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Abstract—Placement of sensors and actuators in a linear
network model is pursued, with the aim of achieving desirable
invariant-zero characteristics for input-output channels (pri-
marily, minimum phase dynamics). Graph-theoretic analyses
of the network model’s invariant zeros and phase-response
properties are undertaken, and used to develop simple insights
into and algorithms for sensor and actuator placement.

I. INTRODUCTION

New sensing and actuation technologies are being de-
ployed in engineered and natural networks, which hold
promise to revolutionize monitoring and control of dynamical
processes ongoing in these networks. At the same time, these
same resources can imbue cyber- attackers with increased
access with which they can enact destructive impacts. As new
sensing and actuation technologies for dynamical networks
come (o fruition, the question of where to place these devices
in built networks is becoming increasingly important. Due
to cost, security, and maintenance considerations, typically
only a few actuation and sensing devices can be deployed
in a network: thus, the design of sparse sensing and actua-
tion schemes for large-scale networks is crucial. Very nice
structural techniques for sensor and actuator placement have
been developed for linear systems (e.g. [1]). However, these
techniques may be difficult to apply in large-scale network
applications, due to computational complexity, imperfect or
local knowledge of network characteristics by stakeholders,
model uncertainties, domain-specific constraints on place-
ment, and other factors. In many of these networks, oper-
ators instead currently rely on experience and topological
understanding of the network dynamics for placement. Given
this, simple topology-based rubrics and algorithms for sensor
and actuator placement, which nevertheless achieve specified
performance requirements, are very desirable. The research
described here contributes to sensor and actuator placement
from a topological or graph-theoretic perspective.

There is an incipient research effort on sensor and actuator
placement in built dynamical networks from a graph-thcory
perspective. These initial studies have focused primarily on
sensor placement to ensure observability (dually actuator
placement to ensure controllability), and subsequently place-
ment to shape observability and controllability metrics [2]—
[4]. In many circumstances, however, sensor and/or actuator
placement must be undertaken with input-output charac-
teristics in mind. For instance, measurement units in the
clectric power grid may be used for feedback control to damp
oscillations and transients, state monitoring in the presence
of unknown inputs, or analysis of disturbance signals. Input-
output characteristics, and specifically the zeros of the input-
output transfer function, are crucial for addressing these
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tasks. Hence, sensor and actuator placement in this context
needs to be based on input-output properties.

Recently, an exciting research thrust has developed on
characterizing the input-output dynamics of a network, in-
cluding specifically its zeros, from a graph theoretic per-
spective [S5]-[12]. Several recent studies have characterized
invariant zeros for canonical models for built networks,
including models for synchronization, spread, and multi-
agent coordination, with a particular focus on distinguishing
minimum-phase and nonminimum-phase characteristics. Ze-
ros of network input-output dynamics have also have been
considered in the context of string stability, unknown-input
observability/detectability, and security analysis of dynami-
cal systems. Of importance, a key study related to unknown-
input observability specifically addresses sensor placement,
but focuses on designable algorithms ) and on elimination of
zeros via sensor placement [11].

The purpose of this study is to apply and enhance the
graph-theoretic analyses of network input-output dynam-
ics, to support sensor, actuator, and input-output channel
placement in dynamical networks. Specifically, insights into
placements that guarantee minimum-phase characteristics
arc discussed, for several typical network classes and sen-
sor/actuator placement paradigms. Simple placement algo-
rithms are obtained as a result. For collocated single-input
single-output channels, some insight into the phase response
is also given.

II. PROBLEM FORMULATION

A dynamical network with n nodes, labeled 1,...,n, is
considered. Each node 7 = 1,...,n has associated with it a
scalar state x;(t) which evolves in continuous time. Further,
the m nodes in the set S are subject to actuation, which may
represent cither control or disturbance inputs. Specifically,
each node ¢ € S is subject to an additive d(is)turbance input

x1(t

u;(t). Formally, the state vector x(t) = is governed

Tn(t)
by the following linear dynamics:

%X = Ax + Bu, (N

Uy

where u = , and the m columns of the matrix B

U
are each 0 — —T indicator vectors for the elements in S
(i.e., each column is an indicator vector e; for a distinct
node ¢ listed in &). Further, outputs are taken at the p
nodes in the 7, which may represent measurements used for
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feedback or state estimation, response variables of interest,
etc. Specifically, the observation or output is modeled as

y(t) = Cx(b), )

where each row of C is a 0 — —1 indicator vector e] for a
distinct node ¢ € T. The state equation (1) and measurement
equation (2) are together referred to as the linear network
model.

For this work, the state matrix A of the dynamical model
is assumed to be an essentially-nonnegative or Metzler
or M-matrix, i.e. a matrix whose off-diagonal entries are
nonnegative. It is further assumed that the row sums of
A are nonpositive, which is sufficient for the system to be
neutrally stable. Linear models with essentially-nonnegative
state matrices encompass a wide range of network dynamics
of interest, including consensus and diffusion processes, con-
servative and nonconservative flow dynamics, compartmental
models, and spread processes.

Our aim here is to develop graph-theoretic insights into
the input-output dynamics of the linear network model, and
in turn to develop sensor and actuator placement algorithms
that achieve desirable input-output characteristics. To de-
velop these results, a formal notion of the network’s graph
is needed, which encapsulates the interactions among the
network’s nodes. Formally, we define the network graph
T" for the linear network model to be a weighted digraph
with n vertices, which correspond to the n network nodes.
A directed edge is drawn from vertex j to vertex ¢ in I’
if A;; > 0, and is assigned the value A;; as its weight.
The edges in the graph thus represent the presence/absence
and strengths of direct influences between the nodes in the
network dynamics. We note that the diagonal entries in the
state matrix are not encapsulated in the network graph.

The remainder of the paper addresses the graph-theoretic
analysis of zeros, and the placement of sensors, actuators,
and control channels to shape the input-output dynamics (and
specifically the zeros). We focus particularly on placement
of sensors and actuators to make the input-output dynamics
minimum phase, and to move dominant zeros as far left
as possible in the complex plane. Results are obtained for
several network types and placement paradigms.

III. RESULTS

Graph-theoretic analyses of the finite and infinite zeros
of the linear network model are developed, and used to
support sensor and actuator placements that have desirable
input-output properties. Results are developed in the case
that the inputs and outputs are collocated, and then the
non-collocated case is considered. The main aim is to de-
velop results for several graph classes and sensing/actuation
paradigms. The results developed here use standard defini-
tions for finite- and infinite- zeros, and specifically invariant
zeros, which arise from the structural invariants notions
originally developed by Morse [13], see also [14]. Our
primary approach for characterizing zeros is to transform the
dynamics into the special coordinate basis for linear systems
[14], which allows for an algebraic analysis of the inifinite

zeros and invariant zero dynamics. The main effort here is to
translate these algebraic analyses to graph-theoretic results,
and in turn to consider sensor and actuator placement. The
results developed here draw on, but also extend and apply, the
graph-theoretic analyses of zeros developed in our previous
work [7]-[9].

A. Collocated Inputs and Outputs

In many networks, measurement and actuation capabilities
are naturally collocated. In these cases, the placement of
collocated sensing and actuation capabilities at multiple
network nodes to shape the finite and infinite zero structure
is naturally of interest. Here, an algebraic analysis of the
invariant zeros for linear networks with collocated inputs
and outputs (§ = 7)) is obtained first, and then several
further insights into the zeros are noted as corollaries. These
results are used to suggest algorithms for collocated sensor
and actuator placement. Finally, the phase characteristics of
the input-output transfer function are further characterized,
in the case of a single collocated input and output and a
diagonally-symmetrizable state matrix.

Before presenting the results, let us introduce some nota-
tion and definitions, which are defined for general actuator
(input) and sensor (output) locations. Let d(i,j) be the
distance (minimum number of directed edges) between the
vertices ¢ and 7, and Ny (i) = {j : 0 < d(j,7) < oo}. In
other words AN, (i) is the set that contains all the vertices
from which there is a directed path to the vertex ¢. Also, let
us define N}, = Uier igs N+ (i). That is, N, contains all the
vertices for which there is a directed path to any sensor that
does not also have an input. The set )V contains the nodes
(vertices) that have both input and output. Note that some
vertices in set V can be included in ./\75,. Let \; be the set
of vertices in J\7b but not in V. Finally, the set A, are the
vertices which do not belong to N, or V. We notice that a
node ¢ is associated with a state x;. Consequently, Ny, No,
N, and V can also represent index sets.

Also, let A|p,] be a principal submatrix of A obtained by
deleting all the rows and columns ¢ ¢ A,. In the special
case where S = T, we note that /\7;) and N, are empty, and
hence N, contains all vertices that are not in V. It follows
that Apn, is simply the principal submatrix of A for which
all the rows and columns corresponding to the collocated
input/output vertices are removed (or equivalently the rows
and columns corresponding to the remaining vertices are
maintained).

The following lemma characterizes the invariant zeros of
the linear network model, in the case of collocated inputs
and outputs.

Lemma 1: If S = T, then the invariant zeros of the linear
network model (1) and (2) are the eigenvalues of A[ AL

Proof: The analysis draws on the special coordinate basis
(SCB) transformation, a state transformation that decom-
poses the system in four interconnected subsystems: 1)
infinite zeros chains (state x4), which are driven by the inputs
and directly impact the output; 2) chains (state x;) that are
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not driven by the inputs and directly influence the outputs;
3) a state X, that is directly influenced by the inputs but does
not directly influence the output; and 4) a state x,, which is
neither directly controlled by any input nor does it directly
affects any output [14]. It is important to highlight that the
state x; is not driven by any state in X, .

Here, we do not fully transform the network system into
the SCB, however, the definitions of all the subspaces are
used to identify the state dynamics of x, (zero dynamics) and
conscquently the invariant zeros. Without loss of generality
let the state vector have the following form x = [x, x,]’
such that x, = {x; : i € N}, and x4 = {z; : i € V}. Then
the network dynamics can be written as follows:

. [Ann A I,
X_[Am Azz]x—i_{o]u
y=[Im 0]x

where I, is the ¢ x ¢ identity matrix, 0 indicates a zero
matrix of appropriate dimension, and A;;, fori,j =1,2,is a
submatrix of A related with the states x4 and x, respectively.
We note that because S = 7 there is no state x;, and states
in x4 correspond to the outputs of the system. Therefore, the
zero dynamics is given by

X, = Agox, + Ao1Xg

Note that according to the definition of Ay.,) and Ago, we
have Apy,) = PAyeP~" for some permutation matrix P,
and hence the eigenvalues of both matrices are the same.
Further, since the invariant zeros are the eigenvalues of the
zero dynamics [14], the result follows. |

Remark: The coordinate transform further shows that the
model is uniform-rank-1, in the case that S = 7.

The result above can be derived straightforwardly from
Lemma 4 in [11], and also has been approached from
a different perspective in [15]. The above presentation is
helpful because it makes explicit the connection to the special
coordinate basis, and also shows that the zeros are the
eigenvalues of a particular principal submatrix of the state
matrix A when the inputs and outputs are collocated. Because
the state matrix A of the linear network model has a special
structure (essentially nonnegative matrix with nonpositive
row sums), the zeros of the input-output dynamics can easily
be characterized. Specifically, two further results on the finite
invariant zeros follow immediately from the lemma above,
together with basic properties of principal submatrices of
essentially-nonnegative matrices (see [16]):

Corollary 1: If § = 7T and the network graph I is
strongly connected, the dominant invariant zero (the one with
largest real part) is real and strictly negative.

Corollary 2: Consider the dominant invariant zero z for a
particular set of collocated inputs and outputs, say S =T =
Q, where Q contains a subset of the network’s nodes. Now
say that further collocated input-output channels are added,
ie.S=T = O, where Q € Q. The dominant invariant zero
z for the system with augmented inputs and outputs satisfies
zZ < z, i.e. the dominant zero moves left.

The above theorem and corollaries immediately suggest a
metric for placing control channels (in this case, collocated
input-output pairs), given a budget of r channels allowed.
Noting that that the dominant zero governs the settling rate
of the closed-loop system upon application of a high-gain
static control, a natural design metric is to select the 7
channels that move the dominant zero as far as possible to
the left. This amounts to selecting the (n —r) times(n —r)
submatrix of A whose dominant eigenvalue is most negative.
This search problem is combinatorial, requiring analysis of
ncr matrices. However, a greedy algorithm, wherein single
rows and columns are reduced so as to move the dominant
eigenvalue as far left as possible, works well in practice.
Based on the convexity of the dominant eigenvalue of A
with respect to its diagonal entries, we conjecture that a
submodularity argument can be used to prove that the greedy
algorithm works nearly optimally, but leave it to future work
to develop this in detail. In cases where actuators are in place
and sensors need to be placed (or vice versa), the above
results show that placing the sensors to cover the actuators
guarantees minimum-phase dynamics.

In special cases, the model can not only be shown to be
minimum phase, but the phase characteristics of the system’s
transfer function can be further characterized. The following
result characterizes the phase response of a single-input
single-output linear network model with collocated input and
output, and diagonally-symmetrizable state matrix A:

Lemma 2: Consider a linear network model with a single
input and single output, which are collocated. Assume that
the state matrix A of the linear network model is diagonally
symmetrizable. Then the phase of the frequency response
satisfies —90 < /H (jw) < 0 for all frequencies w.

The proof is omitted to save space, see [17]. The lemma
shows that choosing collocated inputs and outputs not only
guarantees that the zeros are in the left half plane, but
guarantees a phase margin of at least 90° (provided that the
state matrix is diagonally symmetrizable). Thus, any chosen
input-output channels has desirable robustness properties,
and will not oscillate when subject to feedback.

Hllustrative Example: A 5-node linear network model

-2 1 1 0 0
1 -3 1 1 0

with A = | 1 1 -3 1 0 | is considered. The
0 1 1 -3 1

o 0 O 1 -1
network is assumed to have a single input and single output,

both at node 1. The invariant zeros are the eigenvalues of
the submatrix of A formed by removing the first row and
column. The invariant zeros are found to be —0.32, —1.46,
—4, and —4.21. Also, the frequency response for this SISO
system is shown in Figure 1. The phase response is entirely
within —90¢ and 0°.

B. Non-Collocated Inputs and Outputs

In many networks, channels with non-collocated inputs
and outputs must be leveraged for control or other purposes.
Thus, a study of zeros for the general case where inputs and

1747



Bode Diagram
40 T T

-
&
:

200 el 1

IMagnituce [dB
(=]
I
/
!
/

-
]
!
i
o
(=]
T
-
L

Fhase [deg
&
=
Xy

-SD__, 1 = | =
10° 1Q 10 10
Frequency (radfs)
Fig. 1: The frequency response for the example system is
shown. The phase remains between —90° and 0° for all
frequencies.

outputs may be placed at different locations is of interest.
As a starting point, it is natural to consider a SISO system
where the input and output are non-collocated (|S| = |T| =
1); some results for more general MIMO systems can be
developed thereof. (For SISO systems, the various different
notions for finite zeros coincide, so we simply refer to them
as zeros rather than invariant zeros).

The main outcome of this section is give several suffi-
cient conditions for the SISO linear network model to be
minimum phase, which give insight into sensor and actuator
placement. The results address particular graph classes or
sensing/actuation paradigms (e.g., adjacent input and output).
Some results on placement of multiple sensors or actuators,
which derive from the SISO case, are also presented. These
results build on several key lemmas, which 1) give an explicit
algebraic expression for the state matrix of the finite zero dy-
namics using the special coordinate basis for linear systems
[14]; 2) relate the structure of the zero-dynamics state matrix
to the network graph; and 3) hence give conditions on the
graph which guarantee that the input-output dynamics are
minimum phase. Because these results have been developed
in detail in our previous work, we do not present them here
even though they are necessary for proving our new results.
Instead, we give a self-contained development of the new
results (without proof) as a series of lemmas, and then give
a sketch of how these results can be developed based on the
earlier work.

First, conditions on the network graph are presented that
guarantee minimum phase dynamics, even if inputs and
output are remote. The main intuition is that the invariant
zeros are guaranteed to be in the OLHP if there is only
a single directed path in the network graph between the
input and output, i.e. a single distinct sequence of vertices
between the input and output (no matter the distance between
the two). Thus, minimum-phase dynamics are guaranteed no
matter the input and output location if the the network graph

T is a strongly connected and a “tree”, in the sense that there
is only a single directed path between the input and output.
The notion is formalized in the following lemma:

Lemma 3: Consider a SISO linear network model whose
network graph I' 1) is strongly connected and 2) for each
pair of vertices has a single directed path between them
(equivalently, the graph with edge directions ignored is a
tree). The linear network model is minimum phase for any
input and output location.

Noting that the inclusion of further input or output chan-
nels does not introduce new invariant zeros compared to the
SISO case, the above lemma can be immediately generalized:

Lemma 4: Consider a single-input multiple-output (or

multiple-input single-output) linear network model whose
network graph I' 1) is strongly connected and 2) for each
pair of vertices has a single directed path between them
(equivalently, the graph with edge directions ignored is a
tree). The linear network model is minimum phase no matter
where in the network inputs and outputs are placed.
The above two lemmas show the sensors or actuators can
be placed at will in the lincar network model to achieve
minimum-phase dynamics, if the corresponding graph with
directions ignored is a tree.

In fact, guaranteeing minimum-phase dynamics only de-
pends on there being a single path between the input and
output (regardless of the rest of the network topology), as
formalized in the following lemma.

Lemma 5: Consider a linear network model with a single
input at node ¢ and a single measurement at node j. Then
the linear network model is strongly detectable if there is a
single path between the input and output in the network graph
I' (i.e., a single sequence of distinct vertices with directed
edges between them between the input and output).

Notice that the above result is applicable to both directed
and undirected (symmetric) networks, and allows any part of
the network except the input-to-output path to have cycles
of length greater than 2. Unlike the result for the tree-like
graph, the above lemma does not guarantee minimum-phase
dynamics for any input and output. However, according to
the lemma, if the edges between the input and output are
each a cutset of the graph. Such input and output locations
could be chosen by finding minimum cutsets using a standard
algorithm, and placing the input and output a single-edge
cutset.

In many settings, it is unrealistic to expect that an input
and output can be placed so that there is a single path
between them. Next, we consider placing the input and
output in a more tightly connected graph, but for the special
case where the input and output are adjacent. In the case
where the input and output are adjacent, minimum phase
dynamics can also be guaranteed provided that the edge
between the input and output is sufficiently strong. This
notion is formalized in the following lemma.

Lemma 6: Consider a SISO linear network model with
input at location ¢ and output at location j, where j is
adjacent to ¢ in the network graph I'. The linear network
model is guaranteed to be minimum phase if: Ap;A;; >
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Alk(zr Ar]') for all k.

The condition on the edge-weights for minimum phase
dynamics depends only on the edges adjacent to vertex
¢ and vertex j in the graph. The above lemma suggests
a simple, myopic rubric for placing sensors, actuators, or
control channels that are minimum phase. In particular, the
lemma shows that any two adjacent nodes can be chosen
as input and output, provided that the edge between them
is sufficiently strong compared to the other edges adjacent
to these vertices (as specified in the lemma). We note that
this check only requires local information about the network
topology: the rest of the network besides the two vertices and
their edges in and out need not be considered. Also, checking
the condition requires very little computation, hence the
check can be easily done for every edge in the network.

Even when the unknown input and the measurement
location are not adjacent, minimum phase dynamics can
be guaranteed if the shortest path between the input and
measurement is sufficiently strong compared to alternative
longer paths. Conversely, if the shortest path between the
input and measurement is weak compared to other longer
paths, then the input-to-measurement transfer function is
necessarily nonminimum phase (see [7]). Unfortunately, it
is difficult to obtain a crisp numerical bound on the relative
strengths of the paths that guarantees either minimum-phase
or nonminimum-phase dynamics.

Finally, we study whether sensors can be placed at mul-
tiple network nodes to guarantee minimum phase dynamics,
when there is only a single input. The following lemma
indicates that sensors can be placed in a way that guarantees
minimum phase dynamics, specifically by separating the
input from parts of the graph containing loops using the
measurements.

Lemma 7: Consider a linear network model with a single
unknown input location ¢. Say that the monitor measures a
set of locations 7. Now consider forming a reduced graph
I" from the network graph I', by removing from I' all nodes
and edges which are separated from i by T (i.e., there is no
path from ¢ to the node or edge which does not contain a
vertex in 7). If the graph I is strongly connected and there
is a single directed edge between each pair of vertices, then
the linear network model is minimum phase.

As a special case, minimum phase dynamics are guaran-
teed if all of the neighbors of the input location are outputs.
Thus, another general strategy for achieving minimum phase
dynamics is to surround the unknown-input location with
sensors. We note that this approach is akin to the separating-
set sensor placement for strong observability introduced by
Sundaram et al [11], but does not require the presence of
independent paths to all vertices.

a) Sketch of Proofs for Single-Input Lemmas: The lem-
mas developed in this section build on algebraic and graph-
theoretic characterizations of the zero dynamics of the SISO
linear network model, which were developed in a sequence
of previous studies [7]-[9]. The algebraic characterization
of the state matrix of the zero dynamics, which uses the
special coordinate basis for linear systems, is rather intricate.

To avoid redundancy and give a concise presentation, we do
not re-develop these results in detail here but rather only list
the main outcomes. We then sketch how these results are
used to prove the lemmas above.

The lemmas presented here draw on the following four
results, which are quoted directly from [8]:

1) The relative degree (number of infinite zeros) is given
by ng = d+ 1, where d is the distance from the input to the
output vertex in G (sec also [5]). In the SCB formulation,
the states associated with the vertices in the shortest directed
input-output path form the chain of n4 integrators. Let us call
this path the special input-output path.

2) The dimension of the zero dynamics (number of finite
zeros) is ng, = n — d — 1. The states of the zero dynamics
can be defined via a transform of the states corresponding
to vertices that are not on the special input-output path. We
define a set V; containing these n, vertices. We also use the
notation Gy for the induced subgraph of G on V;. WLOG,
the vertices on the special input-output path are labeled n —
d,n—d+1,...,n, where vertex n — ¢ is at a distance i to
the output, while the vertices in V7 are labeled 1,2...,n,.

3) The network’s finite-zero dynamics is given by:

nd—l
B0 = Agamo + (Y Al A, Zolen, )i (3)
=0
where Ayq = A, —Aand A = A, , 71 Z, . The matrix

Ay, is a principal submatrix of the A formed by the rows
and columns corresponding to the vertices in ;. The matrix
Ay, is an off-diagonal submatrix of A, while Z;dl and
Zn,, can be computed explicitly in terms of powers of the
graph matrix (see [8] Appendix A2); due to space constraints,
we omit the full expressions here. Since A,,, specifies the
graph G, we refer to A,,, as the reduced graph matrix. The
eigenvalues of the zero-dynamics state matrix A,, are the
finite zeros of the network model [14].

4) We can view the zero-dynamics state matrix Ay, as a
perturbation of the matrix A,,, by the matrix A. The key idea
is that the zero structure is specified by the reduced graph
G but with a modification arising via its connection to the
special input-output path. The perturbation A is a sparse
matrix whose nonzero entries are identifiable by the graph
structure [8]. Specifically, A;; = 0 ({Aaati; = {An, }is)
unless the following two conditions are satisfied:

a) There is an arc (directed edge) from a vertex in the
special input-output path (excluding the output) to the
vertex ¢ € V7.

b) There is a directed path from the vertex j € V; to
the output vertex whose length is less than or equal to
d — d; + 1, where d; is the distance from the input to
the vertex 4 € V; satisfying condition 1.

These four results are a starting point for proving the
lemmas listed above. Specifically, Lemmas 3 and 5 can be
proved by first considering reduced graph I'. The conditions
for both lemmas specify that there is only a single path
between the input location ¢ and the measurement location
j. It thus follows that the the reduced graph I' comprises
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(at most) d disconnected subgraph or components, which
correspond to the subgraphs of I" attached to each vertex on
the special input-output path. It thus follows that the reduced
graph matrix A,,, is block diagonal, with each diagonal block
corresponding to the subgraph of I' attached to ecach vertex
on the special input-output path. Without loss of generality,
assume that these diagonal blocks are order based on the
distance of their connecting node on the special input-output
path to the input (so the first block corresponds to the
subgraph connected to the input, the next block corresponds
to the next node on the special input-output path, and so
forth). Next, let us consider the perturbation matrix A. The
entry Ay, is non-zero only if the distance from vertex ¢ € V;
to the input vertex plus the distance from the output vertex
to vertex r € V; is as most d + 1 in the graph I'. However,
this means that A, can be greater than zero only if the
vertex ¢ is connected to the special input-output path at a
closer point to the input than vertex j. It thus follows that
the state matrix of the zero dynamics A,, = A,, + A is
block upper triangular, with the diagonal blocks equal to
those of A, . Thus, the zeros are simply the cigenvalues
of the diagonal blocks of the reduced graph matrix A,,, .
However, these blocks are essentially-nonnegative matrices
which correspond to connected graphs, have row sums less
than or equal to zero, and have one row sum that is strictly
less than 0. It follows from standard properties of essentially
nonnegative matrices that the eigenvalues of these diagonal
blocks, and hence the zeros, are in the OLHP.

To prove Lemma 6, first note that d = 1 since the
input ¢ and output j are adjacent. The special input-output
path comprises only the input vertex and output vertex. Let
us again consider the state matrix of the zero dynamics,
Aga = Ay, + A, which has dimension n — 2 in this case.
The matrix A,,, is an essentially nonnegative matrix, whose
row sums are less than or equal to zero. Further, for any
vertex k that is a neighbor of ¢ (specifically, Ag; > 0), the
corresponding row of A, has sum less than or equal to
—Agi. Meanwhile, since the input and output are adjacent,
Ay, can be nonzero only if ¢ is a neighbor of the input i
(Aig > 0) and r is a neighbor of the output j (4,; > 0).
Let us consider the perturbations on a particular row, say
k, where the corresponding vertex is adjacent to i. From the
detailed expressions for the entries in the perturbation matrix
(omitted), it can be shown that the absolute sum of the entries
in A in this row equals A % Ari From Gersgorin’s disk
theorem, it this follows that the Zeigenvalues of A,, are in the
OLHP if Ay, < Ay Y, Ar;Aj; for all k. Thus, the theorem
statement is recovered.

The proof of Lemma 7 requires generalizing the graph-
theoretic analysis of A,, to the single-input multiple-output
case. Lemma 7 is an analog to the case that there is a
single input-output path when there is a single input and
output, and proof follows in a similar fashion albeit with
some technical issues to address the non-right-invertibility
of the system. This analysis is lengthy between it requires
reworking the entire algebraic computation of the zero
dynamics from the special coordinate basis, as done for

the SISO case in [7]. Details are omitted in the interest of
space. [J
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