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Local Open-Loop Manipulation of Multi-Agent Networks

Dinuka Sahabandu'®, Rahul Dhal?, Jackeline Abad Torres® and Sandip Roy*

Abstract— The energy required for manipulation of a double-
integrator network model via local external actuation is ex-
amined. Some previous results on the controllability Gramian,
which specifies the required energy, are briefly reviewed. Three
new results are then developed. First, the energy required for
manipulation along the synchronization manifold over an arbi-
trary horizon is characterized. Second, several scalar measures
that give a global indication of a network’s manipulability are
analyzed. Based on these measures, we study design of the DIN
to prevent or facilitate manipulation.

I. INTRODUCTION

A number of results on the controllability of network
synchronization or consensus processes from sparse inputs
have been developed, in both the controls and the physics
literatures [1], [2], [3], [10]. Many of these results are
concerned with relating controllability with the network’s
underlying graph topology, and/or developing conditions for
structural controllability. More recently, rescarchers have
begun to examine the energy required for control from
structural and graph-theoretic perspectives, as a means to
evaluate the practicality of control and to support actuator
placement [3], [10], [9], [4]. A few recent studies have
also approached the problem of targeted (output) control
[5], have addressed increasingly sophisticated synchroniza-
tion models [6], or also have extended the controllability
analysis to consider input-output properties (e.g., presence
of nonminimum-phase zeros) [7]. These various result are
proving useful for cyber-physical-systems design as well as
infrastructure management applications, because they pro-
vide simple graphical rubrics that give rough insight into
controllability and actuator placement.

Motivated primarily by cyber-physical-systems applica-
tions, our group recently examined the energy required for
local control or manipulation of a network synchronization
process with planar agents, termed a double-integrator net-
work model [8]. This initial study was focused on developing
explicit expressions for the inverse of the controllability
Gramian in terms of the spectrum of the network’s graph
Laplacian. This study also initiated a study of closed- loop
manipulation of the network from local observations, which
complements the open-loop controllability notions.
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This article continues the study on local manipulation of
the double-integrator network model, with a focus on under-
standing how the model’s parameters and the manipulation
goal influence the required energy, and hence understanding
how to design the network model to facilitate or prevent
manipulation. Three main results are developed. First, the
energy required for manipulation along the synchronization
manifold, wherein the network must be moved to a differ-
ent synchronized state, is characterized and shown to be
small. Second, explicit characterizations of scalar metrics
of overall network controllability are undertaken, and used
to gain insight into what classes of networks are more
casily controlled. Third, a process for designing coupling
gains in the double-integrator network to reduce or enhance
manipulability is discussed.

The remainder of the article is organized as follows.
The manipulation-energy analysis problem for the double-
integrator network is reviewed in Section 2. The explicit
computations of the inverse Gramian obtained in [8] are
reviewed in Section 3. The new results on the manipulation
energy are presented in Section 4.

To save space we have omitted the proofs, please see the
extended version at http://www.eecs.wsu.edu/ sroy/.

II. PROBLEM FORMULATION

In this section, local manipulation of a canonical syn-
chronization dynamics, specifically a double-integrator net-
work dynamics, is modeled. Also, the manipulation-energy-
analysis problem is formulated. The formulation summarizes,
and in places exactly quotes, the formulation given in [8].

Nominally, the double integrator network (DIN) model
describes the coupled dynamics of n agents, labeled ¢ =
1,...,n. The model is specified using a weighted digraph
U =W,E:T), where V = {1,...,n} is the set of vertices,
and F is the set of ordered pairs of vertices representing the
arcs or directed edges between vertices. Each directed edge
(7,7) in the graph has associated with it a positive weight
vi,5> as specified in the weight set I'. In this formulation,
each vertex ¢ in the graph W is associated with the agent ¢ in
the DIN model. Further, each edge (4,7 : ; ;) specifies the
interaction between agents ¢ and j. We associate with each
agent ¢ the position state x;(t), which evolves in continuous
time (t € RT) as follows:

Bio= Y {gikp(; — @) + gk iy — )} — b
JEN: (1
Vi=1,..,n,

where the set NV; contains the indices of all the vertices j that
are neighbors of vertex i (i.e., such that (j,) is an edge), k,
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and k, are global scaling constants that indicate how strongly
each agent weights neighbors’ states and state derivatives in
their updates, and the nonnegative scalar b captures damping
processes. We notice that v; = @;(¢) is also an internal state
variable for the agent, which we refer to as the velocity state.

It is easy to derive conditions such that the network nom-
inally achieves synchronization, i.e. such that the dynamics
is stable in the sense in Lyapunov and further the agents’
states =; and v; asymptotically converge to the same value.
Specifically, synchronization is achieved provided that 1) the
network graph W is strongly connected and 2) k, and k,
arc chosen properly (c.g., with k, chosen sufficiently small
compared to k,) [11], [12]. We assume here that the nominal
dynamics achieve synchronization.

This study is focused on manipulation of DIN by a
stakeholder who is able to apply an external input w to a
single agent, say agent g. The dynamical model for agent ¢
is modified to capture the external input:

Iy = Z Vighp(xj —xg) +vjqko(Ej —dq) } —big+u (2)
JEN,

where y € R is the output or observation made by the
stakeholder.

The full DIN dynamics with the external stakecholder’s
input and observation included can be written in vector form
as:

5= (—L® L?p H + I, ® {8 1b]> 2+ (cq® Ba)u

3)
where z = [xl vy . Ty Un]/, By = [0 1]/, eq €
R" is a standard basis vector with a single unity entry at the
qth location, I,, is an n X n identity matrix, ® denotes the
Kronecker product, and (.)" denotes the transpose. Further,
the matrix L is the weighted in-degree Laplacian of the
weighted digraph W: for ¢ # j, L;; = —;; if there is
a directed edge from vertex j to vertex ¢ and zero otherwise;
meanwhile, L; ; = — >, L; ;. For simplicity, the notation
A=-L® k(l k?v +I,® 8 —14 is used for the state
matrix of the full dynamics, and B = e, ® By is used for
the input matrix.

The problem of interest is to understand: 1) whether the
stakeholder can manipulate the state of the double-integrator
network to any desired goal state, which is equivalent to
asking whether the state equation (3) is controllable; and 2)
how much encrgy or cffort is required to move the state to
a particular goal. The controllability of the dynamics can
be readily tied to the spectrum of the Laplacian matrix and,
in turn, the graph topology, see [8] and the brief review in
Section 3 below. The controllability analysis indicates that
DIN models are typically controllable from a single input.
Thus, our focus here is on characterizing the effort or energy
needed for control, to determine whether manipulation from
a single input is practical, and to support network design and
actuator selection.

A minimum-two-norm metric is used for the required
manipulation effort. Specifically, we consider the case that

the stakeholder seeks to drive the state away from a nominal
synchronization condition (chosen as the origin, without loss
of generality). The stakeholder’s goal is to move the full state
from the origin to a particular final state = by time ¢, under
the assumption that the dynamics arc in fact controllable.
Here, the squared-two-norm of the input, i.c. f::() u?(7)dr,
is used to measure the manipulation effort for a particular
input signal. The minimum of this squared-two-norm over
input signals that achieve the desired final state x; is chosen
as the metric for manipulability. The minimum-energy metric
is appealing in that it naturally measures the least input
deviation required for manipulation, yet is tractable.

The minimum input energy required to move the state
to the goal zf is well known, from standard control-theory
methods, to be 7, G- L(t)x s, where the positive definite ma-

trix G,(t) = f(f et BB e =T dr is the reachability
Gramian of the system over the interval [0, ¢] [13]. While this
algebraic expression permits computation of the minimum-
energy manipulation, it does not directly provide insight into
what network characteristics permit or frustrate manipula-
tion. From the expression for the minimum energy, it is clear
that the inverse of the reachability Gramian G 1(t) plays a
central role in deciding ease of manipulation: in general,
small inverse Gramians permit easy state manipulation in
many directions, while larger inverse Gramians correspond to
hard-to-manipulate networks. The asymptotic matrix G, 1 =
limy_, o, G, 1(t) is particularly interesting, since it specifies
lower bounds on the manipulation energy that are inde-
pendent of the time horizon ¢. In our previous work [8],
explicit computations of the inverse Gramian in terms of
the spectrum of the Laplacian matrix were developed, see
Section 3 for a review. Here, this preliminary analysis of
inverse Gramian is invoked to develop three new results
on manipulation of the DIN. First, the manipulation energy
require for goals states along the consensus manifold is
characterized. Second, explicit formulae are obtained scalar
metrics for overall controllability of the DIN, specifically
the trace and determinant of the inverse Gramian. Third, the
dependence of the scalar controllability metrics on the DIN’s
coupling gain parameters is determined, which facilitates
design to enhance or descrease manipulability.

As in [8], our analysis of the manipulation energy is re-
stricted to the case that the Laplacian matrix L is symmetric,
or equivalently the network graph is undirected. We stress
that the state matrix of the DIN is not symmetric even if L is
symmetric, hence the analysis requires considering complex
eigenvalues of the state matrix.

III. SUMMARY OF PREVIOUS RESULTS

The results presented in this article draw on our previous
work on the open-loop manipulation of the DIN [8]. For
the reader’s convenience, the main outcomes of the previous
work are summarized in this section. The reader is referred
to [8] for proofs and discussion of these results.

The controllability and manipulation-energy analyses
given in [8] depend on relationships between the spectrum of
the state matrix A and the spectrum of the graph Laplacian
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L. The following two lemmas relate the spectra of A and
L, for the damped (b # 0) and undamped (b = 0) DIN. For
this analysis, we let A; be an eigenvalue of L and ¢; be its
corresponding left eigenvector. We also use p; and w; for
cach cigenvalue and corresponding left cigenvector for the
state matrix A. Lemma 1 expresses two eigenvalues fio; 1
and p9; (and corresponding left eigenvectors wo;—1 and wy;)
of the state matrix A in terms of one eigenvalue A; (and its
corresponding left eigenvector ¢;) of the Laplacian matrix L,
for the damped DIN.

Lemma 1: Consider the damped DIN (b # 0). The 2n
eigenvalues of the state matrix A are given by:

—(Aiky +b) + /Oviky + 5)% — AN,

H2i—1 = D)
—(Azkb +b) — \/()\zkv + b)2 — 4)\2']€p
H2i = ’
2
for ¢ = 1,...,n. Further, for each left eigenvector ¢; of L,

the matrix A has two corresponding left eigenvectors that
are given by wg;_1 = ¢; ® dg;—1 and wo; = ¢; ® dy;, where
dyi—1 = [o‘ikv +b) + \/(>‘21kv +6)% - 4)‘1'ka and

by, = [ +8) - \/()\22-1% ThE 4>\,-ka
it /(Niky + )2 — 4Nk, £ 0. Otherwise, if
V(Niky +b)2 — 4Nk, = 0, then A has a single

corresponding left eigenvector dy;— 1 = >\¢qu2 +b

and there is no second eigenvector (i.e., the matrix is
defective and so a generalized left eigenvector is needed)!.

The following lemma characterizes the eigenstructure in
the undamped case (b = 0):

Corollary 1: When the DIN is undamped (b = 0), A
has an eigenvalue at 0 with algebraic multiplicity of 2,
which corresponds to the zero eigenvalue of L, (A1 = 0).
Further, the left eigenvector and left generalized eigenvector
associated with the zero eigenvalues are:

w1 =T® [0 1}/
wr=1®[1 0]

where 1 € R™ is the all ones vector.

Next, following the development in [8], the controllability
of the DIN is characterized in terms of the Laplacian
spectrum:

Theorem 1: The DIN with the external input applied to
agent q is controllable if and only if all left eigenvectors of
L contain nonzero entries at the ¢ position.

Theorem 1 shows that the controllability of (A, B) is equiv-
alent to the controllability of (L, e,). From the equivalence,
it is clear that controllability is entirely dependent on the
graph topology of the DIN, and the input location relative

'In the case that L is defective (has generalized eigenvectors), the analysis
of the eigenvectors of A becomes more subtle. Details are omitted here,
see [?]. Relevant to our development here, it can be shown that the above
theorem accounts for all eigenvectors of A.

to the graph. The condition for controllability is met under
broad conditions, see [8] for details.

The following theorems give explicit expressions for the
finite-horizon reachability Gramian G,.(t) of a reachable DIN
(Theorems 2, and 4), and then the inverse of the infinite-
horizon Gramian G, = lim,_,~, G, !(t) of a reachable DIN
(Theorems 3 and 5), in terms of the spectrum of A. The
expressions obtained for the undamped (b = 0) and damped
(b # 0) cases are distinct, because the state matrix has a
repeated eigenvalue at the origin in the undamped case.

Theorem 2: The finite-horizon reachability Gramian
G, (t)? for the undamped case (b = 0) is:

Gr(t) = Wi Woy G Wag (WY, )
where
A |R(1) Q') _[3/3 t?)2
Cr = {Q(t) P(t) R() = 2/2  t |
Q'(t) = {(ué? - i) it =g (e ﬁ) ki — [u;lnlz}_
erst—1 H'%n*’—l 7
e(ll«:+2+ﬂ(7+2)t —1
Pjt)y=—————5i,j=1,....2n -2

Mo T M2

Waq = diag(1, 1, w3 (2q), - - - s Wap,(24)) 18 @ diagonal matrix
whose (1)"" diagonal entry w; (o), is the 2¢*" entry of the
eigenvector associated with p; where ¢ = 3, ...,2n. W is the
matrix whose i*" row is the eigenvector wj. Each eigenvector
is assumed to be normalized to unit length, i.e. its two-norm
is 1.

Remark: The matrix P(t) is related to the family of
Cauchy matrices. This is the essential structure that is
exploited to characterize the inverse of the Gramian, see [8]
for details.

Theorem 3: The inverse of the reachability Gramian
G,(t) over the infinite horizon for the undamped case (b = 0)
is:

Gyt =W'W,, G Wy, 'W, 5)

-~ 0 0
where G71 =
r 0 P—l
ces above represent zero matrices of appropriate dimensions,
and the entries of P~ are:

] . The 0 notations within the matri-

p-1 _ . T B+ [j+2
{ Yig = = (e + pjv2) H . - -
m—3 Hi+2 = Hm =3, Hipo = Hpo
m#j+2 pAi+2
(6)

fore=1,...,2n—2and j=1,...,2n — 2.
Theorem 4: The finite-horizon reachability Gramian
(G,(t)) for the damped case (b # 0) is:

ZFor convenience, we omit the atypical case that non-zero eigenvalues
of A are in Jordan blocks. This may happen in a controllable system if
a single non-zero eigenvalue \; of the graph Laplacian corresponds to
repeated eigenvalues of A, i.e. (A\jky + )2 — 4\;k, = 0. The analysis
can be generalized to this case with some additional work, or the analysis
here can be used to obtain an arbitrarily-close approximation via a small
perturbation of k.
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Gr(t) = W W, G, Wa (WL (7)

where

5 |t M@ ey [erdtoa eﬁsnt_l]
= L\ﬂt) N(t)}*M (1) = [ 5 i
e(#j+1+lt]+1)t -1
sz(t) - i =1,....2n -1
Hip1 T Hj+1
Waq = diag(wy (2g), ..., Wan,(29)) is a diagonal matrix
whose " diagonal w; (54, is the 2¢'" entry of the eigen-

vector associated with p;, W is the matrix whose i** row is

the eigenvector w; and each eigenvector has 2-norm equals
1.

Theorem 5: The inverse of the reachability Gramian
G, (t) over the infinite horizon for the damped case (b # 0)
is:

Gl =W W G W, (®)

~ 0 0
where, G711 =
r 0 N—l
ces above represent zero matrices of appropriate dimensions,
and the entries of the inverse of the Cauchy matrix P~ are:

. The 0 notations within the matri-

2n

- . P + i B+ 141
{N l}z‘,j = (Nz‘+1 + Nj+1) H = = Z .
meo Hi+1 = Hm fruicy Hiv1 — Hyp

m#j+1 pFi+1
C)

IV. NEw RESULTS

Several new results are presented, which are focused on
measuring how easy or hard it is to manipulate a DIN, and
designing the DIN to prevent or facilitate manipulation.

A. Manipulation along the consensus manifold

In many application domains, the stakeholder’s ability to
manipulate the double-integrator network along the consen-
sus manifold, i.e. to a goal state where all agents have
the same value, is of particular interest. For instance, in
distributed decision-making applications, a stakeholder may
wish to ensure that consensus is reached, but manipulate the
agreed-upon value based on his/her selfish motivation. Like-
wise, in multi-vehicle-team control problems, an adversary
may seek to manipulate a vehicle formation away from a
nominal location toward an alternate target. Intuition sug-
gests that manipulation along the consensus manifold should
require less effort than manipulation along other coordinate
directions, since the double-integrator network intrinsically
approaches and maintains synchronization without requiring
an external drive. In fact, the asymptotic expression for
the inverse Gramian immediately shows that the energy
required to manipulate the state along the consensus manifold
approaches zero, for a sufficiently long manipulation horizon.
Here, we characterize the minimum energy required for
manipulation along the consensus manifold over a finite time
horizon, in terms of the spectrum of L, finite time horizon
t, and number of agents n. The analysis is done separately

for the damped and undamped model. We also separately
develop results for the case where only the position states are
to be manipulated away from the origin, before addressing
the general case where positions and velocities are to be
manipulated. The following thecorem addresses position ma-
nipulation along the consensus manifold, for the undamped
case:

Theorem 6: The minimum energy required for manipu-
lation of the undamped (b = 0) DIN to the goal state
Znew=K[1 0 1 0 1 0] over the interval [0, ]
is upper-bounded by 12ni%t—3. Further, the expression is
exact in the asymptote of large .

The result shows that manipulation along the consensus
manifold requires little effort given a sufficiently long hori-
zon, even when the network has a significant number of
agents. This makes sense conceptually because a small input
can be applied to the manipulated agent to move it slowly
to the desired new state K, whereupon the remaining agents
will naturally follow and remain in consensus.

In some circumstances, manipulation of both the agents’
position and their velocity states to a new point along the
consensus manifold, i.e. to a goal state of the form 2z, =
[k K K K], may be of interest. Using a similar
argument, the manipulation energy for this more general case
can be upper bounded by
n (4K2t‘1 —12KKt™% + 12}'{215—3)

The energy required for manipulation along the consensus
manifold can also be characterized for the damped DIN:

Theorem 7: The minimum energy required for manip-
ulation of the damped (b # 0) DIN to the goal state
Znew =K [1 0 1 0 1 0}/ over the interval [0, t]
is upper-bounded by K? bnglt_l. Further, the expression is
exact in the asymptote of large t.

The proof for the damped DIN is similar to that for the
undamped DIN, so we omit it to save space.

B. Scalar measures: trace and determinant

Scalar measures defined from the inverse Gramian, in-
cluding its trace and determinant, are important global
measures of the energy required for manipulation. These
global measures are important as integrative metrics of the
manipulability of dynamical networks (the DIN in our case),
and are also a stepping stone toward designing networks
which are easy or hard to manipulate. Here, we pursue
analysis of these scalar measures.

The trace of the inverse Gramian indicates average energy
required for manipulation over all goal states on the unit ball
(with two-norm equal to 1). The following theorem expresses
the trace of the inverse Grammian directly in terms of the
spectrum of L, k,, and k.

Theorem 8: The trace of the inverse of reachability
Gramian G, when the system has no damping (b = 0) is:
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+(M) Pt (M) P s

112,] . 12q . 2q ”2(1

) . {(A,qu, +b)+\/‘()\,kg,+b)274)\,k‘,,}-+4
trace(G, ') = Y. P i s

w3y

i=2

(10)

Aikw +b) — /(\ikey + )% — 4\ kp] 4

- [( W [P

l]21—2.21—27

where [P_lh _is given by the equation 6.
The trace can also be computed in the damped case:
Theorem 9: The trace of the inverse of reachability
Gramian G, when the system has damping (b # 0) is:

2
[(m,, ) =/ Oky + b)? — 4/\1k,,] +4

oa((1—1) — ~1
trace(G, ') [1»”2,2(1]2 [N }1_1+
2
n [(/\k )+ 1/ (Niky + b)? 74/\Lk‘p] +4
N, a ot
= (0211 2912 [ ]21—2 2i-2
A1+ Nk, ] N A[1 + Nk -
('IUQI—I,ZqUJ‘ZLZq [Eai P Wi 1,29 W22 N "o 1aie
2
[()\,,L +b) — 1/ (Niky + b)? —4)\Zk'r,] +4
N7!
+ (a1 2] [ ]2171.2171
(1)

Where, [N ”Lj is given by the equation 9.

The determinant of the reachability Gramian indicates the
volume of states reachable with unit energy (to within a fixed
scale factor), and hence also serves as an important global
metric for manipulability. For the DIN, theorems 6 and 7
indicate that any goal state on the consensus manifold can
be reached with arbitrarily small amount of manipulation
energy over an infinite horizon. Hence, the volume of the
reachable states becomes infinite for large ¢. Since the energy
required to reach states along the consensus manifold is
independent of the model’s parameters, a more convenient
and insightful global metric is the volume of reachable
states perpendicular to the consensus manifold, which can be
found as the determinant of a projection of the reachability
Gramian. The following theorems give explicit formulae for
this volume metric, in the damped and undamped cases.

Theorem 10: For the undamped DIN (b = 0), the volume
of states perpendicular to the consensus manifold that are
reachable with unit energy is given by:

lﬁ (wi,2q) ] lHQ" 2 Ticy (o — #510) (e _l‘.7+2)]

H2" 21—12" 2(ﬂ2+2+ﬂj+2)
Theorem 11: For the damped DIN (b = 0), the volume

of states perpendicular to the consensus manifold that are
reachable with unit energy is given by:

[ﬁ (wi.29) ‘| [HQH 1Hz 1 (/‘z-‘,—l N;.H) (tiv1 — ‘u]-+1)‘|
s g HQn 1H2n 1 (1os + 1)

The proofs of these results follow readily from the
Cauchy-matrix structure of the Gramian. Details are excluded
to save space.

The expressions for the scalar metrics give structural
insight into how easy or hard it is to manipulate a DIN
using local actuation. A basic outcome, which is particularly
clear from the determinant expressions, is that manipulating
a large networkat will from a single input is difficult.
In particular, a number of studies have shown that the
eigenvalue terms in the determinant expressions necessarily
become small for large networks [15], [16], under broad
conditions.These results indicate that few goal states can be
reached with limited energy from a single input, for a large
double-integrator network. Also, the trace and determinant
expressions indicate that the networkis difficult to manipulate
fully when two eigenvalues of the state matrix A are close
to each other, regardless of the location of the actuation.
We notice that A necessarily has nearby eigenvalues if
L has nearby cigenvalues, which thus causes difficulty in
manipulation. Conditions on the graph ¥ such that the
eigenvalues of L are close or small have been developed,
see e.g. [14], [17], [18]. Also, the expressions indicate that
manipulation is difficult, if the entries in the eigenvectors
of A (and hence of L) corresponding to the measurement
location are small. Recently, graph-theoretic results on the
eigenvector components of the Laplacian have also been
established, see e.g. [19], [20]. These results indicate the
slow modal dynamics can be most easily manipulated from
extreme points in the graph, but overall controllability is
often strongest near the center; details are omitted.

C. A Design Result

The above characterizations of the manipulation energy
allow us to study whether and how the DIN can be made
easier or harder to manipulate, by designing or tuning the
network’s parameters. Interestingly, the above results show
that manipulation along the consensus manifold is easy
regardless of the DIN parameters. However, the average
effort required to manipulate the network to an arbitrary goal
state, as measured by the trace of the inverse Gramian, is
amenable to design via tuning of the DIN parameters. As
an initial study, the dependence of the manipulation effort
on the gain parameters k, and k), is analyzed. In a number
of applications (e.g. autonomous-vehicle-network control),
the gain parameters are naturally amenable to tuning. More
abstractly, the gain parameters indicate the strength of the
interfaces among the network’s agents. Thus, it is natural to
study how the ease of manipulation of the double-integrator
network can be modulated using the gain parameters. In the
following theorem, it is shown that a certain scaling of the
gains can be used to systematically make the DIN harder to
manipulate.

Theorem 12: Consider the DIN model given in Equation
(3). Now consider scaling the global gain parameter k, by
a factor & > 1, and the global gain parameter k, by £2.
The trace of the inverse Gramian for the scaled DIN model
monotonically increases with the scaling parameter &.
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V. EXAMPLE

A DIN is considered with five agents connected in a line
(see the graph in Figurel). The example to used to illustrate
the manipulation effort depends on the input location.

L1 { 2 L 3} (4] {9 )

Fig. 1. Example network

Table I shows the Laplacian matrix L of the network, the
left eigenvector matrix C' of the matrix L and the other DIN
parameters selected for this specific example.

Parameter name Value
0 -10 0 0 0
—-10 20 -10 0 0
L 0 —-10 20 10 0
0 0 —10 20 10
0 0 0 —-10 10
—0.1954 0.5117  —-0.6325 0.5117  —0.1954
—0.3717  0.6015 0 —0.6015  0.3717
C —0.5117  0.1954 0.6325 0.1954  —0.5117
—0.6015 —0.3717 0 0.3717 0.6015
0.4472 0.4472 0.4472 0.4472 0.4472
t 10
kp 100
ko 50
b 0.5
2(0) o oo o000 00 0 0
z(10) [100 0 100 0 100 O 100 O 100 0}'
TABLE 1

EXAMPLE: PARAMETER VALUES USED

From the left-eigenvector matrix, it is immediate that
manipulation is possible from agents 1,2,4 and 5 but not
from agent 3. The following table compares the trace of the
inverse Gramian for each agent.

Manipulated agent | Open-loop energy

1 2.5745 x 103

2 2.6391 x 103

3 -

4 2.6408 x 103

5 2.5859 x 103
TABLE 11

EXAMPLE: RESULTS

The results shown in the table II indicate that manipulation
is much easier from the agents located at the edges of the
network.
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