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ABSTRACT

The availability of public computing resources in the cloud has rev-
olutionized data analysis, but requesting cloud resources often in-
volves complex decisions for consumers. Estimating the comple-
tion time and cost of a computation and requesting the appropriate
cloud resources are challenging tasks even for an expert user. We
propose a new market-based framework for pricing computational
tasks in the cloud. Our framework introduces an agent between
consumers and cloud providers. The agent takes data and com-
putational tasks from users, estimates time and cost for evaluating
the tasks, and returns to consumers contracts that specify the price
and completion time. Our framework can be applied directly to
existing cloud markets without altering the way cloud providers
offer and price services. In addition, it simplifies cloud use for con-
sumers by allowing them to compare contracts, rather than choose
resources directly. We present design, analytical, and algorithmic
contributions focusing on pricing computation contracts, analyz-
ing their properties, and optimizing them in complex workflows.
We conduct an experimental evaluation of our market framework
over a real-world cloud service and demonstrate empirically that
our market ensures three key properties: (a) that consumers benefit
from using the market due to competitiveness among agents, (b)
that agents have an incentive to price contracts fairly, and (c) that
inaccuracies in estimates do not pose a significant risk to agents’
profits. Finally, we present a fine-grained pricing mechanism for
complex workflows and show that it can increase agent profits by
more than an order of magnitude in some cases.

1. INTRODUCTION
The availability of public computing resources in the cloud has

revolutionized data analysis. Users no longer need to purchase
and maintain dedicated hardware to perform large-scale comput-
ing tasks. Instead, they can execute their tasks in the cloud with
the appealing opportunity to pay for just what they need. They can
choose virtual machines with a wide variety of computational ca-
pabilities, they can easily form large clusters of virtual machines
to parallelize their tasks, and they can use software that is already
installed and configured.
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Yet, taking advantage of this newly-available computing infras-
tructure often requires significant expertise. The common pricing
mechanism of the public cloud requires that users think about low-
level resources (e.g. memory, number of cores, CPU speed, IO
rates) and how those resources will translate into efficiency of the
user’s task. Ultimately, users with a well-defined computational
task in mind care most about two key factors: the task’s comple-
tion time and its financial cost. Unfortunately, many users lack
the sophistication to navigate the complex options available in the
cloud and to choose a configuration1 that meets their preferences.

As a simple example, imagine users who need to execute a work-
load of relational queries using the Amazon Relational Database
Service (RDS). They need to select a machine type from a list of
more than 20 possible options, including “db.m3.xlarge” (4 virtual
CPUs, 15GB of memory, costing $0.370 per hour) and “db.r3.xlarge”
(4 virtual CPUs, 30.5GB of memory, costing $0.475 per hour). The
query workload may run more quickly using db.r3.xlarge, because
it has more memory, however the hourly rate of db.r3.xlarge is also
more expensive, which may result in higher overall cost. Which
machine type should the users choose if they are interested in the
cheapest execution? Which machine type should they choose if
they are interested in the cheapest execution completing within 10
minutes? Typical users do not have enough information to make
this choice, as they are often not familiar with configuration pa-
rameters or cost models.

The reality of users’ choices is even more complex since they
may choose one of five data management systems through RDS,
or other query engines using EC2, including parallel processing
engines, and different configuration options for each. They might
also be tempted to compare multiple service providers, in which
case they would have to deal with different pricing mechanisms in
addition to different configuration options. Amazon RDS charges
based on the capacity and number of computational nodes per hour;
Google BigQuery charges based on the size of data processed; Mi-
crosoft Azure SQL Database charges based on the capacities of
service tiers like database size limit and transaction rate.

As a result of this complexity, many users of public clouds make
naı̈ve, suboptimal choices that result in overpayment, and/or per-
formance that is contrary to their preferences (e.g., it exceeds their
desired deadline or budget). Thus, instead of paying only for what
they need, the reality is that they pay for what they do not need and,
even worse, they pay more than they have to for it.

1A configuration here means a set of system resources and its set-
tings, provided by the cloud provider. It includes the number of
virtual instances of a cluster, the buffer size of a cloud database,
and so on.
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A market for database computations

To ease the burden on users we propose a new market-based frame-
work for pricing computational tasks in the cloud. Our framework
introduces an entity called an agent, who acts as a broker between
consumers and cloud service providers. The agent accepts data
and computational tasks from users, estimates the time and cost for
evaluating the tasks, and returns to consumers contracts that spec-
ify the price and completion time for each task.

Our market can operate in conjunction with existing cloud mar-
kets, as it does not alter the way cloud providers offer and price
services. It simplifies cloud use for consumers by allowing them to
compare contracts, rather than choose resources directly. The mar-
ket also allows users to extract more value from public cloud re-
sources, achieving cheaper and faster query processing than naive
configurations. At the same time, a portion of the value an agent
helps extract from the cloud will be earned by the agent as profit.

Agents are conceptually distinct from cloud providers in the sense
that they use intelligent models to estimate time and cost given con-
sumers queries. In other words, agents take the risk of estimation,
while service providers simply charge based on resource consump-
tion, which guarantees profit. In practice, an agent could be a ser-
vice provider (who provides estimation as a service in addition to
cloud resources), a piece of software sold to consumers, or a sepa-
rate third party who provides service across multiple providers.

Scope. Our goal in this paper is not to develop a new technical
approach for estimating completion time or deriving an optimal
configuration for a cloud-based computation. Prior work has con-
sidered these challenges, but, in our view, has not provided a suit-
able solution to the complexity of cloud provisioning. The reason
is that estimation, even for relatively well-defined tasks like rela-
tional workloads, is difficult. Proposed methods require compli-
cated profiling tasks to generate models and specialize to one type
of workload (e.g., Relational database [20] or MapReduce [1, 16]).
In addition, there is inherent uncertainty in prediction, caused by
multi-tenancy common in the cloud [35, 21]. Lastly, users’ pref-
erences are complex, involving both completion time [33] and cost
[50, 24], which have been considered as separate goals [16, 27], but
have not been successfully integrated.

Our market-based framework incentivizes expert agents to em-
ploy combinations of existing estimation techniques to provide this
functionality as a service to non-expert consumers. Users can ex-
press preferences in terms of their utility, which includes both time
and cost considerations. Uncertainty in prediction becomes a risk
managed by agents, and included in the price of contracts, rather
than a problem for users. Ultimately, our work complements re-
search into better cost estimation in the cloud [46, 8, 16]. In fact,
our market will function more effectively as such research advances
and agents can exploit new techniques for better estimation.

In this paper, we make the following contributions:

• We define a novel market for database computations, including
flexible contracts reflecting user preferences.

• We formalize the agent’s task of pricing contracts and propose
an efficient algorithm for optimizing contracts.

• We perform extensive evaluation on Amazon’s public cloud,
using benchmark queries and real-world scientific workflows.
We show that our market is practical and effective, and satisfies
key properties ensuring that both consumers and agents benefit
from the market. Further, we demonstrate that our agent-based
market performs better and has fewer restrictions compared to
benchmark-based and game-theoretic alternatives.

Outline. We present the market overview and main actors in Sec-
tion 2, define contracts and optimal pricing in Sections 3 and 4,

Consumer	 Agent	
Cloud	

provider	

1. Proposal 

2. Contract 

3. Permission 

0. Configurations 

4. Job 

5. Result link 
6. Result link 

Figure 1: An overview of the participants’ interactions in the com-
putation market: the consumer, the agent and the cloud provider.

support fine-grained pricing to further optimize contracts in Sec-
tion 5. In Section 6, we present a thorough evaluation of our mar-
ket, and demonstrate that it guarantees several important properties
and outperforms alternatives. Finally, we discuss related work and
extension and summarize in Sections 7, 8 and 9, respectively.

2. COMPUTATION MARKET OVERVIEW
In this section, we discuss the high-level architectural compo-

nents of our computation market: 3 types of participants and their
interactions through computation contracts. Our computation mar-
ket exhibits several desirable properties as we mention in Section 2.3.

2.1 Market participants
Our goal is to model the interactions that occur in a computation

market, and design the roles and framework in a way that ensures
that the market functions effectively. Our computation market in-
volves three types of participants:

Cloud provider. Cloud providers are public entities that offer com-
putational resources as a service, on a pay-as-you-go basis. These
resources are often presented as virtual machine types and providers
charge fees based on the capabilities of the virtual machines and the
duration of their use. Our framework does not enforce any assump-
tions on the types, quantity, or quality of resources that a cloud
provider offers.

Consumer. A consumer is a participant in our computational mar-
ket who needs to complete a computational task over a dataset D.
We assume the computational task is a set of queries or MapReduce
jobs2, denoted as Q = {Q1, ...,Qn}. We assume that the consumer
does not own the computational resources needed to complete Q,
and thus needs to use cloud resources. However, the consumer
may not have the expertise to determine which cloud provider to
use, which resources to lease, or how to configure them. In our
framework, the consumer wishes to retrieve the task results Q(D)=
{Q1(D), ...,Qn(D)} within a specified timeframe, and pay for these
results directly. Therefore, the consumer’s goal is to complete the
task efficiently and for low cost. Different consumers have differ-
ent time and cost preferences. They will describe these preferences
precisely using a utility function, as described later in Section 3.1.

Agent. Consumers’ needs are task-centric (time and price to com-
plete a given task), whereas cloud providers’ abilities are resource-
centric (time and price for a type of resource). Due to this disparity,
consumers and providers do not interact directly in our framework.
Rather, a semantically separate entity, the agent, is tasked with han-
dling the interactions between consumers and cloud providers. The
agent receives a task request from a consumer and, in response, cal-
culates a price to complete the task, providing the consumer with a
formal contract. We review contracts in Section 2.2, and describe
them in detail in Section 3. The agent executes accepted contracts
using public cloud resources, and earns a profit whenever the con-
tract price is greater than the actual cost of executing the task. The
agent’s goals are to attract business by pricing contracts competi-
tively and to earn a profit with each transaction. One of the main

2For simplicity of terminology we use “query” to refer to either a
query or MapReduce job.
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challenges for the agent is to assign accurate prices to consumer
requests, which requires knowledge of cloud resources, their capa-
bilities and costs, and expertise in tuning and query prediction.

Figure 1 illustrates the interactions among the 3 market partici-
pants. In step 0, the agent collects details on available configura-
tions from the cloud provider to derive later price quotes on con-
sumers’ requests. This step may only need to be initiated once,
and reused afterwards. In steps 1 through 3, the agent receives a
proposal including Q and statistics about dataset D, denoted sD,
which are sufficient for pricing. For example, sD can be the num-
ber of input records in each table [4], histograms on key columns
or sets of columns [45], a small sample of data [16], and other stan-
dard statistics. The agent reasons about possible configurations and
estimates the completion time and financial cost of the queries, re-
turning a priced contract to the consumer. If the consumer accepts
the contract, in steps 4 through 6, the agent executes a job in the
cloud according to the contract, computes the result, and returns a
link to the consumer. The link can be, for example, an URL point-
ing to Amazon S3 or any other cloud storage service. Finally the
agent receives payment based on the accepted contract and the ac-
tual completion time. We will see in Section 3.2 that contracts can
involve complex prices that depend on the actual completion time.

2.2 Contracts
The contract is the core component of our framework, describing

the terms of a computational task the agents will perform and the
price they will receive upon task completion. The design of our
framework is intended to cope with the inevitable uncertainty of
completion time. Therefore, our contracts support variable pricing
based on the actual completion time when the answer is delivered.

We also formally model the time/cost preferences of the con-
sumer using a utility function that we assume is shared with the
agent. The main technical challenge for the agent is to price a con-
tract of interest to a consumer. Pricing relies on the agent’s model
of expected completion time for the task and the consumer’s utility.
From the consumers’ side, they may receive and compare contracts
from multiple agents to choose the one that maximizes their utility.

In this paper, we consider contracts and computational tasks that
only involve analytic workloads. These analytic workloads are dif-
ferent from long-running services in the sense that their evaluation
takes limited amount of time, even though this time can be sev-
eral hours or days. Given this focus, we can assume that cloud
resources remain the same during the execution of a contract. We
discuss relaxing these factors in Section 8.

2.3 Properties and assumptions
Our framework is designed to support 3 important properties:

competitiveness, fairness, and resilience. Competitiveness guaran-
tees that agents have an incentive to reduce runtime and/or cost for
consumers. Fairness guarantees that agents have an incentive to
present accurate estimates to consumers, and that they do not bene-
fit by lying about expected completion times. Resilience means that
an agent can profit even when their estimates of completion time
are imprecise and possibly erroneous. We demonstrate empirically
in Section 6 that our framework satisfies these crucial properties.

Our framework assumes honest participants: we defer the study
of malicious consumers and agents to future work. Accepting an
agent’s contract means the consumer’s data will be shared with
the agent for evaluation of their task, however requesting contract
prices from a set of agents reveals only the consumer’s statistics
and task description.

Monopoly is not possible in this framework, and collusion among
agents is unlikely.3 First, an agent cannot constitute a monopoly,
as consumers may always choose to use a cloud service provider
directly. A service provider cannot be a monopoly either, as any
agent with a valid estimation model can enter the market. Second,
collusion becomes unlikely as the number of agents in the market
increases. Any agent who does not collude with others can offer a
lower price and draw consumers, making any collusion unstable.

3. THE CONSUMER’S POINT­OF­VIEW
In this section, we describe the consumer’s interactions with the

market. A transaction begins with a consumer who submits a re-
quest reflecting their utility (a precise description of their prefer-
ences). Later, given multiple priced contracts, the consumers can
formally evaluate them according to the likely utility they will offer.

3.1 Consumer utility
One of our goals is to avoid simplistic definitions of contracts

in which a task is carried out by a deadline for a single price.
Many consumers have preferences far more complex than individ-
ual deadlines: they can tolerate a range of completion times, assum-
ing they are priced appropriately. Also, we want agents to compete
to offer contracts that best meet the preferences of consumers.

A consumer’s preferences are somewhat complex because they
involve tradeoffs between both completion time and price. We
adopt the standard economic notion of consumer utility [40] and
model it explicitly in our framework. A utility function precisely
describes a consumer’s preferences by associating a utility value
with every (time, price) pair. A utility function can encode, e.g.,
the fact that the consumer is indifferent to receiving their query an-
swer in 10 minutes at a cost of $2.30 or 20 minutes at a cost of
$1.90 (when these two cases have equal utility values) or that re-
ceiving an answer in 30 minutes at a cost of $0.75 is preferable to
both of the above (when it has strictly greater utility).

DEFINITION 3.1 (UTILITY). Utility U(t,π) is a real-valued

function of time and price, which measures consumer satisfaction

when a task is evaluated in time t with price π .

Larger values for U(t,π) mean greater utility and a preferred
setting of t and π . For a fixed completion time t0, a consumer
always prefers a lower price, so U(t0,π) increases as π decreases.
Similarly, for a fixed price, π0, a consumer always prefers a shorter
completion time, so U(t,π0) increases with decreasing t.

To simplify the representation of a consumer’s utility, we will re-
strict our attention to utility functions that are piecewise linear. That
is, we assume the range of completion times [0,∞) is divided into
a fixed set of intervals, and that utility on each interval is defined
by a linear function of t and π . This means that for each interval,
the consumer has a (potentially different) rate at which she/he is
willing to trade more time for lower price, and vice versa.

DEFINITION 3.2 (UTILITY – PIECEWISE). A piece-wise util-

ity function consists of a list of target times τ0, . . . ,τn, where 0 =
τ0 < τ1 < · · · < τn−1 < τn = ∞, and linear functions u1(π, t), . . . ,
un(π, t). The utility is ui(π, t) for t ∈ [τi−1,τi).

Such utility functions can express conventional deadlines, but also
much more subtle preferences concerning the completion time and
price of a computation. In practice, users can construct the utility
function by defining several critical points on a graphical user in-
terface, or answering a few simple pair-wise preference questions.

3In fact, the agents and the existing cloud service providers natu-
rally form a monopolistic competition [40].
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EXAMPLE 3.3. Consumer Carol has two target completion times

for her computation: 10 minutes and 20 minutes. Results returned

in less than 10 minutes are welcome, but she doesn’t wish to pay

more to speed up the task. When results are returned between 10

minutes and 20 minutes, every minute saved is worth 1 cent to her.

She does not want result returned after 20 minutes. Her piecewise

utility function is:

U(t,π) =











u1(t,π) =−π (t < 10)

u2(t,π) =− t −π +10 (10 ≤ t < 20)

u3(t,π) =−50 (t ≥ 20)

3.2 Consumer contract proposal
The process of agreeing on a contract starts with the consumer

advertising to agents the basic terms of a contract: the task Q, the
statistics of the database sD, and their piecewise utility function U .

The terms of the contract are structured around the target times
in the utility function. Agents use the utility function to choose a
suitable configuration and pricing to match the preferences of the
consumer. A complete, priced contract is returned to the consumer,
which is defined as follows:

DEFINITION 3.4 (CONTRACT). A contract is a six-tuple C =
(Q,sD,T ,P, T̂ ,Π), where Q is a task, sD consists of statistics about

the input data, T = (τ0,τ1, . . . ,τn) is an ordered list of target com-

pletion times, P = (p1, . . . , pn) is an ordered list of probabilities,

∑i pi = 1, T̂ = (t̂1, . . . , t̂n) is an ordered list of expected completion

times, and Π = (π1(t), . . . ,πn(t)) is a list of price functions where

πi is defined on [τi−1,τi).

When a consumer and an agent agree on a contract C , it means
that the agent has promised to deliver the answer to task Q on D

after time t ∈ [0,∞), where the likelihood that t falls in interval
[τi−1,τi) is pi. If the answer is delivered in interval [τi−1,τi), the
consumer agrees to pay the specified price, πi(t). T̂ is used for
computing expected utility as we will see in Section 3.3. The con-
tract also includes the data statistics sD, given to the agent by the
consumer, because the pricing calculation relies on these statistics.

The contract is an agreement to run the task once. The prob-
abilities provided by the agent are a claim that if the task were
run many times, a fraction of roughly pi of the time, the comple-
tion time would be in the interval [τi−1,τi). Without this informa-
tion, the consumer has no way to effectively evaluate the alternative
completion times that could occur in a contract. For example, all
alternatives but one could be very unlikely and this would change
the meaning of the contract. We will see in Section 4 how the agent
generates these probabilities.

EXAMPLE 3.5. An example contract based on the utility func-

tion of Example 3.3 is defined by T = (0,10,20,∞), probabilities

P = (0.2,0.5,0.3), expectations T̂ = (9,15,21), and prices Π:

Π(t) =











π1(t) =2 (t < 10)

π2(t) =3−0.1t (10 ≤ t < 20)

π3(t) =1 (t ≥ 20)
   0 10 20

3

0

1

2

Time

P
r
ic
e π1

π3

π
2

3.3 Consumer’s contract evaluation
In response to a proposed contract, a consumer hopes to receive

a number of priced versions of the contract from agents. Contracts
based on the same utility request will share the same target com-
pletion times, but each contract may offer the consumer different
utility values over the probability-weighted completion times. The

consumer’s goal is to maximize their utility, so to choose between
contracts, the consumer should compute the expected utility of each
contract and choose the one with greatest expected utility.

DEFINITION 3.6 (EXPECTED UTILITY OF A CONTRACT). The

expected utility of a contract C = (Q,sD,T ,P, T̂ ,Π) with respect

to utility function U(t,π) is

∑
n
i=1 piui(t̂i,πi(t̂i))

when ui(t,π) and πi(t) are linear functions.

EXAMPLE 3.7. Suppose the consumer uses the utility function

in Example 3.3, and two agents return two contracts C1 and C2.

Further assume both agents return the same price function Π in

Example 3.5, and the expected time T̂ are also the same (T̂ =
(9,15,21)). Only the probabilities P differ: P = (0.2,0.5,0.3) for

contract C1, and P = (0.1,0.8,0.1) for contract C2. The consumer

computes the expected utility according to Definition 3.6 (-18.65

for C1 and -10.4 for C2), and chooses C2 as it has greater utility.

4. THE AGENT’S POINT­OF­VIEW
We now explain the agent’s interactions in the market. The agent’s

challenge is to price a contract, coping with the uncertainty of com-
pletion time, while considering the consumer’s utility and the mar-
ket demand. We formalize 2 variants of pricing (risk-aware and
risk-agnostic) and formulate both as optimization problems.

4.1 Pricing preliminaries
Upon receipt of the terms of a contract and the utility function

of a consumer, the agent must complete the contract by computing
prices for each interval and assigning probabilities to each interval.

For each configuration, we assume the financial cost C borne
by the agent is a function of t: C(t) = αC · t, where αC is the unit
rate of the configuration, and can be different across configurations.
Thus, the pricing of a contract depends critically on the estimate of
the completion time for Q. Since estimates of completion time are
uncertain, we model completion time T as a probability distribution
over [0,∞) with probability density function fT (t). The true fT (t)
is unlikely to be known and, in practice, must be estimated by the
agent with respect to a selected configuration. Based on fT (t) and
C(t), the agent proposes a price function π(t), which means the
consumer should pay π(t) when the completion time is t.

The agent has three goals when pricing a contract: (i) to maintain
profitability, (ii) to offer the consumer appealing utility, and (iii) to
compete with the offerings of other agents. We discuss them below.

(i) Profitability.
Naturally the agents would like to price the contract higher than
their cost of execution so that they can earn a profit. Profit is uncer-
tain for an agent because it is difficult to predict completion time
in the cloud. We say a contract is profitable in expectation if its ex-
pected profit, with respect to the distribution fT (t), is greater than 0.

E[profit] =∑
n
i=1 pi (πi(t̂i)−C(t̂i)) (4.1)

We call a contract profitable (for the agent) as long as it is prof-
itable in expectation. The agents should always price contracts so
that they are profitable, but it is possible that a particular contract
ends up being unprofitable.

DEFINITION 4.1 (PROFITABLE CONTRACT). A profitable con-

tract is a contract with E[profit]> 0.
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(ii) Prioritizing consumer utility.
Since the agents know the consumer’s utility function U(t,π) they
should take it into account when choosing a configuration and pric-
ing. To the extent that the agents can match the consumer’s utility,
their pricing of the contract will be more appealing to the consumer.
The agents evaluate the expected utility E[U ] over the distribution
of time T based on their estimates and price function π(t):

E[U ] = ∑
n
i=1 piui(t̂i,πi(t̂i)) (4.2)

Profitability for the agent and utility for the consumer are con-
flicting objectives: a contract that offers greater profit to the agent
will offer lower utility to the consumer. We will see that the agent
will attempt to maximize the consumer’s utility, subject to con-
straints on their profitability.

(iii) Market competitiveness and demand.
In all markets, including ours, market forces and competition pre-
vent agents from raising prices without bound. In economics, a
market demand function describes how these forces impact the pric-
ing of goods [40]. When the agents decrease the price of a contract,
the expected profit of the contract is reduced but they increase the
utility of the contract to consumers. In a marketplace, when util-
ity for the consumer increases, a greater number of consumers will
accept the contract. Thus, the agents must balance the profit made
from an individual contract with the overall profit they make from
selling more contracts. To model this, we must make an assumption
about the relationship between utility and the number of contracts
that will be accepted by consumers in the market. This relationship
is represented by the demand function which is defined as a func-
tion of utility. A linear demand curve is common in practice [40],
so we focus on demand functions of the form M(U) = a+bU . Our
framework can support demand functions of different forms, but
we do not discuss these in detail.

In a real market, agents would learn about demand through re-
peated interactions with consumers. An agent’s demand function
could depend on, for example, customer loyalty, the best contracts
competitors can offer, and other factors. These factors are beyond
our scope. To simulate the functioning of a realistic market, we
must assume a demand function and, for simplicity, we assume the
demand functions of all agents are the same in the rest of this paper.

4.2 Contract pricing
We start from the simplest case in which the consumer has a task

Q and a single configuration φ . So the cost function C(t) and the
pdf of the distribution of completion time fT (t) are fixed. The agent
needs to define the price function π(t) to present a competitive con-
tract to the consumer. Let the overall profit be P , which equals the
unit profit profit multiplied by the sales M(U). Notice that profit

is the profit of a single contract while P is the overall profit of all
contracts that the agent returns to all consumers in the market. The
agent wants to find the price function that leads to the greatest total
profit while satisfying the profitability constraint. This results in
the following optimization problem:

PROBLEM 4.2 (CONTRACT PRICING). Given a contract C =
(Q,sD,T ,P, T̂ ,Π), utility function U, and demand function M, the

optimal price for C is:

maximize : P = E[profit] ·E[M(U)]

subject to : E[profit]> 0

Let Ii be the interval (ti, ti+1), and recall that pi is the probability
that the completion time falls in Ii:

pi =
∫ ti+1

t=ti

fT (t)dt (4.3)

Let Ti be a random variable of completion time in interval Ii. It is a
truncated distribution with probability density function fT (t|t ∈ Ii).
Let Ci be a random variable of cost in interval Ii. Ci = C(Ti). So
expectation t̂i and expectation ci is:

t̂i = E[Ti] =
∫

t∈Ii
t fT (t|t ∈ Ii)dt (4.4)

ci = E[Ci] =
∫

t∈Ii
C(t) fT (t|t ∈ Ii)dt (4.5)

Therefore the expected unit profit and expected demand are:

E[profit] = ∑
|I|
i=1(πi − ci)pi (4.6)

E[M(U)] = ∑
|I|
i=1 M (U(t̂i,πi)) pi (4.7)

Linear case.
When U and M are linear functions, this problem becomes a con-

vex quadratic programming problem. It has an analytical solution.
More details can be found in the technical report [42]. Here we
describe the conclusion only, under the following assumptions:

• The consumer specifies a linear utility function U(t,π)=−αU ·
t−βU ·π , which means they are always willing to pay αU units
of cost to save βU units of time.

• The demand function is linear: M(U) = γM + λM ·U . Thus,
when U increased by 1/λM , 1 more contract would be ac-
cepted. Since U(t,π) is linear, the demand function can be
written as M(U) = γM −αMt −βMπ .

Applying Equations 4.6 and 4.7 to Problem 4.2, we compute the
overall profit P . P is maximized when

πT p =

{

(γM −αM t̂T p+βMcT p)/(2βM), γM −αM t̂T p−βMcT p ≥ 0

cT p+ ε, otherwise

where ε is a small positive value, π = [π1,π2, ...]
T , p= [p1, p2, ...]

T ,
t̂ = [t̂1, t̂2, ...]

T and c = [c1,c2, ...]
T .

Selecting a configuration.
An agent typically has many available configurations for evaluating
Q. We denote the set of configurations by Φ = {φ1,φ2, ...}. Every
configuration φ j has its own cost function C j(t) = αC j · t, where
αC j is the unit rate for φ j. The agent will select the configuration
that results in the most profit. The distribution of time T and its
corresponding pi, t̂i, and ci then become variables in Problem 4.2.
Each agent may use a different strategy to derive a solution. A
naı̈ve agent can select and enumerate a small Φ, while a smarter
agent will use an analytic model to solve the problem [45, 16].

4.3 Risk­aware pricing
Pricing contracts involves some risk for the agents: if their es-

timated distributions of time and cost are different from the actual
ones, they can lose profit or even suffer losses. Next, we formally
define risk based on loss and add it as part of the objective.

DEFINITION 4.3 (LOSS). Let the actual distribution of com-

pletion time be T ∗ and the optimal price function be π∗. When the

agent generates a contract with price function π , the loss of rev-

enue L is: LT ∗(π) =P(π∗,T ∗)−P(π,T ∗) =P(π∗, p∗, t∗,c∗)−
P(π, p∗, t∗,c∗), where p∗ is the actual probabilities, t∗ is the ac-

tual expected completion times, and c∗ is the actual costs.
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There is always inherent uncertainty in the prediction of the dis-
tributions of completion time and cost, so it is generally not possi-
ble for the agents to achieve the theoretically optimal profits based
on the actual distributions. However, they can plan for this risk, and
assess how much risk they are willing to assume. We proceed to de-
fine risk as the worst-case possible loss that an agent can suffer.

DEFINITION 4.4 (RISK). The risk of the agent is a function

of price π , and is defined as the maximum loss over possible distri-

butions of completion time: R(π) = maxT ∗ LT ∗(π).

We incorporate risk into the agent’s optimization problem by adding
it to the objective function:

maximize : P(π, p, t,c)−λR(π)

subject to : E[profit]> 0
(4.8)

The λ in the objective is a parameter of risk that the agent is will-
ing to assume. Larger λ reduce the worst-case losses (conserva-
tive agent), while smaller λ increase the assumed risk (aggressive
agent). The agent can estimate the risk R(π) by solving the follow-
ing optimization problem, with variables π∗, p∗, t∗, and c∗:

maximize : LT ∗(π) = P(π∗, p∗, t∗,c∗)−P(π, p∗, t∗,c∗)

subject to : E[pro f it∗] = ∑(π∗
i − c∗i )p∗i > 0

LBoundt ≤ t∗i − t̂i ≤UBoundt

LBoundc ≤ c∗i − ci ≤UBoundc

0 ≤ p∗i ≤ 1, ∑ p∗i = 1

where LBound and UBound are empirical values set by the agent.
For example, if the agent finds after several contract executions
that the mean time is 1 sec higher than the estimate produced by
the agent’s analytic model, the agent can set LBoundt = 0 and
UBoundt = 1.

5. FINE­GRAINED CONTRACT PRICING
Our treatment of pricing in Section 4 assumes that agents se-

lect a single configuration for the execution of a consumer con-
tract. However, computational tasks often contain well-separated,
distinct subtasks (e.g., operators in a query plan or components in
a workflow). These subtasks may have vastly different resource
needs. For example, Juve et al. [19] profile multiple scientific
workflow systems and find that their components have dramatically
different I/O, memory, and computational requirements.

We now extend our pricing framework to support fine-grained

pricing, which allows agents to optimally assign separate configu-
rations to each subtask of a computational task. It provides more
candidate contracts without changing the pricing Problem 4.2. Fine-
grained pricing has two benefits. First, by assigning a configura-
tion for each subtask, instead of the entire task, agents can achieve
improved time and cost, resulting in higher overall utility and/or
higher profit. Second, considering subtasks separately gives agents
the flexibility to outsource some computation to other agents. While
outsourcing computation across agents is not a focus of our work, it
is a natural fit for our fine-grained pricing mechanism. Agents can
choose to outsource subtasks to other agents based on their special-
ization and capabilities, or for load balancing. However, some chal-
lenges of outsourcing, such as utility and forms of contracts that
agents need to exchange are beyond the scope of our current work.

We model a computational task Q as a directed acyclic graph
(DAG) GQ. Every node in GQ is a subtask Qi. An edge between
subtasks (Qi,Q j) means that the output of Qi is an input to Q j.
When subtasks are independent of one another, the DAG may be

(10', 5¢)

(5',1¢)
(5', 2¢)
(2 ', 4¢)σ(R) 

⨝ 
γ(S) 

Figure 2: An example of a simple relational query that can be bro-
ken into 3 subtasks, corresponding to different operators.

disconnected. Our model assumes no pipelining in subtask evalua-
tion. Therefore, a subtask Q j cannot be evaluated until all subtasks
Qi, such that (Qi,Q j) ∈ GQ, have completed their execution.

Given the graph representation GQ of a computational task, an
agent determines a configuration φi ∈ Φ for each subtask Qi ∈ Q.
This is in contrast with coarse-grained pricing (Section 4.2), where
the agent selects a single configuration from Φ for all subtasks of
Q. When the agent chooses φi, the time and cost of Qi is Ti(φi) and
Ci(φi). A set of selected configurations results in total cost CQ =
∑Qi

Ci(φi), i.e., the sum of the costs of all subtasks. The completion
time of Q is determined by the longest path (P) in the task graph:
TQ = maxP∈GQ ∑Qi∈P Ti(φi). Given demand M and contract utility
U , TQ and CQ determine the agent’s profit P . The goal of the agent
is to select the set of configurations that maximizes P .

PROBLEM 5.1 (FINE-GRAINED CONTRACT PRICING). Given

graph GQ representing a task Q, and possible configurations Φ, the

agent needs to specify a configuration φi ∈ Φ for each Qi ∈ Q, so

that the time TQ = maxP∈GQ ∑Qi∈P Ti(φi) and cost CQ = ∑Qi
Ci(φi)

maximize the overall profit P .

Our problem definition does not model data storage and transfer
time and costs explicitly. Rather, we assume that these are incorpo-
rated in the time and cost of a subtask (TQi

and CQi
). This simplifies

the model and offers an upper bound on time and cost. In practice,
when two subsequent tasks share the same configuration, it is pos-
sible to reduce the costs of data passing, but these optimizations are
beyond the scope of this work.

We demonstrate the intricacies of the fine-grained pricing prob-
lem through a simple example. Figure 2 shows a relational query
with three distinct subtasks (operators): (1) select tuples from rela-
tion R, (2) aggregate on relation S, and (3) join of the results. We
assume deterministic times and costs to evaluate each subtask, de-
noted next to each node in Figure 2. The select and join subtasks
have only a single possible configuration each, but the aggregate
subtask has two. Assume the utility function is U(t,π) = −t −π ,
which means every one minute is worth 1 cent for the consumer.
Therefore, the configuration (2′,4¢) is better for the aggregate sub-
task, since it has higher utility than the configuration (5′,2¢). How-
ever, following a greedy strategy that picks the configuration that
is optimal for each subtask can result in sub-optimal utility for the
overall task. In this example, the join subtask has to wait 5 minutes
for the select subtask to complete. Therefore, there is no benefit
in paying a higher price to complete the aggregate subtask sooner,
making (5′,2¢) a better configuration choice.

THEOREM 5.2. Fine-Grained Contract Pricing is NP-hard.

Our reduction follows from the discrete Knapsack problem [42].
We next introduce a pseudo-polynomial dynamic programming al-
gorithm for this problem, and show that it is efficient and effective
in real-world task workflows (Section 6.3). Without loss of gener-
ality, we assume time and cost are deterministic, but the algorithm
can be extended to the probabilistic case in a straightforward way.

Algorithm 1 uses dynamic programming to compute the optimal
profit for task graphs. The algorithm derives the exact optimal so-
lution for cases where GQ is a tree (e.g., relational query operators)
and computes an approximation of the optimum for DAGs.
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Algorithm 1 Fine-Grained Contract Pricing

Require: Q,GQ,Φ,P(T,C)
Ensure: maximum P

1: Add node Qterminal with 0 time and cost to GQ

2: for all Qi ∈ Q do
3: Add edge (Qi,Qterminal) to GQ

4: Qorder ⇐ TopologicalSort(GQ)
5: boundT ⇐ longest time to evaluate GQ

6: for all Qi ∈ Qorder do
7: f (Qi,0)⇐ ∞

8: for t ⇐ 1 to boundT do
9: f (Qi, t)⇐ f (Qi, t −1)

10: for all φ ∈ Φ do
11: costφ ⇐ Combine

q∈pred(Qi)
( f (q, t −Ti(φ)))+Ci(φ)

12: if costφ < f (Qi, t) then
13: f (Qi, t)⇐ costφ
14: return maxt P(t, f (Qterminal, t))

In Algorithm 1, f (Qi, t) represents the minimum cost for evaluat-
ing the subgraph terminated at subtask Qi when it takes at most time
t.4 Then, f (Qi, t) can be computed based on a combination of the
costs of the direct predecessors of Qi (pred(Qi)) in the workflow
(lines 7–13). When GQ is a tree, the Combine function (line 11) is
simply the sum of the costs of the predecessors (∑q∈pred(Qi) f (q, t−

Ti(φ))), and Algorithm 1 results in the optimal profit.
If GQ is not a tree, predecessors of a subtask Qi can share com-

mon indirect predecessors, which introduces complex dependen-
cies in the choice of configurations across different subtrees. For
example, let q1,q2 ∈ pred(Qi), and q0 ∈ pred(q1)∩ pred(q2). There-
fore, q0 affects both subgraphs terminated at q1 and q2, respec-
tively. This impacts the Combine function in two ways. First, the
cost of q0 should be counted only once. Second, there may be
discrepancies in the configuration choice for q0 by the different
subgraphs. There are three strategies to resolve the discrepancy:
(1) use the configurations with minimum time T ; (2) use the config-
urations with minimum cost C; (3) use the configurations with max-
imum P(T,C). The Combine function applies the above strategies
one by one, computes the time TQi

and cost CQi
of the subgraph ter-

minated at Qi, and updates f (Qi, t) if TQi
≤ t and CQi

is better. Note
that Strategy 1 guarantees a feasible solution whenever one exists.

6. EXPERIMENTAL EVALUATION
In this section we evaluate our market using a real-world cloud

computing platform: Amazon Web Services (AWS). Our experi-
ments collect real-world data from a variety of relational and MapRe-
duce task workloads, and use this data to simulate the behavior of
our market entities on the AWS cloud. Our results demonstrate that
our market framework offers incentives to consumers, who can ex-
ecute their tasks more cost-effectively, and to agents, who make
profit from providing fair and competitive contracts.

We proceed to describe our experimental setup, including com-
putational tasks, consumer parameters, and contracts.

Data and configurations.
We spent 8,106 machine hours and $3,118 in obtaining the dis-
tributions of time and cost for two types of computational tasks:
relational query workloads, and MapReduce jobs.

Relational query tasks: We use the queries and data of the TPC-H
benchmark to evaluate relational query workloads. We use all 22
queries of the benchmark on a 5GB dataset (scale factor 5). We

4We turn the continuous space of time t into discrete space by
choosing an appropriate granularity (e.g., minute).

Type CPU (virtual) Memory $/hour

db.m3.Medium 1 3.75GB $0.095
db.m3.Large 2 7.5GB $0.195
db.m3.xLarge 4 15GB $0.390
db.m3.2xLarge 8 30GB $0.775
db.r3.Large 2 15GB $0.250
db.r3.xLarge 4 30.5GB $0.500
db.r3.2xLarge 8 61GB $0.995
m1.Medium 1 3.75GB $0.109
m1.Large 2 7.5GB $0.219
m1.xLarge 4 15GB $0.438

Figure 3: Types of Amazon machines and associated features and
costs (in January 2015). The first 7 types (db.*) are RDS config-
urations, whereas the last 3 (m1.*) are EMR configurations. The
prefixes (db and m1) are omitted from some figures for brevity.

use the Amazon Relational Database Service (RDS) to evaluate the
workloads on 7 machine configurations, each of which has 200GB
of Provisioned IOPS SSD storage, and runs PostgreSQL 9.3.5. Fig-
ure 3 lists the capacity and hourly rate of each configuration.

MapReduce tasks: We evaluate MapReduce workloads using 3
job types (WordCount, Sort, and Join) over 5GB of randomly gen-
erated input data. We use the Amazon Elastic MapReduce service
(EMR) to test our framework. We select 3 machine configuration
types. Figure 3 lists the capacities and hourly rates of these con-
figurations. We experimented with 4 different sizes of clusters for
each machine configuration: 1, 5, 10, and 20 slave nodes.

Scientific workflows: We use real-world scientific workflows that
represent computational tasks with multiple subtasks, to evaluate
fine-grained pricing (Section 5). We retrieved 1,454 workflows
from MyExperiment [10], one of the most popular scientific work-
flow repositories. These workflows were developed using Taverna
2 [44], and comprise the majority of workflows in the repository.
The size of workflows ranges from 1 to 154 subtasks.

Consumer models.
We simulate the consumer behavior in our framework using the
utility and demand functions.

Utility: In our evaluation, utility is a linear function U(t,π) =
−αU t − βU π modeling consumer preferences. αU represents the
unit cost that the consumer is willing to pay to save βU unit time.
For our experiments, we assume U(t,π) =−t −π , where t is mea-
sured in minutes and π is measured in cents, which means every
minute is worth 1 cent to the consumer.

Demand: In our evaluation, the demand function is linear: M(U)=
γM +λMU , which means that when U increases by 1/λM , 1 more
contract would be accepted. We use M(U) = 100+50U for RDS,
and M(U) = 100+ 5U for EMR. λM is smaller for EMR because
the times and costs for MapReduce jobs are much larger than those
of relational queries.

Contracts.
All our experiments involve contracts with a deadline, which means
that every consumer request specifies one target completion time.
We execute each task 100 times using every configuration and set
the deadline of each query as the average completion time across
all configurations.

6.1 Consumer incentives
In this section, we evaluate whether our market framework offers

sufficient incentive for consumers to participate in the market. Our
first set of experiments simulates several naı̈ve cloud users who se-
lect one of the default configurations for their computational tasks:

379



●

●

0

5

10

15

20

25 50 75
Time (min)

P
ri

c
e

 (
¢

)

Shape:
●

●

expert
baseline
m3.medium

m3.large
m3.xlarge
m3.2xlarge

r3.large
r3.xlarge
r3.2xlarge

(a) Utility trade-off (RDS)

●
●

●

●

●

0

50

100

150

200

10 20 30 40 50 60
Time (min)

P
ri

c
e

 (
¢

)

Color: ● ● ● ● ● ●expert baseline 1 5 10 20

Shape: ● ●expert
baseline

medium
large

xlarge

(b) Utility trade-off (EMR)

Figure 4: Users achieve better utility by using an expert agent, com-
pared to naı̈vely selecting a default configuration. The agent ben-
efits 40% of the consumers in RDS workloads, and 100% of the
consumers in EMR workloads.

7 configurations for RDS, and 12 configurations for EMR. We also
simulate a baseline user who selects one of two cloud configura-
tions, the one with the best CPU performance and the one with the
best IO performance, based on the workload type: CPU-intensive
or IO-intensive. To do this, we first executed each task to measure
its CPU and IO time, and used this information to classify tasks
as primarily CPU-intensive or primarily IO-intensive. This biases
the experiment in favor of the baseline, as the consumer would not
typically have such accurate classification in practice. Finally we
simulate an expert agent, who, for every task, selects the config-
uration that maximizes the consumer’s utility function. Figure 4a
presents the price and time achieved by each of the 7 default con-
figurations for RDS, as well as the price and time offered by the ex-
pert agent. The line in the graph is the utility indifference curve for
the agent’s configuration, representing points with the same utility
value. Points on the curve are equally good, from the consumer’s
perspective, as the one achieved by the expert agent. Points above
the curve have worse utility values (less preferable than the agent’s
offer), while points below the curve have better utility values (more
preferable than the agent’s offer).

Our experiments show that the expert agent provides more utility
to 4/8 naı̈ve cloud users with relational query tasks on RDS. This
means that, even though the agent makes a profit, a good portion of
the users still benefit from using the market instead of relying on de-
fault settings. This effect is even more pronounced for EMR work-
loads. Figure 4b shows that the expert agent offers better utility to
all simulated naı̈ve users. This means that, in every single case, the
consumers get better utility by using the agent’s services, instead of
intuitively selecting a configuration. Notably, the baseline heuristic
user also performs worse than the agent: it is 189% and 67% worse
in utility for RDS and for EMR workloads, respectively.

6.2 Agent incentives and market properties
In this section we demonstrate that the pricing framework sat-

isfies 3 important properties: competitiveness, fairness, and re-

silience. These properties incentivize consumers and agents to use
and trust the market by ensuring that (a) the agents will identify effi-
cient computation plans and provide accurate pricing, and (b) inac-
curate estimates will not pose a great risk to the agents. A theoreti-
cal analysis of the market properties is in our technical report [42].

Competitiveness.
We run experiments on Amazon RDS and EMR to demonstrate
how different configurations impact profitability in practice. Our
goal is to show that, in our market, well-informed, expert agents
can make more profit than naı̈ve agents, thus incentivizing agents
to be competitive and offer contracts that benefit the consumers.
In this experiment, a naı̈ve agent selects one configuration for all
queries. In contrast, the expert agent always selects the optimal
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Figure 5: Expert agents always achieve the largest profits: our
framework incentivizes agents to find optimal configurations.

configuration for each query. The goal of this experiment is to show
the impact of configuration selection. Thus we control for other
parameters, such as the accuracy of the agents’ estimates. So, for
now, we assume that all agents know the distributions of time and
cost accurately. We relax this assumption in later experiments.

We generate histograms of time and cost by evaluating each query
with each configuration 100 times. All agents use these histograms
to approximate the distributions and price contracts. After an agent
prices a contract, we compute the number of accepted contracts ac-
cording to the demand function, M(U). Then we randomly select
M executions to do trials. The agent receives payments based on
whether the execution met or missed the deadline.

Figure 5a illustrates the total profit made by each agent pricing
RDS workloads. There are 7 naı̈ve agents, each using one of the
RDS configurations from Figure 3, and one expert agent, who al-
ways uses the best configuration for each task. Figure 5b illustrates
the same experiment on EMR workloads. We use one expert agent
and 12 naı̈ve agents who used the three EMR configurations from
Figure 3, each with a cluster size of 1, 5, 10, or 20 nodes. The
expert agent chooses 3 different configurations for the RDS tasks
and 3 different configurations for the EMR tasks. The details are
in our technical report [42]. In both experiments, the expert agent
achieves the highest overall profit.

Figures 5a and 5b also show the utilities offered by the agents for
the same contracts. We plot the relative utility of naı̈ve agents, us-

ing the utility of the expert agent as a baseline: AgentUtility−ExpertUtility
|ExpertUtility| .

On both RDS and EMR workloads, the utility offered by the expert
was the best among all agents.

Our experiments on both RDS and EMR demonstrate that expert
agents achieve better utility and profit than all other agents. This
verifies empirically that our market design ensures incentives for
agents to improve their estimation techniques and configuration se-
lection mechanisms. This benefits both consumers, who get better
utility, and agents, who get more profit.

Fairness.
Fairness guarantees the incentive for agents to present accurate es-
timates to consumers. If the agent uses inaccurate estimates, she/he
will be penalized with lower profits. Our goal is to show that more
accurate estimates lead to greater profit for the agent in practice.
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Figure 6: Agents’ estimates are often inaccurate, and such inaccu-
racies can lead to loss of profit.

We consider an agent using db.m3.medium on RDS and Post-
greSQL’s default query optimizer to estimate the completion times
of queries. The PostgreSQL optimizer provides an estimate of the
expected completion time and the agent assumes a Gaussian distri-
bution with a mean value equal to the completion time predicted by
the optimizer. We chose 0.05 for the standard deviation, which is
very close to the actual average standard deviation of the distribu-
tions of the 22 TPC-H queries (0.04).

We also consider another agent using m1.medium on EMR, with
1 master and 1 slave node. The agent estimates the expected com-
pletion time by executing queries on a 5% sample of the data, and
assumes a Gaussian distribution around the estimated mean. The
agent uses an empirical standard deviation, 0.55, which is close to
the average true standard deviation of all 3 EMR job types (0.56).

We compare the agents’ estimates with the true distributions in
Figures 6a and 6b. We plot the average completion time for each
TPC-H query and each EMR task. The standard deviation is very
low (< 0.75 min) for all tasks. As these plots show, the agents’ esti-
mates can often be far from the actual completion times (e.g., q18).

Next, we use the similarity between two distributions and rela-
tive loss to show the relationship between estimation accuracy and
profit. We compare the true distribution of completion time (which
is a histogram) with the agent’s estimate (a Gaussian distribution)
by turning the agent’s estimate into a histogram and computing
the cosine similarity between two histograms. The relative loss
measures how much profit the agents lose compared to the optimal
profit they could have made. We define relative loss of profit as:

RelativeLoss =
OptimalProfit−ActualProfit

OptimalProfit
(6.1)

As Figures 6c and 6d illustrate, when the agent’s estimate is more
accurate, the relative loss is smaller.

These experiments show that our market does not rely on the
assumption that the estimates are accurate, and it can tolerate inac-
curacies well. If there exists at least one task for which an agent
can produce better estimates than a consumer, the agent offers util-
ity to the market. However, we also study an extreme case: when
all agents in the market make worse estimation than all consumers,
for all tasks. Overestimation leads agents to post higher prices low-
ering the consumers’ utilities. However, agents have to overesti-
mate time and cost by 49% in RDS workloads, and by 120% in
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Figure 7: (a, b) By adjusting for risk, agents can reduce their losses
in case of inaccurate estimates. (c, d) DP outperforms Greedy and
Search.

EMR workloads before a switch is beneficial to consumers on aver-
age. On the other hand, underestimation of time and cost decreases
agents’ profits. Our evaluation shows that an agent will lose 2%
profit in RDS and 36% in EMR if it underestimates time and cost by
a factor of 10. Depending on the agents’ profit margins, they may
be able to absorb the difference without losses. To avoid losses,
agents can follow risk-aware pricing strategies (Section 4.3). De-
tails on this experiment and figures are in our technical report [42].

Resilience.
The property of resilience provides assurances to the agents, by
ensuring that inaccurate estimates will not pose a significant risk
to the agents’ profits. This property is crucial, as errors in the es-
timates are very common [4, 11, 45]. Our framework ensures re-
silience to these inaccuracies by accounting for risk (Definition 4.4).
Specifically, the agents can profit by adjusting the risk they prefer
to take. According to Equation 4.8, the risk is part of the objective
and controlled by a parameter λ . When λ is large, the agent has
low confidence in the estimate (conservative). This setting reduces
the loss of profit if the agent’s estimate is inaccurate.

We again consider an RDS agent using db.m3.medium and the
default PostgreSQL optimizer, and an EMR agent using m1.medium
and sampling to estimate runtime. We evaluate relative loss using
Equation 6.1 and plot it for different values of λ (Figure 7). A value
of λ = 0 means that the agent is confident that their estimate is cor-
rect. However, since in this case the estimates were inaccurate, the
relative loss for λ = 0 is high: the agents’ profit is much lower than
the optimal profit they could have achieved. For both agents (EMR
and RDS), the relative loss decreases for higher values of λ . This
shows that by adjusting for risk, the agents can reduce loss of profit.

6.3 Fine­grained pricing
In our final set of experiments, we evaluate fine-grained pricing

(Algorithm 1) against a large dataset of real-world scientific work-
flows [10]. This dataset is well-suited for this experiment, as it
provides diverse computational flows of varied sizes and complexi-
ties. The published workflows do not report real execution informa-
tion (time and cost), and we are not aware of any public workflow
repositories that provide this information. Therefore, we augment
the real workflow graphs with synthetic time and cost histograms
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for each subtask, drawn from random Gaussian distributions with
means in the [1,100] range, and variances in the [0,5] range. Each
subtask has 5 candidate configurations with different time and cost
histograms. We compute the profit using utility U(t,π) = −t −π
and demand M(U) = 100+ 0.01U (Section 4.2). We set λM (the
coefficient of U) to a smaller value than the ones used for RDS
and EMR workloads, because the completion times and costs for
workflows are much larger.

First, we evaluate our Dynamic Programming algorithm (Algo-
rithm 1) against two baselines: (1) an exhaustive search strategy
(Search) that explores all possible configuration assignments, and
(2) a greedy strategy (Greedy) that selects the configuration that
leads to the maximum local profit for each subtask. We perform
10 repetitions for each workflow, using different random time and
cost distributions for each repetition. Figure 7c shows the relative

profit achieved by Search and DP compared to Greedy:
P−PGreedy

PGreedy
.

DP achieves better profits than Greedy, and the effect increases for
larger workflows: for workflows with 154 subtasks, DP achieves
50.0% higher profit than Greedy. Search provides few data points,
as it cannot scale to larger graphs. For small workflows (up to 12
subtasks) Search and DP select equivalent configurations that re-
sult in the same (optimal) profit. Figure 7d shows the running time
of the three algorithms. As expected, exhaustive search quickly
becomes infeasible, and Greedy is faster than DP. However, the
runtime of DP remains low even for larger workflows. Combined
with the profit gains over Greedy, this experiment demonstrates that
Algorithm 1 is highly effective for fine-grained pricing.

Second, we evaluate the benefits of fine-grained pricing, com-
pared to coarse-grained pricing. Figure 8a shows the profit achieved
by DP, which assigns a configuration to each subtask, relative to
the optimal single configuration for the entire workflow. In this ex-
periment, fine-grained pricing doubled the agents’ profits for small
workflows, compared to coarse-grained pricing, and the gains in-
crease as workflows grow larger. For the largest workflows in our
dataset, fine-grained pricing achieved 12.5 times higher profits.

6.4 Comparison with Alternative Approaches
Benchmarking. Contrasting our work with Benchmark as a Ser-
vice (BaaS) [12] is meaningful when workload repetition is signif-
icant. We assume a consumer who repeats RDS and EMR work-
loads without modifications, and with each repetition tests a differ-
ent configuration; once all configurations are tested, the consumer
uses the best one in subsequent repetitions. Clearly, after some
number of repetitions, the benchmarking approach will outperform
the agent-based approach. For this experiment, we limited the num-
ber of configurations to 7 for RDS and 12 for EMR. This biases the
experiment in favor of benchmarking, as in practice the number of
configurations that the consumer would have to try is much higher.
Even in this simplified setting, we found that it took 12 repetitions
in RDS and 68 repetitions in EMR before the consumer would start
benefiting from benchmarking (Figure 8b). In the real world, these
numbers are much higher, as cloud providers offer way more con-
figurations than the ones we considered here. Cluster size alone
causes an explosion in the number of options, so having an agent
with an analytical model, such as in [16], is necessary.

In practice, BaaS has additional challenges. Data growth and
changes in the input make BaaS complicated [12]. Workloads are
almost never repeated exactly, as the input changes between execu-
tions, requiring the BaaS provider to monitor and react to changes.
Moreover, cloud providers change machine types, parameters, and
pricing very frequently — e.g., between 2012 and 2015, AWS in-
troduced 2.6 new instances, on average, every three months. When

these settings change, resource selection needs to be re-evaluated,
even if a workload stays the same.

VCG auction. A Vickrey-Clarke-Groves (VCG) auction is a strategy-
proof pricing mechanism. In this model, a customer opens a bid-
ding and agents bid on prices. A VCG auction is strategy-proof,
which means the agents truthfully reveal their best costs of exe-
cuting a task. The consumer selects the agent with the best utility
u1st but pays according to the second best utility u2nd . Therefore,
given a specific task, only the best and the second best agents’ con-
tract determine the price. We simulate an agent who identifies the
best configuration for each task, and another agent who is doing
just worse than the first. We represent the utility difference with
∆ = u1st −u2nd , and vary ∆ to determine how much profit the best
agent can achieve.5

Figure 8c shows that initially agent profits grow with ∆, but even-
tually drops, due to the drop in demand. The maximum VCG profit
is less than the profit in our agent-based market. Moreover, by the
definition of VCG, the increase in ∆ also causes an increase in the
cost for consumers. Therefore, while agents make less profit in the
VCG model, consumers do not get any benefits on average. An-
other challenge with the VCG model is that it requires a centralized
auctioneer who ensures that consumers pay according to the sec-
ond best utility. This makes a cross-platform market more difficult
to form. Our agent-based model does not have such requirement.

7. RELATED WORK
In contrast to our market framework, which emphasizes the con-

sumer need for task-level pricing, existing work on cloud pricing
largely focuses on resource usage. One study using game theory [5,
15] assumed that the price of resources impacts the demand and the
quality of service (QoS), which in return affect the provider’s rev-
enue. This work makes two assumptions not present in our frame-
work. First, their utility functions consider QoS degradation when
consumers share resources. While meaningful for resources such
as wireless bandwidth, this assumption does not always hold for
computational resources [3]. In fact, QoS can improve when, e.g.,
consumers share data and cache. Second, they assume that the con-
sumers know each other’s demands and strategies, and adjust their
demands accordingly. In contrast, we consider consumers’ tasks
separately and use probability distributions to model runtime and
financial cost, leading to a simpler yet practical model.

Variants of pricing mechanisms assume that providers price dy-
namically, based on consumer arrival and departure rates [28, 47].
In turn, prices also guide consumer demand. In a different direc-
tion, Ibrahim et al. [17] argue that the interference across virtual
machines sharing the same hardware leads to overcharging. They
suggest that cloud providers price based on effective virtual ma-
chine time. This framework guarantees benefits to consumers and
urges providers to improve their system design.

Wong et al. [18] compare 3 different pricing strategies in terms
of fairness and revenue. Providers can lease separate resources
(e.g., CPU, memory), a fixed bundle of resources (e.g., virtual ma-
chines), or personalized bundles of resources with differentiated
prices. They treat consumers’ jobs identically, define fairness based
on the number of jobs executed by the provider, and conclude that
differentiated pricing provides the best fairness. They do not con-
sider the connection between uncertain completion time and utility.

Economic-based resource allocation has been extensively stud-
ied in grid computing [7, 32, 21]. Researchers develop economic

5The canonical VCG auction only models cost. We have extended
the model to account for utility (cost and time), while preserving
the strategy-proof property [42].
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Figure 8: (a) Pricing at finer granularities vastly increases the agents’ profits. (b) Consumers may prefer a benchmark-based approach for
highly-repetitive workloads. (c) A VCG auction brings less profit to agents without necessarily reducing consumers’ payments (PP = our
posted-price approach).

models in two main categories: commodity markets and auctions.
In a commodity market, resources are sold at a posted-price. The
price of resources affects consumers’ utility and demand, and there-
fore impacts the providers’ profit. Yeo et al. [49] and Stuer et
al. [36] apply differentiated pricing. Bossenbroek et al. [6] propose
option contracts and use hedge strategies to reduce consumers’ risk
of missing deadlines. Auction-based pricing in grid computing has
several different forms including double auction [37], Vickrey auc-
tion [29], and combinatorial auction [9].

Posted-price selling and auctions are both established market
mechanisms, and one does not dominate the other. The key chal-
lenge is the uncertainty of the value of the commodity (in this
case, the computational resource) and researchers develop differ-
ent models to compare the two mechanisms under various assump-
tions. Computer scientists measure system metrics: posted-price
brings more price stability, higher task completion rate, and higher
resource utilization ratio than auctions [43] while Vickrey auction
results in less message passing [39]. Economists have discussed the
revenues: posted-price selling brings more profit to the seller when
the buyers’ values of the commodity are widely dispersed [41].

In contrast to our framework, this entire body of work focuses
on resource-level pricing, and does not provide a mechanism for
consumers to select resources based on their tasks. Recent work
has started shifting the focus to task-level pricing. Benchmark as
a Service (BaaS) [12] benchmarks users’ workloads and suggests
the optimal configuration for repetitive execution. Our experiments
showed that consumers can benefit from benchmarking only when
there is significant exact repetition. However, workloads are al-
most never repeated exactly, as the input data changes between ex-
ecutions. Moreover, cloud providers change their configuration of-
ferings very frequently, which poses challenges to benchmarking in
practice. Tanaka et al. [38] make providers bid for service contracts
under the VCG auction. They do not consider execution time for
tasks, while we balance the consumers’ trade-off of time and price
through their utility function. Ortiz et al. [30, 31] propose Person-
alized Service Level Agreements resembling the contracts in our
framework, and describe a system that analyzes consumers’ data
and suggests to them tiers of service. A tier on AWS can be, for
example, (< 3.5 minutes, $0.12/hour, SELECT 1 attribute FROM
1 table WHERE condition). In our framework, consumers do not
subscribe to a tier of service, but rather provide the task they need
and the agent provides a specific price for the task. When multiple
agents find the same best configuration for some tasks, their prices
affect each other and, after several iterations, converge to the Nash
Equilibrium in the differentiated Bertrand model [34].

The agents in our computation framework derive estimates of
cost and time. Several approaches predict the runtime of a query us-
ing machine learning [13, 4], statistical models [23], sampling [11],
or query plans [45]. Ye et al. [48] perform service composition
given the resource requirement of individual tasks. Uncertainty of

time and cost is an important component in our framework. Ex-
isting work on scheduling SLAs considers uncertainty in runtime
when contracts specify a price. In such frameworks, agents receive
payment when finishing tasks on time, or pay a penalty if they re-
ject the task or miss the deadline. Researchers develop systems that
estimate the distribution of runtime to order the SLAs [8] or even
reject them [46]. Liu et al. [25] solve tenant placement in the cloud
given the runtime distribution and SLA penalty. Our market works
differently in two aspects. First, our contract consists of multiple
target times, which is more flexible than the single deadline im-
plicit in these SLAs. Second, we do not require the consumer to
propose an SLA that may be rejected. Instead, the consumer makes
a request that is priced by the agent according to their capabilities.

Fine-grained pricing is related to query optimization in distributed
databases [22, 14] as we execute subtasks using different virtual
machines. However, contract optimization has two objectives (time
and cost), while query optimization has only one (time). These two
objectives propagate differently in the task graph, making the prob-
lem more difficult.

8. DISCUSSION
Our framework can be easily extended to handle applications

with different QoS parameters. For example, in long-running ser-
vices, completion time should be replaced by other parameters like
response time in the utility function. These parameters are also un-
certain due to unstable cloud performance [26]. While we did not
experiment with alternative QoS parameters and different applica-
tion settings, our market framework is already equipped to handle
them with appropriate changes to the utility function.

A meaningful extension to our work is to augment the market to
handle varying prices of cloud resources. Our current framework
assumes fixed prices for resource configurations. However, fluctu-
ating prices do exist in practice. For example, Amazon EC2 allows
agents to bid spot instances with much lower price [2]. Moreover,
agents can rent reserved instances directly from Amazon EC2 or
through its Reserved Instance Marketplace. These options intro-
duce two additional factors to the market. First, the market needs
to account for a supply function S(αC, t). This means there exist
S(αC, t) instances with lower rate αC and limited available time t.
Second, the framework must consider the starting time of a task,
which impacts cost as the rate fluctuates. In this case, agents need
to estimate both the supply function and demand function at differ-
ent points in time. This is not a straightforward extension to our
work, and will likely lead to a more complex market model.

9. CONCLUSIONS
In this paper, we propose a new marketplace framework that con-

sumers can use to pay for well-defined database computations in
the cloud. In contrast with existing pricing mechanisms, which
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are largely resource-centric, our framework introduces agent ser-
vices that leverage a plethora of existing tools for time, cost es-
timation, and scheduling, to provide consumers with personalized
cloud-pricing contracts targeting a specific computational task.
Agents price contracts to maximize the utility offered to consumers
while also producing a profit for their services. Our market can op-
erate in conjunction with existing cloud markets, as it does not alter
the way cloud providers offer and price services. It simplifies cloud
use for consumers by allowing them to compare contracts, rather
than choose resources directly. The market also allows users to
extract more value from public cloud resources, achieving cheaper
and faster query processing than naı̈ve configurations, while a por-
tion of this value is earned by the agents as profit for their services.
Our experimental evaluation using the AWS cloud platform demon-
strated that our market framework offers incentives to consumers,
who can execute their tasks more cost-effectively, and to agents,
who make profit from providing fair and competitive contracts.
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