have that K™ minimizes Apax(A — K) if and only if
wl*nax,lvl*nax,l < ,LL*. n

When control resources are applied only to a subset of net-
work nodes, there is always an intrinsic limit on the network’s
dynamical performance (and specifically on the dominant
cigenvalue), regardless of the amount of resources available.
The following lemma makes this limitation explicit:

Lemma 5—(Limits on the Optimum): Consider an irre-
ducible essentially-nonnegative state matrix A. Let A be the
submatrix of A formed by the rows/columns i = m + 1, m +
2,...,n. Let Apmax(A) and )\max(fl) be the dominant cigen-
value of A and A respectively. Then, the dominant cigenvalue
Afax Of the optimal control resource allocation (A — K™)

max
always satisfies: )\max(A) <Ak < Amax(A), for any amount

max
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of total control resources I' (and for cither the constrained or
unconstrained design).

Proof:  Since the diagonal matrix K has nonnegative
entries and the dominant eigenvalue of A — K is convex with
respect to the diagonal entries, a solution satisfying Lemma 3
(or Lemma 1) cannot incrcasc the dominant cigenvalue
(Nnae < A(A)).

Supposc that we have unlimited control resources. Then,
we can set D; = O(f) for a big enough fandi=1,...,m.
According to Gerschgorin’s circle Theorem [53], A — K has m
negative eigenvalues of order O(f). Clearly, none of them is
the dominant eigenvalue of A — K since the remaining n — m
eigenvalues are within the circles whose centers are at A;; >
—O(f) and their corresponding radius are 37, ., [A;;| for
1 =m+1,...,n.Further, since A is an irreducible essentially-
nonnecgative matrix, )\max(fl) < Amax(4), sce [38], [54] for
details. At the same time, )\max(fl) < Amax(A—K) since Ais
also a submatrix of A— K. Hence, Amax(A) <\, <A(A).

|

Remark 5: The above theorem not only provides a bound on
the dominant eigenvalue of A — K™ (optimal control resource
distribution) for the subset design problem, but also informs
sensor and actuation placement. For instance, if one has the
freedom to choose the m network nodes that will receive the
control resources, the best choice is to make the dominant
cigenvalue of submatrix A the minimum possible, which is a
direct consequence of Lemma 5.

The following theorem gives a systematic algorithm for
finding the optimal diagonal matrix /K™ that minimizes the
dominant eigenvalue of A — K for the constrained subset de-
sign problem, through an iterative method. The concept of
the algorithm is as follows. First, the unconstrained optimal
design is obtained. Then, iteratively, the gains that violate the
positivity constraint are sct to 0, and the remaining gains are re-
optimized (via solving a smaller unconstrained subset design
problem). This process is continued until a strictly positive
solution is obtained. The below thecorem verifies that the al-
gorithm necessarily finds the optimal design in the case that
the topology matrix is diagonally symmetrizable. In practice,
we have been able to modify the algorithm to solve the subset
design problem for arbitrary topologies, sce the discussion
following the theorem.

Theorem 6—(Constrained Subset Design): Consider an
irreducible essentially-nonnegative and diagonally symmetris-
able state matrix A. Let K* be the diagonal matrix (with
first mm diagonal entries non-zero) that minimizes the dominant
cigenvalue of A — K, subject to D; >0 and ) ;" D; =T.
The diagonal matrix K * can be found as follows.

1) Initialization: Prior to the iterative process, find a diag-
onal matrix () such that A =  'AQ is symmetric. Set
the iteration counter to & — 1. Also, define the set Zp to
index the designable diagonal entries at each iteration,
and initialize this set as containing all of the designable
entrics in the subset design problem (this set will be iter-
atively reduced). Denote the dimension of the designable
set at iteration k as my 1. Then apply the following
iteration:

2) First, re-arrange the rows/columns of A~ K via permu-
tation so that the designable entries arc the first my
entrices, as specified in the following form:

Ar

Ay — D
Aga|

Aoy

Here D®) is the my, | x my, | diagonal matrix contain-
ing the designable gains at the kth iteration (i.e., D) is
designable part of matrix K). In the following steps, the
unconstrained optimum gains D) will be found and then
used for iteration.

3) Solve the following equation for Ay ax:

A Amax)] =T — Apax T =0 (7

where Ar()\max) = An + A12(/\max-[ — A22)71A21, I
is the all ones vector of the appropriate dimension.

4) Calculate the optimal unconstrained design for this
designable subsct, as D®) = diag(A, (Amax)1 — Amax1)
and check that ka) >O0forallt=1,...,m; 1. Letus
denote the set of indices 7 such that ka) < 0asZ_,and

the set of indices ¢ such that ng) =0 as Zyp. Also, we

update Zp (k) to contain the indices 4 such that ng) >0
fori=1,...,my 1. If the set Z is empty then
. _[D® 0
K = [ N

5) If the set Z_ is non-empty, we set ka) =0 forall i e
7 . We stress that the set of designable gains D, after
the iteration only include those whose indices are in the
updated Zp, which is defined to have my elements. We
also set k = k + 1 and go to step 2.

Proof: The result is proved by showing that a sequence of
increasingly-constrained optimization problems are solved by
the iterative algorithm given in the theorem statement. Specif-
ically, it is shown that, at cach iteration, the original design
problem with positivity constraints enforced on the nodes that
arc not in Zp (k) is solved. Without loss of generality, let A
be a symmetric matrix. Clearly, step 3 provides an optimal
solution for the unconstrained subset design (Theorem 2), for
the specified designable set. It is clear that if 7 is empty after
this step, the solution obtained in step 3 is the global optimal
solution for the constrained case, i.e., D; > 0. If not, further
steps in the iteration need to be evaluated.

At each subsequent step of the iteration, we prove that the
further-constrained optimization problem defined above (with
all entries not in Zp(k) constrained to be nonnegative) is
solved. This proof itself requires an inductive argument. In
particular, we first show that setting any single gain D; such
that < € Z_ to zero and repeating step 3 will provide a global
optimal with this entry further constrained to be positive, i.c., a
solution that satisfies Lemma 4 (and hence KKT coditions are
also satisfied). Via an induction argument, we then arguc that
we can set all the gains D; such that i € 7 to zero at once so
as to get a solution to the further constrained design problem
(with all entries not in Zp (k) constrained to be nonnegative),
because of the directions in which the other gains move when
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one gain is set to zero and the gains are reoptimized. Here is the
argument.

Consider that Z_ is non-empty. Specifically, let us say that
7 has u clements. Let us also consider the optimal solution
when these gains are sct to zero. We will prove that in this
casc Lemma 4 is satisfied. In other words, we will prove that
Vpax.i < Umax,; for i € Z UTy and j € Ip, where vmay is
the eigenvector associated with the dominant eigenvalue of the
new matrix 4 — K (k“), and hence this optimal solution is
also global for the further-constrained optimization problem.
Further, the designable gains for this new optimal are greater or
cqual to the previous ones. We will prove this using induction.
We take for instance the kth step of the algorithm.

Buasis Step: Let Zg = A — K®) be the matrix that produces
the unconstrained global optimal at the k-iteration and \g be
its dominant cigenvalue. Without loss of generality, assume
that the gains my | —u—+1,...,my; 1 are in Z . We first
increase the gain D,,, , to zero while optimizing the other
gains (without any constraint).

Let Zy = Zy + A, where A = diag(ADq,...,ADy,, | 1,
~,0,...,0) and > " AD; = a. We would like to prove:
1) the m};}ll cigenvector component (associated with D,,,, , <0)
is less than the entries 1 to my 1 and 2) the gains AD; > 0 for
1=1,...,mp 1 — 1.

Since Zj is symmetric, we can write the dominant eigenvalue
as the maximization of a function, via the Courant-Fisher
Theorem [46]. Specifically, Ao =max, v' Zov = v Zyvg, where
vy = (1", | Tp] is an cigenvector of Zg. Similarly, \; =
max, v'Z1v = vy Zjvy, where v} = [df;nkhl c ¥'] is an
eigenvector of Zj. Then A\ = v} (Zy + A)vy = v} Zov1 +
ad? — oc?. Since vy maximizes the function v’ Zgv, A < Ao +
ad? — ac? and at the same time, \g < \;. Hence, d® > ¢2, or
equivalently d > ¢, i.e., Lemma 4 is satisfied.

Letus prove now that the entries AD; fori=1,...,my 1—1
are positive. Because d > ¢, we can write the eigenvector
corresponding to the maximum cigenvalue of Z; as v} =

1 c1 i), where ¢ <0 <dy and ¢ is a

vo + [dily,,
n — my_1 vector. Let Z; have the following form:

Zh + Ay Zi2 713
Zy = Zn Zyy — v s
Z31 Z32 Z33

where Ay = diag(ADq,...,AD,,, , 1).Using the eigenvec-
tor equation and some algebra, we obtain that

(1+d)A T, 1

= 1 = 20) (T 1+ Z13Qudio + Z15Qs + Z12Ch
T Z1QaT0 ) + (Z15Qs + Z12Q1)

| Z -
s ]
@)

+d; <)\1] — 71— [ZIZ

where

is a M-matrix. Further, the inverse of M3 is entry wise non
negative and has the following form:

1 |Q1 Q2
Ms _{Q:& QJ

where Q = Po(1 + Z23Q4Z321%), Qo = PoZy3Qs, Q3 =
Qu1Z32P, Qs = (M I — Zs3 — Z32 Py Zs3) ' and Py = (A —
(Za2 —a)) "

The last expression in equation (8) contains a Schur com-
plement of the M-matrix A\;I — Z;. In particular, from the
cigenvector equation (Al — Z1)v; =0, we get (with some
algebra) that

()\1[ — (le + Al)) Imkflfl
| Z -
= ([ZI‘Z ZIS] M3 ! |:Z§i:|> ]-mk7171-

Replacing the above equation in equation (8), we obtain that:

AT, 1= (1 — No) (ka,lfl + Z13QuT0 + Z12Q270
T Z13Qs + Z1Q1)
+a(Z13Q3 + Z12Q1). 9)

We note that Q; for ¢+ = 1,...,4 as well as the off-diagonal
blocks of Z; and 7y are entry-wise nonnegative vector/matrices.
Further, A\; > A\g and «v > 0. In other words, the gains A D; for
t=1,...,my 1 — 1 are strictly positive.

Inductive Step: Supposec we have re-set [ of the entries
D; >0 to zero (I < u). Let us also suppose that vmax,; <
Umax,i tor j=mp 1 —l+1,mp 1 —1+2,...,mp 1 and
t=1,...,mi 1 — [ (global optimal condition). Additionally,
suppose that the gains D; for the remaining elements of 7 are
at most 0. We would like to prove that after setting another gain
D, < 0to zero, we still have the appropriate cigenvector pattern
(Lemma 4) and condition on the gains.

Without loss of generality, consider setting the gain
D, 1 to zero. Let us denote the dominant cigenvalue in
this step A;, and the one before setting this gain to zero
as A; 1. Applying again Courant-Fisher Theorem, \; | =
max, v (A — K)v and )\, = max, v'(A — K + A)v, where
A =diag(ADy,...,ADy11,—0,0,...,0) is the matrix
that set D, ; to zero and change the other m — [ — 1 gains ac-
cordingly. We note that E?ikfl*]’*l AD; = [3. Repeating simi-
lar argument given in the basis step, we can show that: v,y ; <
Umax,i for j=mg 1 —lLmy 1 —1+1,...,mp 1 and i =
1,...,mp 1 —1—1.

The proof that the remaining gains D; decrease upon setting
this gain to zero, and hence are at most zero if ¢ € Z_, follows
a similar argument to that given in the basis step. Further, since
setting any gain D; such that ¢ € Z_ will only decrease the
remaining designable gains, we can also sct the gains D; for
1 € Iy to zero since they will violate the constraint. Thus, via an
inductive argument, we have shown that the further-constrained
optimization problem is solved (i.e., the KKT condition for this
problem is achicved), via one step of the iteration in the theorem
Statement.
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It remains to prove that the iteration given in the theorem
statement eventually yields the solution to the fully-constrained
design problem. To sce this, notice that two outcomes are
possible after cach iteration stage. First, the designed uncon-
strained gains may be nonnegative, in which case the fully-
constrained optimization problem has in fact been solved since
the constraints are met. Alternately, some of these gains may be
negative. In this case, the set Zp strictly decreases in cardinality
in the following iteration. Thus, either the optimal solution is
obtained, or within m — 1 iterations only a single entry remains
in Zp; since the total resource allowed is assumed positive, the
optimal design at this stage must be positive, and the fully-
constrained optimization problem is solved. |

The last theorem describes a finite iteration (requiring at most
m stages) for computing the optimal control resource allocation
K~ for the constrained subset-design problem, when the state
matrix A defined in the problem formulation is diagonally-
symmetrizable.

Remark 6: We have been able to modify this method to
address the case when the topology matrix is an arbitrary
irreducible matrix. This new algorithm replaces step 3 in the
constrained subset design algorithm (Thcorem 6) with the
procedure in Theorem 2, which uses line-sum symmetrization
to find the unconstrained optimal solution K. In practice, this
generic algorithm has been able to always find the optimal
solution, but we have not yet been able to prove that it works
gencerally. However, a special case can be proved: when the
unconstrained optimum has only one gain D; < 0 (one gain
violating the constraint), then the procedure is guaranteed to
find a global optimal, i.c., a solution that satisfics Lemma 4
[55]. The proof of this result builds on an important theorem on
the diagonal scaling that yield line-sum symmetry for squarc
nonncgative matrices [36]. We have excluded the details in
interest of the space. We stress that the design obtained through
this algorithm can be checked for optimality via Lemma 4.

Remark 7: It is worth commenting about computational com-
plexity of the algorithm. Each stage of the algorithm requires:
1) solving a polynomial equation equation for Apax, for which
many algorithms arc available that arc polynomial-time in
dimension; and 2) computing the optimal gains thercof, which
is at most quadratic in the problem dimension. The number of
algorithm stages is at most mg — 1, where my is the number
of designable entries in the original design problem. Thus, the
algorithm allows a fast (polynomial-time implementation). The
special problem structure allows us to search over a nested
sequence of subscts of the original designable set, rather than
considering all possible subsets, and still guarantee optimality.

Remark 8: Geometric programming approaches can also
permit fast solution to the formulated spread-control problem
[2] via convex optimization. In comparison, our approach yields
a specialized recursive algorithm that is guaranteed to find
exactly the optimum within a certain number of iterations. Also,
importantly, the approach gives interesting structural insights
into the optimum, which can be applied even when the network
is not precisely known, the problem dimension is too large,
or other reasons. On the other hand, our method does not di-
rectly leverage the considerable machinery available for convex
nonlinear optimization that geometric programming cnables.

Fig. 1. Graph associated with the spread dynamics for example 1 (left)
and example 2 (right).

TABLE |
OPTIMAL RESOURCE ALLOCATION FOR EXAMPLE 1

15t Tteration, A\pax = —0.0623 | 27¢ Tteration, Ayax = —0.0551
i D; Wmax, i Ymax,i D; Wmax, 3 Ymax,i
1 0.1467 0.1549 0.0872 0.1801
2 -0.1448 0.1549 0 0.0924
3 1.0142 0.1549 0.9128 0.1801
4 -0.0161 0.1549 0 0.1409

In terms of numerical computation, examples indicate that
our approach is fast compared to the geometric-programming
approaches when the optimal design is at the boundary of the
design space (specifically, some locations receive no resources
at the optimum).

C. Examples

Two examples are given to illustrate the subset-design al-
gorithm for the diagonally symmetrizable and irreducible non-
diagonally symmetrizable cases.

Example 1 (Diagonally-Symmetrizable Matrix Topology):
Let the 5 x 5 topology matrix of the spread dynamics be

0.1 0.1
034  -0.62 023 05
A= 0.1 0.1  0.24 0.3 (10)
0.1 034 044
0.23 ~0.23

The graph of the spread process is shown in Fig. 1. Consider the
casc that the total resource amount is I' = 1 and the resources
can only be applied to the nodes ¢« = 1,...,4. In this case,
the minimum amount of resources needed to stop the spread
(achieve stability), considering no constraints, is ['pin = 0.751.
Here, we consider the optimal subset design under constraint.
In the following table, we summarize the results after cach
iteration of the algorithm in Theorem 6. The globally optimal
constrained design is found after the second iteration, since a
feasible solution has been found (and the algorithm is known
to converge to the global optimum). The optimizing design,
corresponding Amax, and left and right cigenvectors of the
closed-loop, are shown in Table I. The constrained design
achieves stability.

Atthe optimum, the participation factors for nodes 1 and 3 are
greater those of nodes 2, 4, and 5, as expected from Lemma 3
and 4.

Example 2 (Non-Symmetrizable Irreducible Matrix Topol-
ogy): For this example, we use a modification of the algorithm
presented in Theorem 6. In this case, we substitute step 3 for
the computation in Lemma 2, as described above.
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TABLE I
OPTIMAL RESOURCE ALLOCATION FOR EXAMPLE 2

15% Tteration, Amax = —0.0722 | 27 Tteration, Amax = —0.0713
i D; Wmax, 3 Ymax,i D; Wmax, i Ymax,i
1 0.1566 0.2014 0.1392 0.2148
2 || -0.04435 0.2014 0 0.1781
3 0.8989 0.2014 0.8608 0.2148
4 -0.0112 0.2014 0 0.1938

Specifically, let us consider a spread dynamics with the
following topology matrix:

0.1 0.1
0.34 —0.62 023 05
A= 0.1 0.1 024 0.3 (11)
0.1 034 —0.44
02 023 —0.43

The network graph is shown in Fig. 1. For this example, we
again consider [' = 1, and consider the case that resources can
only be applied at nodes 7 = 1, ..., 4. In this case, the minimum
resource level needed for a stabilizing unconstrained design is
I'in = 0.8574.

The optimal constrained design was determined for this
example. In Table II we summarize the results after cach
iteration of the algorithm, and present the design details once
the optimum is reached:

We note that the resource allocation provided by this modi-
fied algorithm is provably optimal since the eigenvectors satisfy
Lemma 4.

IV. EXPLORATORY APPLICATION TO
DISEASE SPREAD CONTROL

Infectious disease outbreaks incur significant cost in terms of
human morbidity/mortality as well as loss of productivity, and
necessitate nimble management policies to limit impact. One
important aspect of disease management is to decide where, and
to what extent, surveillance and control capabilities should be
put in place across a wide arca. For example, for the Ebola out-
break of Winter 2015, there was a need to select certain ports-
of-entry into the United States for further surveillance. Because
these questions are related to the spatial patterns of movement
and spread, it is natural to use dynamical network models
to support policy-making. Indeed, a number of dynamical-
network models have been proposed. These are of various res-
olutions, ranging from detailed simulation models representing
individuals to delay differential equations for prevalence at the
group level (e.g., [14]H16].) While some models have been
used to evaluate control policies in practice, to our knowledge
systematic methods for designing surveillance and control have
not been implemented in the ficld.

The research described here can potentially enable system-
atic design of management policies using network spread mod-
cls. However, possible application to discase management must
be considered with caution. In reality, discase spread processes
and their management are much more sophisticated than the
lincarized models described here, involving nonlinearitics, in-
trinstic stochastics, delays, time variation, highly specialized
controls, environmental impacts, etc. Linearizations are used
for cvaluation of spread patterns and control policics in the

cpidemiology literature. This is primarily because stability vs.
instability of the linear operator are known to correspond to
climination vs. persistence of the spread, respectively (see the
wide literature on the next-generation operator). However, it
unclear how cffectively the linear models can capture transients
of real-world disease spread processes, and hence whether the
optimal solutions obtained here are in fact effective. Our belief
is that the optimal design usually will not translate directly
to quantitative design of policy details—there arec too many
unmodeled factors and operational specifics. Rather, we argue
that the optimization framework can give wide-arca insight
into where, and to what extent, limited and costly surveillance/
control resource should be placed. These broad insights can
then guide policy-makers in sclecting particular control actions
and deciding their scope, at both operational and planning
horizons. More detailed simulation models would then be used
to evaluate designed policies.

In order for the optimization results to be effective for
policy design, it is crucial that design insights obtained from
the linearization be robust to the nonlinearities, stochastics,
and other factors that are present in reality. We pursue two
examples in order to evaluate, in a preliminary way, whether
the obtained designs are sufficiently robust to support effective
policy design. First, for a constructed 100-node network, the
obtained design is simulated using a stochastic nonlinear multi-
group model for spread, and shown to perform well. Second,
a crude model for the spread of Chikungunya in the Latin
Caribbean, which matches historical data, is used to understand
in detail the policy structures suggested by the optimization. We
also note that, in our previous work, network-design approaches
have been used to support policy-development for management
of zoonotic diseases [56], however the details are outside the
scope of this paper.

The application examples pursued here focus on disease-
spread control, but it is important to stress that similar subset-
design problems arise in other application areas. In fact, the
nonlinear multi-group model considered in the first example
below also naturally captures spatial population dynamics and
some biochemical reaction processes occurring at the cellular
level. The subset design problem is also of significant interest in
these contexts. Specifically, it allows study of whether control
of pest animals at a few locations can be used to limit overall
populations. Meanwhile, in a biochemical-reaction context,
the subset design problem is relevant to designing targeted
interventions to reaction processes, which may support e.g.,
design of medicines. Similar subset design problems also arise
in control of diffusive processes, such as thermal management
of a building, or monitoring and mitigation of pollution spread.
Further details are omitted in the interest of space.

A. Design Simulation: 100-Node Example

The proposed design is tested using a stochastic nonlinear
multi-group model for spread. Specifically, for the 100-node
example shown in Fig. 2, the stochastic nonlinear susceptible-
infectious-susceptible (SIS) multi-group model is simulated.
We recall that the multi-group SIS model tracks infection
counts or prevalence levels in multiple subpopulations. New
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Fig. 2. Network Graph associated with the stochastic nonlinear
susceptible-infectious-susceptible (SIS) multi-group model.
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Fig. 8. Infection count variation at node 79 for network-wide optimal
design (left) and uniform design (right). The solid lines consider the
intrinsic variability in new infection and recovery rates. The dashed lines
consider average new infection and recovery rates.

infections arise due to interactions among the subpopulations,
with the rate scaling with the product of the infected population
in the source group and uninfected population in the affected
group—hence a quadratic nonlinearity is introduced. Lincar
local recovery processes are also captured, and controls are
viewed as increasing rccovery rates. When infection counts
arc small, intrinsic variability in new infections and recovery
become important: such variability can be captured using
Poisson-process models for new infections and recovery (whose
rates are specified as above). Here, we have implemented this
stochastic nonlinear network model for the 100-node network
shown in Fig. 2. In the interest of space, the nonlinear model
is not presented in detail here, see e.g., [15], [16] for similar
dynamical models. We note that initial infection penctrations
of 10%—-50% have been assumed, which incur significant non-
linear effects.

For the nonlinear model described above, the linearization
about the equilibrium at the origin has been found. This lin-
carization is then used to design resource allocations at subsets
of the network nodes. Broadly, two types of comparisons are
undertaken here. First, the optimal resource allocation has been
compared with a uniform resource allocation (with the same
total resource level). Also, the optimal designs for different
designable sets arc compared.

In this example, we have considered the network-wide design
where all 100 nodes are amenable to control. We have also con-
sidered four sets of designable nodes with 20 nodes, selected as

Designable Nodes || Optimal Eigenvalue
max
All nodes -0.4172
Node Set 1 -0.2581
Nose Set 2 -0.3233
Node Set 3 -0.3219
Node Set 4 -0.3094

follows: 1) Node Set 1 has 20 nodes chosen randomly, 2) Node
Set 2 contains the 20 nodes with most number of connections,
3) Node Set 3 contains the 20 nodes with the highest total (Iocal
and inter) transmission rate, and 4) Node set 4 has 20 nodes with
the highest local transmission rate.

Fig. 3 compares the performance of the network-wide opti-
mal design and uniform design, in the context of the nonlinear
stochastic model: a sample trajectory and the mean response
arc compared. The optimal design shows significantly better
performance compared to the uniform design, including a re-
duced peak count and faster settling time. This is in correspon-
dence with the performance of the lincarized model, for which
the dominant eigenvalue is —0.41 for the optimized design as
compared to —0.28 for the uniform allocation. The example
demonstrates that the optimal design for the lincarized models
also translates to an effective design for the lincar model.

The optimized designs for the four subset-design cases con-
sidered here are shown in Fig. 4, while the optimized maximum
cigenvalue S\max is shown in Table III. For each designable
node set, the optimal resource allocation has significant vari-
ation across the network: some nodes are allocated significant
resources, while others arc not. The resource distribution also
varies significantly among the Designable Node Sets, suggest-
ing that different design strategies are needed for each case.
For cach designable node sct, the dominant cigenvalue at the
optimum shows a small but marked improvement compared to
a uniform distribution (5%—10%). Fig. 5 shows the locations
and the resource levels for the designable nodes corresponding
to Node Set 1 (20 most connected nodes). The darkest squares
in the Fig. 5 indicate the locations where more resources should
be placed, while the whitest squares indicate the location where
less resources should be applied, or resources should be taken.
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Figs. 6 and 7 show the state evolution (infection count) at
node 27 for each designable node set, as given by the nonlincar
stochastic model. In particular, Fig. 6 presents the average
response over many sample trajectories. On the other hand,
Fig. 7 captures a single sample trajectory. Importantly, these fig-
ures show that the controlled nonlinear model displays similar
performance characteristics as predicted by the optimally-
controlled linearized model, in terms of the relative effec-
tiveness of different designable node sets and the asymptotic
performance of the design.

An important further direction is to evaluate the perfor-
mance of the design in a detailed, individual-level susceptible-
infectious-susceptible model of spread (e.g., [8]). Testing the
design in a detailed model of this sort requires modeling the dis-
tribution of the resources allocated to a group to the individuals
within the group. A natural approach is to probabilistically dis-
tribute the available curing resources among these individuals,
to reflect regional control policies (e.g., public-health reminders
or discounted treatments) that act on a random selection of
individuals within a region. Noting the connection between
individual-level models and diffusion models [57], we expect
the performance comparisons to remain apt, however we leave
detailed simulation to future work.

B. Chikungunya Spread in the Caribbean Countries

The Chikungunya virus is a vector-borne discase that is
endemic to parts of Africa and Southeast Asia. Since late 2013,
a significant epidemic of the disease has been underway in
the Caribbean and parts of Central, South, and North America
[58].! Chikungunga is primarily transmitted among human
hosts by mosquitos, which are carriers of the virus. The virus
causes fever, rash, long-duration joint pain, etc. in humans, and
is exacting a significant economic and social cost in impacted
countries. No vaccine or specific treatment for the virus is
known. Thus, effective forecasting and strategic management of
the discase (via control of mosquito populations, and reduction
of contact) is crucial [58].

This example is concerned with how the Chikungunya virus
could have been managed in its initial stages in the Latin
Caribbcan, with a particular focus on understanding how inter-
country transmission rates would impact management policies.
For the example developed here, we have developed a very
simplified model of the spread of Chikungunya virus in six
countries/territories of the Latin Caribbean. The model tracks
total infection counts in the initial stages of the virus in these
six countries, using a linearized multi-group model of the form
(1). A simplified procedure has been used to parameterize the
model. In particular, weekly growth rates in discasc preva-
lence have been used to determine intra-country spread rates.
Specifically, the diagonal entrics of A have been chosen to
achieve best fits of the exponential growth of the discase in
cach country in the initial stages of the disease. Meanwhile, low
rates have been assumed for inter-country transmission based
on passenger-transport and shipping patterns. Specifically, the
off-diagonal entrics in A have been selected as nonzero or zero
depending on whether or not standard ferry/transport routcs arce
present between the countries. The exact magnitudes of these
off-diagonal entries arc difficult to ascertain from data, but were
guessed based on counts of new infections originating from
other countries in the data record. Because of the difficulty in
estimating inter-country transmission rates, we also study here
how resource allocation patterns change if the inter-country
rates are scaled. Data for parameterization were drawn from

1[Online]. Available: http://www.cdc.gov/chikungunya/
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Fig. 8. Graph associated with the spread dynamics for Chikungunya
spread example.

TABLE |V
OPTIMAL RESOURCE ALLOCATION FOR
CHIKUNGUNYA SPREAD EXAMPLE

Control everywhere Control at 1,3,4,5 (15¢ It.)
Amax = —0.1501 A = 0.0285
i i Wmax,i Umax,i D; Wmax, i Umax, i
1 0.1831 0.1667 0.0099 1.09%x10~7
2 0.1776 0.1667 0 0.9999
3 0.1713 0.1667 0.8349 1.09x10~7
4 0.1636 0.1667 0.1252 1.09x10~7
5 0.1536 0.1667 0.0299 1.09%x10~7
6 || 0.1507 0.1667 0 4.07x10~11

the Pan-American Health Organization.? The state matrix of the
nominal linearized model was found to be

A=103
34.86 0.095 0.709 0.0781 0.0336
28.51  0.718
0.336  0.0861 18.78 3.45  0.233
0.634 4.124 10.04 7.101
0.928 3.574  0.658
0.802 1.781

Fig. 8 shows the network graph associated with the spread
dynamics and specifies the countries/territories involved.

We consider that a total resource amount of I' = 1 can be
applied, and pursue the optimal constrained design. We note
here that the control resources abstractly represent local con-
trol capabilitics (e.g., mosquito-reduction efforts, quarantine,
public-service announcements) that reduce spread rates within
a country. Our main interest is to understand which regions
(countries) in the network to target with control resources using
this abstract formulation, rather than to compare detailed con-
trol strategies. We analyze two cases: 1) the case that resources
can be applied everywhere in the network, and 2) the case that
resources can be applicd only in nodes 1,3, 4,5 of the network
graph shown in Fig. 8. The optimal resource allocations are
summarized in the following table.

Table IV shows that applying resources to all the nodes in the
network is more effective than just in a subset of nodes, in that
a more negative minimum dominant eigenvalue is achieved.
In the network-wide design, the countries that receive more
resources are the ones with high local (a;;) and inter-country

2[Online]. Available: http://www.paho.org/hq

TABLE V
OPTIMAL RESOURCE ALLOCATION: SUBSET-DESIGN

Control everywhere Control at 1,3,4,5 (27 It.)
Arax = 0.1266 Arax = 0.1404
i i Wmax, i Vmax,i D; Wmax, i Ymax, i
1 -0.0333 0.1667 0 0.0440
2 0.0476 0.1667 0 0.3547
3 0.3830 0.1667 0.0672 0.1336
4 0.4801 0.1667 0.3787 0.1336
5 0.1193 0.1667 0.5541 0.1336
6 0.0033 0.1667 0 0.2004

(cvi;) transmission rate in total. Clearly, this total transmission
rate indicates high local and network impact. In the subset
design, we observe an interesting phenomenon: the country
with highest local transmission rate is not the one that receives
more resources. Instead, the resources are focused in countries
with higher inter-country transmission ratcs because of the
influence of these nodes in the network as expressed in the
participation factors. This reflects that the optimal resource
distribution accounts for both local and network-wide impact.
Because the inter-country transmission rates are so small, how-
ever, (i.e., a; are much smaller compared with the local rates),
even this re-distributed resource profile has limited ability to
stop spread across the network.

To get a better understanding of how the inter-country trans-
mission rates influence resource allocation, we consider scaling
up the inter-country transmission rates by 10° compared to
the original fitted model. Even with the up-scaling, the inter-
country transmission rates remain small compared to the local
transmission rates (by a factor of about 50-100). The optimal
resource allocation is summarized in the following table.

In the network-wide design, the country that receives more
resources is again the one that has both more local and inter-
country influence. Interestingly, when the inter-country trans-
mission rates are stronger, and the local rates are the same, the
country with largest local transmission rate does not receive
more resources, because of the low impact that it has in the
network. In the subset design, much stronger inter-country rates
imply a more effective network-wide impact of the resource dis-
tribution, as observed in Table V. The allocation of resources is
also modified somewhat compared to the low-intercountry-rate
case, because different countries now have stronger network-
wide impact. When the optimal subset design policy is put
in place, the spread is scen to evolve in the following way.
The spread dies out quickly in the locations that have been
allocated resources. In the remaining (undesignable) locations,
the spread evolves more slowly but eventually dies off because
the local spread rate is small, and amplification via the rest
of the network no longer occurs. An important implication
is that spreads such as these can be controlled even if some
communities are uncooperative or unable to provide control
resources, albeit at a higher costs to the other players.

While the model and design here are simplistic, they reflect
the operational recognition that controls should serve as barriers
against spread to undesignable subpopulations/regions. As a
further point, we notice that the designs bring forth interesting
questions regarding fairness of the resource distribution: the op-
timal solution presented here is unfair in the sense this different
regions receive different resource levels, but fair in the sense of
cqualization spread impact of designable regions (sce also [6]).
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