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Abstract— Wide deployment of sensing and actuation ca-
pabilities in the electric power grid, along with changing
dynamical characteristics, are necessitating analysis of power-
system swing dynamics from an input-output perspective. In
this article, the input-output properties of the swing dynamics,
including the finite and infinite zeros, are characterized from a
dynamical-networks perspective. Specifically, an explicit alge-
braic characterization is given for a matrix whose eigenvalues
are the zeros, and in turn structural and graph-theoretic
conditions for the absence and presence of nonminimum phase
dynamics are developed. Based on these structural results and
also an illustrative example, it is demonstrated that the zeros of
the swing dynamics are important for analyzing transients and
oscillations in the power transmission network, using reduced-
order models, and designing controls.

I. INTRODUCTION

New challenges are arising in understanding and control-
ling transients in the power transmission network [1]. First,
a wide array of new devices and technologies are being
deployed, which may subject the network to new types of
disturbances while also modulating the networks dynamic
responses. Second, increasing penetration of intermittent re-
newables is leading to increasing variability and uncertainty
in the networks operating point and inertial characteristics,
and hence also in its swing dynamics [2]. Specifically,
generation units have increasingly diverse inertias, and the
spatial pattern of inertia in the network is both changing
from before and becoming more volatile depending on wind
and solar conditions. In some cases, the incorporation of
renewables is also further stressing the network since these
generators are located far from load centers, and myriad
other stressors are complicating power-grid operations. The
increased stress may lead to more extensive swings [3].

At the same time, new sensors, power-electronics-based
actuators, and communication capabilities are being inte-
grated into the electric power grid. In consequence, control
of transients in the power transmission network is evolving
from a local and specialized paradigm, toward one where
many generic sensors and actuators across a wide area are
being used in tandem [1], [4]. While this changing paradigm
may bring forth many benefits (e.g. in damping oscillations
and other transients, addressing fault scenarios, increasing
flexibility, etc), it also necessitates new simulations, formal
analyses, and control design techniques.

Designing wide-area controls and evaluating propagative
transients in the bulk power transmission network requires
understanding input-output properties of the network’s swing
dynamics, as a foundational step. That is, it is necessary
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to understand the relationship between a putative input at
one location in the network (whether an actuation signal or
an unknown disturbance) and the swing-dynamics response
at another network location (whether a measurement signal
used in feedback or a response variable of interest). The main
purpose of this study is to explore the input-output properties
of the swing dynamics, first from a algebraic standpoint and
then from a topological or structural perspective.

Following on the classical analysis of transients, this
effort considers linearized models of the power-system swing
dynamics [5]. Specifically, a simplified model is considered,
which uses two state variables (angle, frequency) for each
inertial generator in the network. While traditionally the
transient analysis has primarily focused on the internal modal
dynamics of the swings, here we impose input and output
structures on the canonical model, and characterize the trans-
fer function for the enhanced model. The zeros of the transfer
function, in particular, are control invariants that fundamen-
tally limit a systems responses and guide design. Many of
the standard controller design techniques and tuning methods
used in the power system depend on the transfer function
being minimum phase (having left-half-plane zeros); thus,
the presence of nonminimum-phase zeros may cause control
designs to unexpectedly cause oscillations and instability.
Our primary focus here is to determine properties of the ze-
ros, including the presence or absence of nonminimum-phase
zeros, from a structural and graph-theoretic perspective. In
this initial study, we concentrate on single-input single-output
(SISO) channels, but approach the analysis in a way that
generalizes to more complex input-output structures. A main
outcome of the work is that minimum-phase dynamics result
when the shortest electrical path between the input and output
in the power network is strong compared to longer alternative
paths, while nonminimum dynamics result when the longer
alternative paths are strong.

There is a very wide literature in the controls community
on zeros and their implications on system dynamics and
control [6]. While electric power system transients is typi-
cally not analyzed from an input-output perspective, Martins
and his co-workers have voiced the importance of input-
output analyses, and pursued the numerical computation of
zeros in a sequence of studies (e.g. [7]). These efforts focus
particularly on the computation of zeros for differential-
algebraic-equation (singular system) models for the swing
dynamics, and follow on analyses of zeros for singular
systems in the control community [8], [9]. Relative to both
the controls and power literature, the main contribution of
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this work is the development of structural and graph-theoretic
insights into the zeros for the swing-dynamics model. That
is, we seek to understand what features in the topology and
physics of the power grid, and what placement of sensors
and actuators, lead to minimum-phase or nonminimum-phase
dynamics. In this sense, the work builds on and contributes
to a recent research focus on input-output dynamics of
dynamical networks, which has been concentrated on tying
the zero locations of canonical linear network models (e.g.,
models for consensus, disease spread, etc) to the network’s
topology [10]-[14]. Compared to these previous studies, the
research here addresses a more complex and heterogeneous
dynamical models, and develops a set of structural results
that are specifically relevant to the power-system analysis.
Our research also builds on a wide and growing literature
that approaches power-system transients analysis from a
graph-theory perspective (e.g. [15]-[17], [22]). Finally, our
work is connected with an important research thrust that
interprets linear system structure, including zeros, from a
graph-theoretic perspective (e.g. [18]).

The remainder of the paper is organized as follows. The
zeros-analysis problem is formulated in Section 2. A graph-
theoretic and structural analysis of the zeros is undertaken
in Section 3. In Section 4, examples arc used to illustrate
the structural results, and to explore their implications on
analysis and control of transients. Due to space constraints,
proofs and some details are excluded, see [19].

II. PROBLEM FORMULATION

Model-based analyses of transients in the bulk power
grid are used for evaluation and design of controls, study
of remedial action schemes, system protection, and other
reasons. Models at several resolutions are used for analyzing
these fast swing dynamics, depending on the needed accu-
racy, available time and computational resources, and other
factors [5]. Detailed models derived from the physics of the
transmission network turn out to be nonlinear differential-
algebraic equations: simulation of these models is possible
but tends to be time-consuming, and formal analysis is
difficult. Linearization is routinely used to enable formal
analysis and reduce simulation time. Further simplification
can be achieved by used reduced state-space representations
of generator dynamics, or via aggregation and other net-
work model reduction techniques [20], [21]. The simplest
evocative models that represent the networks topological
structure only track two state variables (the electrical angle
and frequency relative to a reference) at the buses with
inertial generators, using a linear differential model. Because
the main focus of this work is to gain simple graph-theoretic
insights into the networks input-output dynamics, this clas-
sical model is considered here. The model is augmented
to explicitly represent a single input and a single output,
which may be remote from cach other. Specifically, noting
that both feedback controls and external disturbances often
act as injecting or extracting power from a bus, the input is
abstractly modeled as a power injection/extraction at a single
bus. Meanwhile, noting that electrical frequencies or angles

relative to a reference are often the measured responses of
interest, the output is chosen as either the angle or frequency

at a (possibly different) bus.
Formally, the following model is considered:

m:[—HﬂL(r) —Hl’lD] [3}+{£}u 1
=D <[]

where 6(t) = [0y ... dnf represents the differential elec-
trical angles at the n buses at time ¢ (relative to a nominal
trajectory), w(t) = [wy...wn|  represents the differential
electrical frequencies at the buses, the notation e, represents
a 0-1 indicator vector with gth entry equal to 1, the scalar
input w(t) is a power-injection signal at bus i, and the
scalar output y(t) is the frequency at bus j. The model is
defined by the following parameters: the positive diagonal
matrix H represents the inertias of the generators at the
buses, the positive diagonal matrix D captures the dampings
of the generators, and the matrix L(I') is a symmetric
positive-definite or positive semi-definite matrix that entirely
specifies the interactions among the buses. Importantly, the
zero pattern and nonzero entries in the matrix L(T) are
commensurate with the topology of the power transmis-
sion network (equivalently, electrical connectivity among the
buses), as specified by the graph I'. Specifically, I is defined
to be an undirected weighted graph whose vertices represent
the buses, and whose edge weights are the susceptances of
the lines connecting the buses. Each off-diagonal entry of the
matrix L(I") equals the negative of the edge weight between
the corresponding vertices if there is an edge, and equals zero
otherwise. The diagonal entries of L(I") are positive, and at
least as large as the absolute sum of the off-diagonal entries
on the corresponding row or column. We assume throughout
the article that I' is connected.
For convenience, we use the notation A for the state matrix

0
_H-'L(T) —H‘lD]' We also

find it convenient to define the state vector of the swing-

of the system, i.e. A =

dynamics model as x = ﬂ It can easily be checked that

the matrix A is stable, in these sense that all eigenvalues are
in the closed left half plane with no defective eigenvalues on
the jw-axis. In fact, it can be checked that all eigenvalues
of A are in the open-left half plane (OLHP), except that
there will be one eigenvalue at the origin in the special case
that L(T") is a true Laplacian matrix (all row sums are zero).
The graph T' is referred to as the network graph. Also,
the nodes in the network where the input is applied and the
output is measured (¢ and j, respectively) are referred to as
the input and output nodes, and the corresponding vertices
in the graph are referred to the the input and output vertices.
The simplified model for the swing dynamics considered
here is widely in power-engineering community [15], and
constitutes a linearization of nonlinear Kuramoto oscillator-
type model for the swing dynamics [22].

The main purpose of this work is to characterize the zeros
of the input-output swing-dynamics model (1), in terms of
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its structural parameters (the graph I', the inertias in H,
the dampings in D) and the input and output locations (7
and j, respectively). Specifically, we develop conditions that
guarantee minimum-phase dynamics, or alternatively per-
mit the possibility for nonminimum-phase behaviors. These
structural characterizations are used to explore how physical
characteristics of the power system modulate zero locations,
and also to support numerical computation of zeros. Addi-
tionally, via an example, the structural characterizations are
illustrated, and their use in analysis/control of power-system
transients is briefly explored.

Notes: 1) The formulation represents a considerable sim-
plification of the models used in practice for simulations, in
that detailed generator models are not used, and reduction of
the algebraic equations (corresponding to load-only buses) in
advance is assumed. 2) An angle output could be considered
instead of a frequency output, but the only difference is that
the transfer function to frequency has one additional zero at
the origin. See [19] for details.

III. STRUCTURAL AND GRAPH-THEORETIC
CHARACTERIZATIONS

A graph-theoretic and structural characterization is under-
taken of the zeros of the swing-dynamics model (1). This
structural characterization is developed using an algebraic
expression for the state matrix of the system’s zero dynam-
ics. This approach contrasts with the standard numerical
approaches used to compute zeros, which typically are based
on solving a generalized eigenvalue problem (e.g. [7]). While
the generalized-eigenvalue formulation is convenient for al-
gorithmically finding zeros, it does not allow easy insight
into the connection between a network’s topological structure
and its zeros. Instead, we approach the analysis of zeros
using the special coordinate basis (SCB) transformation,
which expresses a linear system as an integrator chain (or
infinite-zero structure) along with a feedback block which
captures the finite zero dynamics [23]. Importantly, the SCB
allows an explicit algebraic characterization for the state
matrix of the finite zero dynamics, whose eigenvalues (not
generalized eigenvalues) are the zeros. Specifically, as shown
below, the SCB allows expression of the zero state matrix
as a submatrix of A plus a structured perturbation, which
also can be related to the swing model’s parameters. This
explicit expression for the zero state matrix allows the
development of structural results on minimum-phase and
nonminimum-phase dynamics. It is worth noting that the
approach taken here is tied to classical invariants notions (e.g.
[24]) and the associated geometric theory for linear systems,
but the algebraic approach is more convenient for obtaining
structural results.

As a preliminary step, the relative degree of the transfer
function is determined. Specifically, the following thcorem
shows that the relative degree is entirely governed by the
distance d between the input and output, which is defined as
the minimum number of directed arcs from the input to the
output locations in the network graph I':

Theorem 1: The relative degree of the input-output swing-
dynamics model (1), and hence the number of infinite zeros,
is ng = 2d 4+ 1. The number of finite zeros is n, = 2n —
2d — 1.

The number of infinite zeros, which equals the relative
degree, indicates the number of diverging branches on the
positive root locus of the transfer function. From the classical
control theory, the infinite-zero structure of a system guides
controller architecture selection and control design. Theorem
1 shows that this number is entirely decided by the distance
between the input and output in the graph, for the swing-
dynamics model.

On the other hand, the locations of a system’s finite zeros
in the complex plane dictate dynamical-response character-
istics (e.g., undershoot), and place essential limits on control
[6]. This motivates structural and graph-theoretic analysis
of the finite zero locations for the swing model, in terms
of its parameters and the input and output locations. As
a stepping stone toward these structural analyses, first an
algebraic expression for the zero state matrix is obtained.
The eigenvalues of this matrix, which we denote Ag,,
exactly specify the 2n — (2d + 1) finite zeros of the model.
The algebraic expression for A,, follows from the SCB
transformation of (1). As Theorem 1 makes clear, the infinite
zeros are essentially tied to the shortest path between the
input and output vertices in I'. We find it convenient to define
some notation related to this path. In particular, we choose a
path of minimum length (least number of edges) between the
input and output, and refer to it as the special input-output
path. In addition, the nodes in the network corresponding to
the vertices on the special input-output path are referred to
as the nodes associated with the special input-output path.
Likewise, the state variables (angle, frequency) at these nodes
or buses are referred to as the state variables associated with
the special input-output path, and the rows and columns of
the state matrix corresponding to these state variables are
also referred to as being associated with the special input-
output path. Corresponding terminology is used to refer to
the vertices, nodes, state variables, and matrix entries that
are not on the special input-output path.

From here on, we assume (without loss of generality)
a particular ordering of the original state vector and the
corresponding graph vertices. Specifically, the input location
in I is labeled as vertex n, and hence the corresponding state
variables are d,, and w,,. Also, the d + 1 vertices along the
special input-output path are labeled as follows: the vertex at
a distance k£ from the output along the special input-output
path is labeled as vertex i = n—k (k = 1,2, ..., d). The states
corresponding to each vertex are d,,_j and w,_x. Hence, the
input location is at vertex ¢ = n —d. The remaining vertices,
which are not on the special input-output path, are labeled
t =1,...,n—d—1. For this labeling of the vertices, the state
space form of the swing-dynamics model becomes:

0= dx (e | @

y=(e;® m ), 3
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where

00, ~_TJoo0 0 1
A= L®{ O]+D®{O 1]+I®{0 O]’ C))
and where L = —H 'L and D = —H 'D. The matrix
A can also be naturally partitioned as A = |, " fad |
An,,  An,

where A, is a matrix of dimension (2n — (2d + 1)) X
(2n — (2d + 1)). We note that rows and columns of A4,
are associated with the vertices (and corresponding state
variables) that are not on the special input output, and in
addition the angle variable associated with the input vertex.

The algebraic expression for the state matrix A,, of the

zero dynamics is presented in the following theorem:
Theorem 2: The finite zeros of the system (1) are the

eigenvalues of matrix Ay, = Ay, — Ay, , 2, ' Zy,,, where

A,, and A, , are submatrices of A as defined ‘above, where

0 0 0 0

{A g, 41,1 {A ng+1.2 {A}na+1 na
{24} g+1.1 {A%}g+1.2 {A? Yna+1,nq
ngg = ) :
g1 1 vy — 14
(A" Y011 AT Tl 112 (A"} 41,

and where Z,,, is the following lower triangular matrix:

0
{A}na +1,mg+2

0

1
A g 4+1,na+1 o

Zn,

'd =
0]

(A™dTNY Ly g1 {ATAT l}nu+1 na+2 {amd=ly,
Remark: The matrix Z 1 is a lower triangular matrix. An

iterative formula for its entnes can be developed in a similar
fashion to the analysis in [12]. This computation is omitted
to save space.

The algebraic expression for the zero state matrix A,, in
Theorem 2 enables the development of structural and graph-
theoretic insights. To develop these results, it is useful to
recognize that A, is in the form Ay, = Ap, + A4, Where
A, is a principal submatrix of the state matrix A and A,
is a perturbation matrix which has a special sparse structure.
The following theorem gives structural insight:

Theorem 3: The matrix A,,, whose eigenvalues are the
zeros of the swing-dynamics model, can be expressed in the
form A,y = Ay, + Ag. Let us define [Ag,); ; (respectively
[A,,]i.;) to refer to the 2 x 2 submatrix of A, (respectively
A,,) whose rows are associated with vertex ¢, and whose
columns are associated with vertex j. Also, let d; be the
distance from the input location to the vertex ¢ in I', and let
d; be the distance from vertex j to the output location in I'.
We have that [A,,]; ; = [An,]i,j, unless d; +d; < d+1 and
¢ is adjacent to a vertex in the special input-output path other
than the output. For d;+d; < d+1, [Ayq];,; may differ from
[An,]i,;- However, the row of [A,,]; ; corresponding to d; is
equal to this row of [A4,,,]; ; (these entries in the perturbation
are alway 0). Also, the entry of [A4];,; corresponding to w;
and w; differs from this entry for A, ; ; only if d; +d; < d.

Theorem 3 expresses that the matrix A,, can be viewed as
a perturbation of the principal submatrix A, of A associated
with the vertices that are not on the special input-output
path. Since this is the case, we also identify the rows and
columns of A, by their associated vertices in the graph
T, specifically the vertices off the special input-output path

— M
= F—@—F
f—3

—-.SI
Input Qutput |
(b)

(a)

Special input-output path

Fig. 1: (a) The result of Theorem 3 is diagrammed. In this
example, the zeros state matrix Ay, will be perturbed from
the principal submatrix A,, only on rows associated with
vertices 1 1,2 (next to the special input- output path),
and columns associated with vertices j 5,6 (distance
from ¢ to the input and from the output to j is less than
or equal to d+1). (b) A 6-bus example is developed to gain
further insight into the dependence of zeros on structural

sparameters, and to understand their implications on transient

analysis and control for the power transmission network. One
particular implication that is discussed is the possible loss of
nonminimum-phase dynamics in reduced-order models. Bus
4 gen. has inertia h, other buses have inertia 1. Generators
at all buses have common damping d.

whose state variables correspond to these rows and columns.
The main outcome of Theorem 3 is that the perturbation
A, is structured, in the sense only certain entries of Agq
differ from those of A,, based on the network graph I'.
Specifically, consider an entry in A, whose row corresponds
to vertex ¢ and whose column corresponds to vertex j (where
¢ and j are not on the special input-output path). The entry
can be non-zero only if the distance of j from the output in I"
plus the distance of ¢ from the input in I" is at most d+1 (the
length of the special input-output path plus 1). Additionally,
the vertex ¢ must be adjacent to the special input-output path.
Thus, only the entries whose rows and columns correspond
to vertices near the input-output path are perturbed.
Remark: Finding the zeros by computing A,, and then
finding its eigenvalues is also attractive from a computational
standpoint, see [19] for some further discussion.

Expressing the matrix A,, as a perturbation of A,
enables graph-theoretic analysis of the zeros, as developed
in the following theorems. These analyses requires first
noting that the cigenvalues of the matrix A, arc in the
closed left half plane. Precisely, the matrix A,,, has a single
eigenvalue at s = 0 (associated with the angle dynamics of
the input bus), and the remaining eigenvalues are strictly in
the OLHP. Since the matrix A,,, is stable, the eigenvalues of
the matrix A,, and hence the zeros of the swing models can
be guaranteed to be in the left half plane if the perturbation
A, either does not change the eigenvalues of A, , or is
sufficiently small. The following three theorems use this idea
to give structural conditions under which the swing-dynamics
model is minimum phase.

The first of these structural results addresses the case that
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the input and output are at the same vertex in I' (the same
bus in the network):

Theorem 4: The input-output swing-dynamics model (1)
has all zeros in the OLHP, except one zero at s = 0, if the
input and output locations are at the same vertex.

The second of these structural results addresses the case
that there is only a single path between the input and output:

Theorem 5: The input-output swing-dynamics model (1)
has all zeros in the OLHP, except one zero at s = 0, if there
is a single path between the input and output vertices in the
network graph T'.

The next result shows that minimum-phase dynamics are
maintained even when there are multiple paths between the
input and output, provided that the special input-output path
is sufficiently strong (has high susceptances) compared to
the other paths.

Theorem 6: Consider the zeros of the input-output swing-
dynamics model (1) for an arbitrary graph I'. Now consider
scaling up all the edge weights on a special input-output path
by a factor x. For sufficiently s, the zeros are in the OLHP
except one zero at s = 0.

Two other structural characteristics of the input-output
model are worth discussing. First, we note that the model
is minimum phase, provided that the dampings throughout
the network are sufficiently scaled up; we leave a full
development of this result to later work. Conversely, the
swing-dynamics model is nonminimum-phase if the special
input-output path is sufficiently weak compared to other
longer paths between the input and output. A proof of the
nonminimum-phase result is rather involved, see [13] for a
similar proof for a simpler synchronization model.

The graph-theoretic analysis of zeros developed here can
potentially support power-system analysis and controller
design in several ways. First, the results give insight into
estimation and control of the dynamics. It is well known
that the finite and infinite zero structure of a system, and
particularly the presence of nonminimum-phase zeros, place
essential limits on estimator and control performance and
guide control design. For instance, for control channels, the
locations of zeros determine whether or not high-gain control
is viable and place restrictions on reference tracking and
disturbance rejection. Likewise, the zeros of a disturbance-
input-to-sensor transfer function influence whether or not
dynamic state filtering is possible in the presence of unknown
disturbance inputs. In current power-grid operations, control
designs are often simplistic in nature, perhaps using simple
proportional-integral-derivative controllers with manually-
tuned parameters. Our work shows that the network’s topol-
ogy modulates whether such simple control schemes are
likely to work or fail. Specifically, if the input and output
are collocated, or the shortest path between then is the
dominant one, then the channel of interest is minimum-
phase and simple control/filtering algorithms may be apt.
On the other hand, if the network has alternate long paths
between the input and output, caution is needed to ensure
that the dynamics is indeed minimum phase, and more
sophisticated designs are needed if it is not. This intuition

further leads to shortest-path-type algorithms for screening
for non-minimum-phase channels, and for placing sensors or
actuators to avoid nonminimum-phase characteristics. Details
are omitted in the interest of space.

IV. EXAMPLE: ILLUSTRATIONS AND IMPLICATIONS

A small-scale example is developed, both to illustrate the
structural analyses of zeros developed in Section 3 and to
further explore their relevance to power grid operations and
analysis. Specifically, a network with six buses is considered
(see Figure 1(b)), which are viewed as forming two areas
(Buses 1, 2, 3, and 6 form Area A; Buses 4 and 5 form
Arca B). The buses in Area A are aligned in a straight line,
however there is an alternate path for power flow via the
two buses in Area B. In the example, we focus on the case
that an input is applied at Bus 1 and the output is taken
at Bus 2. The parameters of the model are shown in the
figure. Three studies are undertaken for the example. First,
the dependencies of the zeros on structural parameters of
the network are determined, and compared with the formal
results developed in Section 3. Second, the implications of
the zeros analysis on model reduction are explored. Third,
other uses of the structural and graph-theoretic analyses of
zeros are envisioned.

Dependencies of Zeros on Structural Parameters: For the
example, the relationships of the zero locations on three
structural parameters — the susceptance s of the line between
Buses 1 and 2, the inertia h of the generator at Bus 4,
and the common damping d of the generators—are studied.
For each structural parameter, the largest real part among
the zeros is plotted as a function of the parameter in each
case, to highlight the dominant zero (see Figure 2(a,b,c)).
As expected, the system is nonminimum phase when the
susceptance s between Buses 1 and 2 is sufficiently small,
and becomes minimum phase for larger susceptances. The
dependence conceptually matches the expectation that the
system would be minimum phase if the shortest input-output
path is dominant, and nonminimum phase if the shortest path
is weak. More specifically, the real part of the dominant
zero decreases monotonically with s until it reaches —0.05,
and then remains at that value. Also, the real part of the
dominant zero decreases with increasing damping d, which
is expected the primary path between input and output
becomes prominent compared to the longer secondary path.
The dependence of the zeros on the inertia h of generator
4 is much more sophisticated. To gain further insight into
this case, the zeros of the input-output swing model are
traced in the complex plane as a function of the parameter
h (Figure 2(d)). This plot is akin to a root locus, though
not exactly in the sense that the characteristic polynomial of
interest does not show a linear dependence on the parameter.
The locus plot shows that different zeros become dominant
as h is changed, reflecting changes in how oscillations at
different frequencies propagate through the alternate input-
output path.

Zeros and Model Reduction: Reduced-order models are
commonly used for simulation and analysis of power-grid
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Fig. 2: (a,b,c):The dependences of the dominant zero location (the largest real part among the zeros) on three structural
parameters are shown. (d) The movement of the zeros in the complex plane as a function of the inertia of generator 4 are
shown. The zeros exhibit a complex behavior, with two pairs moving into the right half plane for different values of the

inertia.

transients, to reduce computational burden, simplify repre-
sentation of network components governed by other authori-
ties, and for other reasons. Several established techniques are
available for model reduction [20], [21], including balanced-
truncation- and coherency- based methods. These techniques
are adept at preserving wide-area oscillatory modes. Some
techniques, such as the slow-coherency-based methods, also
preserve the network’s topology in an area of interest while
aggregating the topology in other areas. However, very little
work has been done to understand how model reduction
influences input-output dynamics, and model reduction tech-
niques are not known to preserve input-output characteristics
like minimum-phase dynamics. A few recent results have
studied controllability-preserving model reduction [25], but
none address input-output dynamics (specifically zeros) to
the best of our knowledge.

The formal analyses in Section 3 indicate that model
reduction may alter the finite-zero structure of the swing-
dynamics model even when the the input and output are
in the same arca. Specifically, the aggregation of buses
outside the area of interest may change characteristics of
alternate input-output paths, and hence cause nonminimum-
phase dynamics to become minimum phase or vice versa.
In fact, the impact of model reduction on zeros is easily
demonstrated in the 6-bus example considered. Specifically,
we consider the 6-bus model with the following parameters:
the susceptance between lines 1 and 2 is s = 0.75, the
inertia of bus 4 is h = 1, and the common damping is
d = 1. The input-output dynamics of interest is nonminimum
phase in this case. In a study of transients in Area A, the
two generators in Area B (buses 4 and 5) may be reduced
to a single aggregated generator. This model reduction to
has been undertaken for the six-bus model, using the slow-
coherency approach. The reduced model closely preserves
10 of the 12 modes of dynamics (errors of < 10% in each
modal frequency and damping), while removing one pair
of localized modes. However, the input-output dynamics of
the reduced model is minimum phase, and in fact the zero
locations are drastically changed compared to the full model.
Thus, the nonminimum-phase characteristics of the system

are destroyed by the model reduction. Figure 3 shows the
impulse responses and frequency responses before and after
model reduction. The impulse response and Bode magnitude
plot are closely preserved, but the Bode phase plot shows
a drastic change which reflects the nonminimum-phasc vs
minimum-phase dynamics.

Impulse Response Bode Diagram

Magnitude {dB)

Amplitude

>
I
Phase {deq)

80 100 T PTG ]

Frequency (rad's)

0 20 40 60
Time (seconds)

Fig. 3: The impulse response and frequency response for the
input-output dynamics of the original model (shown in blue)
and reduced model (green) are shown. The impulse response
and Bode magnitude plot remain essentially unchanged,
while the Bode phase plot changes drastically reflecting
the change from a nonminimum-phase to a minimum-phase
dynamics.

Conceptually, the change in zero structure results from
the fact that the alternate input-output path has a changed
structure compared to the original. Since the alternate path
plays a crucial role in determining the zero locations, it is
not surprising that the zero locations change significantly
upon model reduction. This example indicates that caution
is needed in undertaking model reduction, when input-output
characteristics need to be preserved. Zero-preserving model-
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reduction techniques will be developed in future work.

Other Implications: The developed structural results sup-
port numerical analysis, control, and sensor and actuator
selection. It is instructive to consider the example from this
perspective. With regard to numerical computation of zeros,
the state matrix of the zero dynamics A,, can be found by
perturbing only two entries of a submatrix of A. Thereafter,
standard eigenvaluc-analysis methods for sparse matrices can
be brought to bear.

The formal results also help in screening for channels

with nonminimum-phase dynamics, which is useful for sen-
sor/actuator selection, controllers selection, etc. In the 6-
bus example, nonminimum-phase dynamics are anticipated
whenever the input and output are adjacent and the sus-
ceptance of the direct link is sufficiently weak. If the input
and output have a distance of 2 between them, one would
guess that nonminimum-phase dynamics could also result
provided that the shorter path is sufficiently weak; in fact,
this is the case. Thus, control design in these cases must
be undertaken with the possibility for nonminimum-phase
dynamics in mind, and sensor and actuator placement can be
undertaken to avoid configurations that cause nonminimum-
phase dynamics. It is worth noting that the structural results
also give insight into how the nominal power flow may
impact transients. To this point, our analysis has assumed
a linearization of the swing dynamics around a zero-power-
flow solution, hence the edge weights in the graph are exactly
the line susceptances. As power flow on a line increases, it
is easy to check that the corresponding virtual “susceptance”
at nominal voltage level in the linearized model is reduced
(specifically, scaled by the cosine of the nominal angle
difference across the line). This indicates that increased
congestion on the shortest path between the input and output
may yield nonminimum-phase dynamics. As an illustration,
it is interesting to study how the zeros change, when the
nominal power injection at bus 1 and the nominal load at
bus 2 are increased. The congestion in all lines increases
in consequence, but the direct line from bus 1 to bus 2 is
disproportionately impacted. In consequence, as the flow is
increased, the effective susceptance of this line decreases
more than others, and the system’s dominant zero moves
right in the complex plane.
Affiliations and Acknowledgements: Koorehdavoudi,
Hatami, Roy, and Venkatasubramanian are with Wash-
ington State University. Panciatici and Xavier are with
RTE-France. Abad Torres is with the National Polytech-
nic University of Ecuador. This work was generously sup-
ported by RTE-France. Correspondence should be sent to
sroy @eecs.wsu.edu.

REFERENCES

[1] Korba, Petr, et al. “Combining forces to provide stability.” ABB Review
3 (2007): 34-38.

[2] Ulbig, Andreas, Theodor S. Borsche, and Goran Andersson. ”Analyz-
ing Rotational Inertia, Grid Topology and their Role for Power System
Stability.” IFAC-PapersOnLine 48.30 (2015): 541-547.

[3] Bose, Anjan. "Smart transmission grid applications and their support-
ing infrastructure.” Smart Grid, IEEE Transactions on 1.1 (2010): 11-
19.

[4]

[5]
[6]
[7]

[8]

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

1852

Chakrabortty, Aranya, and Pramod P. Khargonekar. ”Introduction to
wide-area control of power systems.” American Control Conference
(ACC), 2013. IEEE, 2013.

Anderson, Paul M., and Aziz A. Fouad. Power System Control and
Stability. John Wiley and Sons, 2008.

Schrader, Cheryl B., and Michael K. Sain. “Research on system zeros:
a survey.” International Journal of Control, 50.4 (1989): 1407-1433.
Martins, Nelson, Herminio J. C. P. Pinto, and Leonardo T. G. Lima,
“Efficient methods for finding transfer function zeros of power sys-
tems,” IEEE Transactions on Power Systems, vol. 7, no. 3, Aug. 1992.
Verghese, George C., Bernard C. Levy, and Thomas Kailath. “A
generalized state-space for singular systems.” Automatic Control, IEEE
Transactions on 26.4 (1981): 811-831.

Misra, Pradeep, Paul Van Dooren, and Andras Varga. “Computation
of structural invariants of generalized state-space systems.” Automatica
30.12 (1994): 1921-1936.

Briegel, Benjamin, et al. “On the zeros of consensus networks.”
Decision and Control and European Control Conference (CDC-ECC),
2011 50th IEEE Conference on. IEEE, 2011.

Herman, Ivo, Dan Martinec, and Michael Sebek. “Zeros of transfer
functions in networked control with higher-order dynamics.” Proceed-
ings of the 19th IFAC World Congress. 2014.

Abad Torres, Jackeline, and Sandip Roy. “Graph-theoretic character-
isations of zeros for the inputoutput dynamics of complex network
processes.” International Journal of Control 87.5 (2014): 940-950.
Abad Torres, Jackeline, and Sandip Roy. “Graph-theoretic analysis of
network inputoutput processes: Zero structure and its implications on
remote feedback control.” Automatica 61 (2015): 73-79.

Abad Torres, Jackeline, and Sandip Roy. “A two-layer transformation
for characterizing the zeros of a network input-output dynamics.”
Decision and Control (CDC), 2015 IEEE 54th Annual Conference
on. IEEE, 2015.

Sanchez-Gasca, Juan J., and Joe H. Chow. “Power system reduction to
simplify the design of damping controllers for interarea oscillations.”
Power Systems, IEEE Transactions on 11.3 (1996): 1342-1349.
Nabavi, Sheida, and Aranya Chakrabortty. “Topology identification
for dynamic equivalent models of large power system networks.”
American Control Conference (ACC), 2013. IEEE, 2013.

Valdez, Justin, et al. “Fast fault location in power transmission
networks using transient signatures from sparsely-placed synchropha-
sors.” North American Power Symposium (NAPS), 2014. IEEE, 2014.
van der Woude, Jacob. “The generic number of invariant zeros of a
structured linear system.” STAM Journal on Control and Optimization
38.1 (1999): 1-21.

K. Koorehdavoudi et al, “Input-output characteristics of the power
transmission network’s swing dynamics (extended version with
proofs),” available at www.eecs.wsu.edu/~sroy .

Chow, Joe H., et al. “Inertial and slow coherency aggregation algo-
rithms for power system dynamic model reduction.” Power Systems,
IEEE Transactions on 10.2 (1995): 680-685.

Sanchez-Gasca, Juan J., and Joe H. Chow. “Power system reduction to
simplify the design of damping controllers for interarea oscillations.”
Power Systems, IEEE Transactions on 11.3 (1996): 1342-1349.
Dorfler, Florian, Michael Chertkov, and Francesco Bullo. “Synchro-
nization in complex oscillator networks and smart grids.” Proceedings
of the National Academy of Sciences 110.6 (2013): 2005-2010.
Sannuti, Peddapullaiah, and Ali Saberi. “Special coordinate basis for
multivariable linear systemsfinite and infinite zero structure, squaring
down and decoupling.” International Journal of Control 45.5 (1987):
1655-1704.

Morse, A. Stephen. “Structural invariants of linear multivariable sys-
tems.” SIAM Journal on Control 11.3 (1973): 446-465.

Ishizaki, Takayuki, et al. “Model reduction of multi-input dynamical
networks based on clusterwise controllability.”” American Control
Conference (ACC), 2012. IEEE, 2012.



