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Abstract

A major challenge in understanding the origin of clinical symptoms in neuropsychological impairments is
capturing the complexity of the underlying cognitive structure. This paper presents a practical guide to
path modeling, a statistical approach that is well-suited for modeling multivariate outcomes with a
multi-factorial origin. We discuss a step-by-step application of such a model to the problem of
nonfluency in aphasia. Individuals with aphasia are often classified into fluent and nonfluent groups for
both clinical and research purposes, but despite a large body of research on the topic, the origin of
nonfluency remains obscure. We propose a model of nonfluency inspired by the psycholinguistic
approach to sentence production, review several bodies of work that have independently suggested a
relationship between fluency and various elements in this model, and implement it using path modeling
on data from 112 individuals with aphasia from the AphasiaBank. The results show that word
production, comprehension, and working memory deficits all contribute to nonfluency, in addition to
syntactic impairment which has a strong and direct impact on fluency. More generally, we demonstrate
that a path model is an excellent tool for exploring complex neuropsychological symptoms such as

nonfluency.
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1. Introduction

1.1. The problem of understanding the origin of multi-factorial effects

As goal-oriented agents, we are often interested in achieving a particular outcome. Many
outcomes, however, result from complex interactions between several factors, and this creates difficulty
in tracing an outcome back to its origin(s). The same difficulty applies to understanding the origins of
neuropsychological disorders, and the problem is compounded by the fact that the outcome measure is
not always so easy to define. Many disorders, manifest as a combination of various symptoms with
different degrees of severity among individuals. Thus, not only do we face a complex network of
underlying factors as predictors, but also a heterogeneous outcome variable that cannot be reduced to a
simple binary measure. This paper discusses a statistical method of analysis, partial least square - path
modeling (pls-pm) that allows for simultaneous representation of a complex network of predictors with
various interdependencies among them, predicting a multivariate dependent variable that can itself be

represented by more than one outcome measure.

Rather than a mathematical introduction to path modeling, which exists elsewhere (Lohmoller,
2013), this paper aims to present a practical guide for the application of this method to
neuropsychological data. To this end, we use the example of nonfluency in individuals with aphasia, and
use path modeling to investigate the origin(s) of this heterogeneous problem. In the next section, we
first review the literature on the potential contribution of various factors to nonfluency in aphasia to
make a clear case for why a comprehensive study of the origins of nonfluency can benefit from pls-pm.
We then present a general overview of pls-pm, followed by the application of the technique to a dataset
of 112 individuals with aphasia from the AphasiaBank (MacWhinney, Fromm, Forbes, & Holland, 2011)
and discuss the steps involved in model building, model evaluation, and ultimately interpretation of the

results.



1.2. Nonfluency in aphasia

Persons with aphasia (PWA) exhibit a variety of language symptoms, such as impaired word
retrieval, auditory processing, comprehension, and sentence formulation. The presence and severity of
these symptoms vary between individuals and is the basis of classifying aphasias into clinical subtypes
(e.g., Broca’s, conduction, Wernicke’s, anomic, etc.). One language symptom, nonfluency, has assumed a
central role in aphasia classification following the work of Benson (1967). In a spontaneous speech
analysis of 100 PWA, Benson (1967) examined 10 different symptoms, such as word choice, rate of
speaking, articulation, phrase length and effort (initially used by Howes & Geschwind, 1964). He found a
bimodal clustering of symptoms, such that individuals with left anterior lesions had slow rate of speech,
spoke effortfully and predominantly used substantive words, while persons with left posterior lesions
spoke effortlessly, but lacked substantive words and instead produced paraphasias. The bimodal
distribution based on spontaneous speech symptoms was later replicated using more conservative
fluency criteria and statistical analyses (Kerschensteiner, Poeck, & Brunner, 1972). Thus, the speech
nonfluency-fluency dichotomy became a hallmark of the different syndromes arising from anterior

versus posterior lesions in PWA.

Rate of speech, typically expressed as the number of uninterrupted words spoken per minute
(words per minute or wpm), is an important criterion for classifying persons as fluent or nonfluent.
Based on a normal speech rate of 100 to 175 wpm, the cut-off for nonfluent PWA was set as less than 50
(Benson, 1967) or 100 (Howes, 1964) wpm. These authors also proposed a hyperfluent group with rate
of speech greater than 150 (Benson, 1967) or 175 (Howes, 1964) wpm. Kerchensteiner et al.’s (1972)
analysis questioned the existence of hyperfluent PWA and they proposed very slow (<50 wpm), slow
(50-90 wpm) and normal rates of speech. While wpm is an objective measure, it is not necessarily the

best index of nonfluency because perceived fluency in communication depends not only on how fast the



words are produced, but also on the length, complexity and grammaticality of phrases, presence of
paraphasic and stereotypical utterances, and prosodic abnormalities (Benson, 1967; Feyereisen, Pillon,
de Partz, 1991; Kerchensteiner et al., 1972. Indeed, standard aphasia test batteries use a
multidimensional rating system that takes several of these variables into account in order to assess the
degree of fluency in PWA (Goodglass & Kaplan, 1983; Kertesz, 1982). The Boston Diagnostic Aphasia
Examination (BDAE) uses a 7-point Likert scale for each of six fluency characteristics (Goodglass &
Kaplan, 1983; Goodglass, Kaplan, & Barressi, 2001). The Western Aphasia Battery (WAB) uses a single
10-point scale in which each point represents a cluster of characteristics (Kertesz, 1982, 2006; see
Appendix A). Agreement between the fluency classifications on WAB and BDAE is about 84% (Wertz,
Deal, & Robinson, 1984), most likely because of the different ways in which fluency is rated in these test

batteries.

However, despite its canonical role in clinical classification and existence of several standardized
tests for its assessment, the origin of nonfluency in aphasia has been difficult to pin down. This is partly
because of the different weights given by examiners to different aspects of the problem. For example,
some researchers have focused on the rate of speech, defining fluent speech as composed of many
words produced over a long time period with a rapid rate (Kreindler, Mihailescu, & Fradis, 1980). Others
have focused on both rate and syntactic complexity of the narrative (Goodglass & Kaplan, 1983;
Wagenaar, Snow, & Prins, 1975). Still others have emphasized semantic richness, such as the ability to
speak in a coherent, creative, semantically dense, and contextually appropriate manner (Fillmore, 1979).
In keeping with these diverse definitions, several studies have documented the notorious inconsistency
with which listeners make fluency judgments of PWA (Gordon, 1998; Holland, Fromm & Swindell, 1986;
Trupe, 1984), as well as the absence of high inter-rater reliability between aphasia experts in rating
fluency (Holland, Fromm, and Swindell, 1986; Trupe, 1984). In a regression analysis, Park et al. (2011)

showed that rating judgments were influenced by speech rate, speech productivity (amount of time



spent speaking), and audible struggle (degree of vocal tension and articulatory effort perceived in the

audio recordings), marking the multi-faceted nature of nonfluency from the listener’s perspective.

There is an important message in these discrepancies: speech fluency is most likely a multi-
faceted problem with more than one origin. As such, gaining a holistic understanding of the problem of
nonfluency requires a model that can accommodate several factors and their relationships in giving rise
to fluent speech. In the next section, we use a psycholinguistic framework to determine the likely

contributors to nonfluency that should be included in such a model.

1.3. Deconstructing Fluency

Language production models identify several processing stages that must be completed to
produce fluent speech (Bock, 1995; Garrett, 1975; Griffin & Ferreira, 2006; Levelt, 1999). Following the
decision of what to express (conceptualization), language production involves selection of lexical items
(a process that is informed by the syntactic properties of the to-be-retrieved word), formulation of the
utterance type and structure (question or statement, active or passive sentence, etc.), phonological
encoding, articulatory planning, and self-monitoring (Levelt, 1989; Nozari, Dell, & Schwartz, 2011; Nozari
& Novick, in press). Thus, a glitch in any of these processes could theoretically disrupt the fluency of
speech. However, relatively little work has examined the contribution of these psycholinguistic
processes to (non)fluency in aphasia, especially given the intriguing finding that overall aphasia severity
does not predict fluency (Gordon, 2006). In the following paragraphs, we briefly review variables that
are likely to contribute to fluency in PWA, supplemented by the discussion of relevant research from
other fields with a focus on nonfluency, such as stuttering. Importantly, the scope of the current study is
limited to the exploration of cognitive and linguistic factors underlying nonfluency. For this reason, as

well as the limitations of the data bank used for the analyses reported in this paper (see below), we do



not investigate the influence of motor problems or speech apraxia on nonfluency. This does not imply
that we view such factors as inconsequential to nonfluency, but rather as operating at levels outside of
the scope of the current study. Indeed, we argue in the Discussion section of the paper that speech

apraxia is undoubtedly relevant to nonfluency and its contribution requires further investigation.

Word production. Since words are units of a sentence, it is plausible to hypothesize that problems with
producing single words can affect fluency of speech. Word production requires at least two steps (Dell,
1986; Garrett, 1975; see Dell, Nozari & Oppenheim, 2014 for a review): lexical retrieval and phonological
encoding (and later articulation), and PWA can be impaired in either or both stages (e.g., Schwartz, Dell,
Martin, Gahl, & Sobel, 2006). Several studies point to the association between impaired word
production and nonfluency. In neurotypical individuals, lexical access problems lead to more disfluencies
(e.g., Hartsuiker & Notebaert, 2009). Disrupted lexical retrieval has also been implicated in disfluencies
associated with stuttering (Postma & Kolk, 1993; Prins, Main, & Wampler, 1997; Wingate, 1988). Some
studies have found slower verb retrieval (Prins et al., 1997) and slower covert noun retrieval
(Sasisekaran, De Nil, Smyth & Johnson, 2006) in persons with stuttering compared to healthy controls.
But this finding is not always replicated (e.g., Hennessey, Nang & Beilby, 2008; Tsai & Ratner, 2016).

Thus the relationship between word retrieval and fluency warrants further investigation.

In aphasia, Wilshire et al. (2000) proposed a relationship between control deficits in single word
production and nonfluent aphasia. Indirect evidence for the association between picture naming and
speech rate (wpm) comes from volumetric lesion analyses, in which both picture naming (assessed with
the Boston Naming Test, BNT, Goodglass, Kaplan & Barresi, 2001) and speech rate were associated with
left arcuate fasciculus lesion volume (Marchina et al., 2011; Wang, Marchina, Norton, Wan & Schlaug,
2013). But although association with the same lesion may imply a co-dependence, these studies did not

report the direct correlation, or a causal relation, between BNT performance and speech rate. On the



behavioral side, several studies have documented impaired action (verb) naming in agrammatic aphasia,
which is often accompanied by nonfluency (e.g., Gordon, 2006; McCarthy & Warrington, 1985; Luzzatti
et al., 2002; Zingeser & Berndt, 1990), however, this finding is not always replicated. For example,
Bastiaanse and Jonkers (1998) found no difference between agrammatic and anomic PWA in their
production of either object or action names in isolation. A possible relationship also exists between
problems of phonological encoding and fluency: Andreetta and Marini (2015) found that the production
of phonological errors (mainly false starts) was negatively correlated the proportion of complete
sentences. As noted before, grammatical completeness is one criterion used to differentiate nonfluent
from fluent aphasia (Goodglass & Kaplan, 1983; Kertesz, 1982). Thus phonological difficulties could
affect grammatical completeness, which in turn could affect (objectively measured) speech rate and the
subjective judgment of fluency. Although Andreetta and Marini (2015) did not report correlations
between phonological errors and speech rate, their PWA group had slowed speech rate (mean of 57.6

wpm).

To summarize, it is theoretically plausible that problems with single word production cause
nonfluency in aphasia, although the evidence for a direct relationship between the two is mixed.
Moreover, most of these studies do not simultaneously account for other factors that could affect
fluency. In the current path modeling analysis, we investigate this relationship in a model that also
contains other factors which could potentially contribute to nonfluency. While AphasiaBank
(MacWhinney et al., 2011) does not contain measures that allow us to separate lexical retrieval from
phonological encoding, we were able to use three confrontation naming tests typically used in aphasia
to represent the latent variable of word production: the BNT, object naming of the WAB and Verb
Naming Test (VNT, Cho-Reyes & Thompson, 2012). Inclusion of both object and verb naming in this
category is justified by the evidence suggesting that grammatical differences between nouns and verbs

are not pertinent to picture naming in isolation (e.g., e.g., Pechmann et al., 2004; Vigliocco et al., 2005;



see Vigliocco, Vinson, Druks, Barber & Cappa, 2011 for a review). We will revisit the appropriateness of

this choice when applying the model checks.

Syntactic production. Planning sentences and multi-word utterances not only places higher
computational demands than single word production, but also relies to a greater extent on timely
execution of preceding processing stages and maintaining inter-dependencies between different parts
of speech (Bock, 1995). Children, adolescents and adults are known to produce more disfluencies on
syntactically complex compared to simple sentences (e.g., Haynes & Hood, 1978; Ratner & Sih, 1987;
Silverman & Ratner, 1997; Spieler & Griffin, 2006), and disfluent utterances are more complex and

longer than fluent utterances in children who stutter (Melnick & Conture, 2000).

Clinical observation of individuals with Broca’s aphasia has generated an intuition about the
association between agrammatism and nonfluency. However, the link between disfluency (or rather
nonfluency) and syntactic production in aphasia is not so well-established. Several studies have
demonstrated morphosyntactic impairments in nonfluent aphasia (e.g., Farogi-Shah & Thompson, 2003;
Goodglass, Christiansen & Gallagher, 1993; Kolk & Heeschen, 1996; Saffran, Berndt & Schwartz, 1989),
but grammatical problems have also been reported in fluent aphasia (Bird & Franklin, 1999; Edwards,
1995; 1998; Edwards & Bastiaanse, 1998; Edwards, Bastiaanse, & Kiss, 1994; Farogi-Shah & Thompson,
2003), questioning the close correspondence between agrammatism and nonfluency. Moreover, these
studies use a dichotomous classification of aphasia, and it is unclear whether the magnitude of

morphosyntactic impairment is correlated with the severity of nonfluency.

Although the concept of syntactic complexity varies across researchers and is hotly debated
(Pallotti, 2015), it typically refers to the number of matrix clauses used to derive a sentence, or the
structural complexity of the verb phrase, or the number/types of morphosyntactic elements used. Some

9



views of syntactic complexity consider developmental sequences, for example they view 3" person
singular -s to be more complex than progressive -ing in English because the former is acquired later
(Brown, 1973). In a recent study, Thorne and Farogi-Shah (2016) found that syntactic complexity
measures that weigh developmental stages are sensitive predictors of syntactic abilities in aphasia. In
other cases, syntactic complexity may just refer to the length of the sentence. Thus, the metrics of
syntactic complexity vary with the theoretical orientation of the researcher, as well as the population
under study. Given that syntactic complexity is not a unitary concept, we chose a variety of measures in
this study to include counts of grammatical utterances (%grammatical), grammatical complexity that
weighs developmental stages (Developmental Sentence Score, DSS, Lee, & Canter, 1971), presence of
morphological elements (bound and free morphemes represented by % past tense and % prepositions

respectively), and the proportion of verbs (%verb).

Comprehension. At its core, language comprehension reflects the integrity of (and access to) semantic
representations. Given that fluent language production entails efficient access to (robust) semantic
representations, one could predict a link between language comprehension and fluent speech. Although
the receptive-expressive dichotomy of aphasia was replaced by the fluent-nonfluent dichotomy in the
mid-20th century (see Benson, 1967), comprehension and fluency are dissociable in aphasia. PWA could
have low (e.g., Wernicke’s aphasia) or relatively spared (e.g., conduction or anomic aphasia) language
comprehension, and nonfluent aphasia itself could be associated with low (e.g. global aphasia) or
relatively spared (e.g., Broca’s aphasia) comprehension (Martin, 1987). Although, people with
agrammatic aphasia demonstrate at least some problems with sentence comprehension (e.g., Schwartz,
Saffran, & Marin, 1980), a direct relationship between such problems and fluency has not been tested.
In the present path modeling analysis, we examine this relationship using two measures from WAB that

index word and sentence comprehension.
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Working memory. The ability to maintain and manipulate linguistic units (i.e., verbal working memory) is
crucial for language comprehension (e.g., Caplan & Waters, 1999; Just & Carpenter, 1992) and
production (Acheson & MacDonald, 2009; Ellis, 1980). Given the multi-step nature of sentence
processing, verbal working memory helps maintain the connections between multiple processing levels.
This is particularly important for syntactic production, which requires accurate representation of
dependencies between different parts of the sentence (e.g., singular subject = add singular morpheme
to the verb; event in the past = retrieve the past form for the verb, etc.). Therefore, working memory
limitations could in theory cause linguistic representations to decay before becoming available for later
planning/processing, and thus impact speech fluency.

In PWA, numerous researchers have reported limited working memory capacity (e.g., Caspari,
Parkinson, LaPointe, & Katz, 1998; Ivanova, Dragoy, Kuptsova, Ulicheva & Laurinavichyute, 2015; Martin,
Shelton, & Yaffee, 1994; Tompkins, Bloise, Timko & Baumgaertner, 1994). One study found that the
relationship between working memory and comprehension was strong only in nonfluent aphasia, but
not in fluent aphasia, suggesting a three-way interaction between comprehension, working memory and
fluency (lvanova et al., 2015). As is the case with most PWA research reviewed in this paper, fluency was
not measured, but was inferred from aphasia subtype. However, these findings illustrate the need for
further research into the role of working memory in producing fluent speech in aphasia. In our model,
we include several measures from the AphasiaBank (MacWhinney et al., 2011) that act as proxies for
working memory abilities.

Self-monitoring and repair. Self-monitoring refers to the process of checking one’s own production in
order to identify errors, initiate repairs and prevent errors from occurring (Nozari & Novick, in press;
Sampson & Farogi-Shah, 2011). Detection of an error can disrupt the normal process of production by
signaling the need to halt ongoing production and start the process of repair (Hartsuiker & Kolk, 2001).

A recent study in PWA has reported that blocking self-monitoring through the auditory channel could

11



increase fluency (Jacks & Haley, 2015). It is thus possible that nonfluency is at least in part due to
monitoring problems. Ideally, monitoring is represented by the proportion of detected errors over a
large number of trials (e.g., Nozari et al., 2011). Unfortunately the database we used did not allow us to
derive this measure. Instead, we were able to include repetitions (when a certain word was repeated
immediately) and retraces (when a phrase was repeated often with some modification from the original
utterance which may or may not have been incorrect) during the narration of the Cinderella story. It
must be noted, however, than repetition and retraces do not necessarily represent monitoring abilities,
but could instead indicate problems in planning or uttering the rest of the sentence. Thus in later

sections we refer to this variable as “restart” instead of “monitoring”.

To summarize, a vast body of literature underscores the central role of fluency in characterizing
aphasia. Research from different populations, suggests a possible role for several factors including
comprehension, lexical retrieval, phonological encoding, syntactic processing, working memory, and
self-monitoring in shaping fluent speech. While each of these processes has been investigated
individually in aphasia, their direct influence on fluency as well as the interactions among them in giving

rise to fluent speech is yet to be thoroughly examined. This study aims to do that.

2. A path modeling approach

2.1. Pls-pm vs. regression

In a nutshell, pls-pm is a partial least square approach to Structural Equation Modeling (SEM,;
Kline, 2011). It is similar to regression in spirit, in that a number of independent variables (predictors)
are tested for their predictive power over a dependent variable (outcome), except that the construct of
both the predictors and the outcome could be more complex in pls-pm. Two differences are noteworthy

between simple regression and pls-pm models (1) the distinction between latent and manifest variables
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in pls-pm, and (2) the possibility of interdependence of the predictors in pls-pm. We unpack these two
differences below.
Latent vs. manifest variables. The predictor and outcome variables are often compound constructs
called “latent variables” each represented by several observed scores and measures called “manifest
variables”. This distinction is theoretically important. Latent variables are often abstract constructs, such
as working memory or nonfluency; they cannot be directly observed or measured. Instead, they can be
indirectly assessed through tasks that are thought to tap into such abilities or impairments. Manifest
variables, on the other hand, are direct measurements such as scores on a cognitive test, but they often
do not represent a pure ability or impairment because they depend, to some degree, on the other
cognitive processes involved in the tasks in which they are measured. This so-called task-impurity
problem (Burgess, 1997; Phillips, 1997) precludes the use of measurements from a single task as a pure
proxy for a latent variable of interest.

One way to get around the task impurity problem is to represent the latent variable of interest
(e.g., working memory) with more than one manifest variable measured in tasks that all tap into the
same latent variable but involve different basic processes (e.g., visual vs. auditory working memory
tasks). This way, when estimating the latent variable, the portion of variance in performance that truly
reflects the latent variable of interest is extracted from the manifest variables, overshadowing variance
due to task-specific processes. But why not use a linear regression method and enter all the manifest
variables in the model? Note that if all the manifest variables used to represent a latent variable are
indeed measuring the same variable, their scores would be highly correlated with one another. This is
known as the problem of multicollinearity in regression (Farrar & Glauber, 1967), which leads to
unstable estimates for the coefficients. The only solution to multicollinarity in regression models is to
generate composite variables through some form of averaging of scores from the different manifest

variables, but such averaging will inevitably lead to loss of invaluable information. The pls-pm
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framework solves this problem by defining a hierarchical structure for the latent and manifest variables,
such that the common variance of all the manifest variables representing a certain latent variable is
represented by that single variable, however that latent variable will have a much more accurate
estimate because the task-impurity problem has been minimized.

Interdependence of predictors. The earlier review of the literature suggested several factors as potential
predictors of nonfluency. But a closer look at some of these variables suggests that they might not be
independent of one another. For example, it will not be surprising to find out that individuals with poor
comprehension have difficulty in picture naming, perhaps because they have lost the semantic
knowledge of the object to be named, or they may not understand the task instructions. Similarly,
individuals with poor working memory may be those who have trouble with certain aspects of syntactic
production. Working memory demands are shown to be particularly high for syntactically complex
sentences (e.g., passives and object relatives) because of the non-transparent mapping between surface
structure and underlying conceptual representations (e.g., agent—action—theme; Just & Carpenter,
1992; Sung et al., 2009), or the need to keep track of dependencies such as subject-verb agreement
(Hartsuiker & Barkhuysen, 2006).

Finally, depending on how a latent variable is measured, it may show dependencies on other
variables. For example, working memory measured as recall of words and sentences is likely to depend
on both comprehension and word production abilities. While a simple regression model tests the
dependence of the outcome variable on the predictors, it cannot accommodate interdependencies
between predictors. One option would be to ignore such dependencies altogether. The obvious problem
with this approach is that the model is not a realistic one. A second option is to run a series of
independent regression models, each having one of the predictors as its dependent variable, and use
the residuals of these models in the model with the outcome variable as its dependent variable. The

most obvious problem with this approach is that it is very time-consuming. Pls-pm allows
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interdependencies between predictors in the network, by simultaneously running a series of multiple
regressions and estimating the parameters for these models in parallel. In other words, the deviation
between the observed and the estimated pattern is not only minimized at the level of local models, but
globally for all models within the network. In summary, pls-pm is a statistical method for analyzing the
relationship between latent and manifest variables as a network of multiple interconnected linear

regressions.

2.2. The inner model vs. the outer model

A path model consists of two sub-models: the inner model and the outer model. The inner model
characterizes the relationship between the latent variables. This is the part of the model that tests the
hypotheses regarding the effect of the independent variables on the outcome variable of interest. For
the nonfluency model, the inner model consists of nonfluency as the dependent variable, and word
production ability, syntactic production ability, comprehension, working memory and restarts as
independent variables. As can be seen in Figure 1, it is possible to define dependencies between
independent variables, as well as between each independent variable and the outcome variable.

The outer model reflects the relationship between the latent variables (conventionally shown as
circles) and their manifest variables (conventionally shown as rectangles). The direction of the arrows
between the latent and manifest variables depends on the theoretical assumptions behind the
relationship between the two. In some cases, latent variables cause the manifest variables. For example,
working memory ability is the reason that a person obtains a certain score on working memory tasks.
This is called the reflective mode. It is, however, possible to define a latent variable that is formed by
several manifest variables. For example, one can model the risk of a heart attack as a latent variable

formed by manifest variables such as number of cigarettes smoked per day, blood pressure level,
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cholesterol level, etc. In this case, the risk is not causing the measurements on the manifest variables,

but is being formed by them. This is called the formative mode. Most cognitive models, including the

example in this paper, contain reflective latent variables.
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Figure 1- The architecture of the fluency pls-pm model. The circles show latent variables, and the
rectangles the manifest variables (see also Table 2). The large gray circle represents the inner model. The
direction of the arrows indicates which variable exerts an influence over the other variables. Note that

the latent variables in the model are all reflective.

3. Using pls-pm to understand the origin of nonfluency in aphasia

There are several software packages available for conducting pls-pm. All the analyses reported

in this paper were carried out using the free software R, with the plspm() package (Sanchez, 2013).

3.1. Dataset, variables, and model architecture

To generate reliable estimates, path models require a large dataset. We thus used the
AphasiaBank database which contains data from individuals with various types and severities of aphasia
who have been tested and scored using a standard protocol (see MacWhinney et al., 2011, for details).
While the tests included in the battery are not always ideal for representing the variables included in our
model, the homogeneity of the tests and the scoring systems together with an unusually large sample
size for a neuropsychological study makes this database a great first step for studying the origins of
nonfluency. The current study included 112 English-speaking individuals with post-stroke aphasia (48%
women, Mean age = 60.3, SD = 13.1; Mean years of education = 15.8, SD = 2.8; Average number of years
post-stroke = 5.49, SD = 4.02), all native speakers of American or Canadian English (88% monolingual),
who had all or most of the measures required for our manifest variables (see below).
3.1.1. Measuring nonfluency

Nonfluency in the database was defined by the WAB-R spontaneous speech fluency score

(Kertesz, 2006). The WAB-R spontaneous speech sample is obtained from PWA’s answers to six
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questions and description of a picnic scene, and fluency is rated on a 10-point scale (Appendix A).
Glancing at the scoring system it is evident that (a) fluency scores are somewhat subjective and
dependent on the examiner’s judgment, and (b) fluency scores are influenced by paraphasias and
grammatical competence. To address (a), before entering the WAB-R fluency scores into the model, we
checked whether non-cognitive factors, such as age, gender, or educational level of the individual with
aphasia or the examiners’ level of experience may have biased the scores. Table 1 shows the results of
this analysis. In a simple regression model, participants’ age, gender, level of education, or years post-
stroke did not reliably predict their fluency scores. Neither did the examiners’ years of experience
working with individuals with aphasia. The only factor that significantly affected scores was the years
that the individual had received speech therapy. This analysis reassured us that the WAB-R fluency
scores were not biased by factors irrelevant to the participants’ language impairment.

In the earlier section, we discussed the rationale for using a nonfluency measure that represents
several aspects of the problem, and WAB-R fluency score is such a measure. Nevertheless, to decrease
subjectivity and to address the influence of paraphasia and grammatical problems on nonfluency, we
complemented the WAB-R fluency scores with a secondary measure of fluency, spoken words/second,
which we calculated using the clips and scripts from retelling of the Cinderella story (part of the
AphasiaBank protocol). Videos of PWA’s Cinderella story retelling were viewed in ELAN
(http://tla.mpi.nl/tools/tla-tools/elan/; Sloetjes & Wittenburg, 2008), and the total time on task was
registered for each individual after removing examiner’s interjections. The total number of words
spoken during this time was obtained from EVAL, which is a CLAN analysis tool (MacWhinney, 2000).
The number of words divided by the time spent on task was used as our words/second measure of
fluency. Note that this measure, unlike WAB-R spontaneous fluency score, does not give special weight
to paraphasias or agrammatic speech. It simply counts the number of unrepeated words spoken in a

finite time window. Figure 2 shows the box plots for the two fluency measures. Fluency measured with
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WAB-R scores had a mean of 7.39 (SD = 1.98), a median of 8 and a range of 4-10. Fluency measured as

spoken words/second in the Cinderella story, had a mean of 1.02 (SD = 0.50), median of 0.95 and a

range of 0.24-2.30. The two measures were positively and reliably correlated (Spearman’s rho = 0.30, p

=0.002), although the relatively small value of the correlation suggests that the two measures were

sensitive to different aspects of fluency, hence our decision to include them both in the model.

Table 1 - Effect of non-cognitive factors on WAB-R fluency scores

Model term Coefficients SE t p value
Intercept 9.04 1.68 5.39 <0.001
Gender -0.48 0.40 -1.21 0.23
Age -0.02 0.02 -1.12 0.26
Education -0.02 0.07 -0.23 0.82
Years post-stroke 0.03 0.07 0.36 0.72
Years in speech-language therapy -0.16 0.08 -2.04 0.04
Examiner's years of experience 0.02 0.02 0.80 0.43

-- Figure 2 about here --
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Figure 2- Box plots for the two measures of fluency in the participants (N = 112). The left panel shows
fluency measured as words/second. Right panel shows fluency measured as WAB-R spontaneous fluency
scores.

3.1.2. Measures of independent variables

Our choice of the latent independent variables was guided by the literature review discussed
earlier. Table 2 lists all the latent and manifest independent variables in the model. The Object Naming
subtest of WAB-R (Kertesz, 2006) elicits 20 common object names, with a maximum score of 3 for each
correct response. Responses with phonemic paraphasias and following phonemic/tactile cues are scored
as 2 and 1 respectively. Boston Naming Test (BNT)- short form (Goodglass et al., 2001) includes 20
pictures of both high and low frequency nouns, with varying phonological complexity. We re-scored the
BNT responses of the 112 individuals using a more fine-grained measure: on each trial, if the picture was
named correctly on first attempt and within 5 seconds of its presentation, the full score (3) was
assigned. If the naming was delayed by more than 5 seconds, or if the correct name followed self-
correction of an earlier erroneous response, the score 2 was assigned to the trial. If the individual only
produced the correct name after the examiner provided semantic or phonological cues, the trial
received a score of 1, and finally a score of 0 was assigned if the individual never arrived at the correct
response. The third word production measure was the Verb Naming Test (VNT, Northwestern
Assessment of Verbs and Sentences; Cho-Reyes & Thompson, 2012). The VNT elicits names of 22 action
pictures, and includes intransitive, transitive and ditransitive verbs.

Syntactic production measures were obtained from the Cinderella story retell using CLAN
analysis tools of TalkBank (MacWhinney, 2000). Five morphosyntactic measures were derived. The
proportion of grammatical utterances was calculated as the number of grammatically accurate
utterances divided by the total number of utterances. The Developmental Sentence Score (DSS, Lee &

Canter 1971) provides an overall view of an individual’s morphosyntactic abilities by taking into account
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the use of eight syntactic constructions: indefinite pronouns or modifiers, personal pronouns, main
verbs, embedded verbs, negatives, conjunctions, interrogative inversions, and the wh- question form. In
addition to taking complexity and grammatical accuracy into account, DSS captures the use of function
words and weighs grammatical forms based on the developmental sequence in which these are
acquired. DSS is calculated over 50 utterances which must be complete (noun + verb), unique,
consecutive, and not echoes of the conversation partner, in speakers whose production comprises at
least 50% sentences (i.e., noun + verb). While DSS and proportion of grammatical utterances provide
global measures of morphosyntactic ability, three specific morphosyntactic elements were also
extracted, all of which are calculated as a percentage of the total number of words and use automated
part of speech tagging of CLAN (MOR, MacWhinney, 2000). The percentage of verbs includes a count of
all words tagged as a verb, including main verbs, participles, copulas and modals. Past tense is counted
as verbs that have past tense affix, and prepositions include all words tagged as prepositions.

Comprehension was indexed by two scores in WAB-R: yes/no questions and word recognition.
Yes/No questions involve 20 questions of varying complexity (e.g. Is your Name Smith? Do you peel a
banana before you eat it?) with a score of 3 points for each correct answer. Verbal, gestural or eye-blink
responses are allowed. Auditory word recognition involves pointing to common objects in the
environment (e.g. window, ceiling), one’s body parts, and pictured objects, colors, letters, and numbers,
with a total of 60 items and 1 point for each correct identification. Objects, colors, letters and numbers
are presented in a field of 6 items.

Working memory was represented by the span tasks in the AphasiaBank. These tests present
participants with a list of words (repetition 1A), or word triplets (repetition 1B), or sentences (2A) that
grow in length. For example, in repetition 1A, participant is first asked to repeat a list containing a single
word, then two words, and so on up to eight words. Repetition 2B controls for reconstruction of

materials in memory from the gist without remembering the exact utterance by including semantically

21



unlikely sentences such as “the bird was caught by the worm”. While span tests are efficient measures
of working memory capacity in neurotypical individuals, in individuals with aphasia they are confounded
by comprehension and repetition abilities. To account for the contribution of comprehension to working
memory measured with these tests, we can simply define a dependency between the two (Figure 1). As
for repetition, lexical repetition abilities in individual with aphasia are at least partially captured by
picture naming abilities (Nozari & Dell, 2013; Nozari, Kittredge, Dell & Schwartz, 2010), which is
represented by the latent variable “word production” in our model. So we also define a dependency
between word production and working memory (Figure 1). What remains unaccounted for by
comprehension and word production abilities can be attributed to working memory represented by this
latent variable in the model. Finally, we included the latent variable “restarts” to capture the variability
among participants in their tendencies to revise their speech. Two variables (repetition and retracing,
Table 2) were used to represent the individuals’ tendency for repeating words and phrases which, if
excessive, could create disfluent production.

In summary, the model (Figure 1) includes five independent latent variables, each represented
by a set of manifest variables in reflective mode, and one independent latent variable (fluency)
represented by two manifest variables. In addition to the links between the five independent variables
and the dependent variable that directly tests its hypothesized influence on fluency, there are a number
of interdependencies between the independent latent variables (comprehension predicting word
production and working memory, word production predicting working memory, and working memory
predicting syntactic abilities) to most accurately capture the cognitive architecture underlying speech

fluency.

Table 2 - List of the independent latent variables, their corresponding manifest variables and measures,

along with the group performance on each measure in our sample.
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Latent variable Manifest variables Measurement Mean SD Min  Max
a)Word . : _ .
production (in al. Object naming WAB object naming , N = 20 (3 points for 4983 1222 8 60
. - each correct response)
isolation)
aZ.. Picture naming of BNT—short fo‘rm. (see text for revised scoring 276 1058 1 45
objects criteria, 3 points for each correct response)
a3..P|cture naming of VNT, Northwestern Assessment of Verbs. N 1759 501 0 2
actions =22 (1 point for each correct response).
b) Syntactic
production (in b1. Morphosyntactic Percentage of utterances in the Cinderella 67 2 2 100
Cinderella story accuracy story without a grammatical error
retell)
b2. Morphosyntactlc Devel.op.mental Sentence Score (see text for 1221 334 3 20.61
complexity description)
b3. % verbs Proportion of verbs out of total words 17.91 4 472 28.85
bd. % past tense Proportion of regular past tense suffixes (- 711 475 0 15.93
ed) out of verbs
P ti f iti t of total

b5. % preposition roportion of prepositions gt ot tota 528 274 0 1259
words

¢) Working cl. Word list recall AphasiaBank - Repetition 1A (1-8 words) 3.41 2.04 1 8

memory

AphasiaBank - Repetition 1B (1-7 list of 3-
c2. List of lists recall phasiaBank - Repetition 1B (1-7 list o 248 124 0 6
word lists)
c3. Sentence recall AphasmBar]k - REF.)etIFIOH 2A recall (1-6 3961 2239 0 84
sentences increasing in length)
AphasiaBank - Repetition 2B (containing
ca. S.entence recall semantically anomalous senFences or 5812 2843 0 38
(various sentence types)  sentences that could create interference
with reversible thematic roles)

d) Comprehension  d1. Command following ~ WAB yes/no commands 56.96 3.6 42 60
d2. Word . WAB auditory word recognition 56.7 4.8 36 60
comprehension

€) Restarts (in Instances of repetition of all or part of a

Cinderellastory  el.Repetition P P 2125 2977 0 215

spoken word without change

retell)

Instances of phrase repetition with possible
e2. Retracing syntactic or lexical change; main idea is 16.63 17.13 1 107

maintained

3.2. Model evaluation

One advantage of path modeling is that one can interactively test and revise the model to have

the most accurate representation of the structure under investigation. The role of the outer model is
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critical here. We often assume that our latent variables are coherent constructs best represented by the
manifest variables we have selected for them. Inspection of the outer model allows us to empirically
verify these assumptions and to revise the model accordingly. In other words, although most of the
theoretical questions are answered by examining the inner model, a thorough examination of the outer
model is necessary to ensure that a theoretically-plausible model with correct assumptions is being put
to test. In this section, we discuss four critical steps involved in evaluating the appropriateness of the
model. The first three involve assessing the outer model. The last step assesses the general fit of the
model.

Step 1- Checking the unidimensionality of the manifest variables. Recall that a reflective latent variable
is assumed to be the cause of its manifest variables. As such, a change in the latent variable is expected
to affect all its manifest variables in the same direction, e.g., reduced working memory capacity should
lead to worse performance on recalling words, word lists and sentences. This is called unidimensionality
and represents a measure of composite reliability for the latent variable. If performance on one of these
tasks actually improves with lower working memory scores, the effect of the latent variable on its
manifest variables is no longer unidimensional. In that case, the model needs to be revised to determine
the reason behind the violation of unidimensionality. There are several indices for quantifying
unidimensionality, including Cronbach’s alpha and the first eigenvalue of the indicators’ correlation
matrix (see Segars, 1997 for more discussions). We report Dillon-Goldstein’s rho (DG rho), which
focuses on the variance of the sum of variables that contribute to a given latent variable. As a rule of
thumb, a DG rho of 0.7 or higher is taken to represent good unidimensionality for a latent variable. DG
rho’s for the latent variables in our fluency model were as follows: fluency = 0.79, comprehension: 0.83,
word production: 0.92, syntactic production: 0.82, working memory: 0.93, and restarts: 0.93. Since all
DG rho’s are high, it seems that representing our latent variables by their manifest variables is

appropriate in the model.
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Step 2 - Checking the loadings of the manifest variables. The loadings reflect the correlations between a
latent variable and its manifest variables. Each manifest variable is considered to reflect the contribution
of the latent variable plus noise or task-specific factors. The relative contribution of the latent variable
vs. noise/task-specific factors is reflected in the loading for that manifest variable. Ideally, one hopes
that more variance in the manifest variable is explained by the latent variable than by noise/task-specific
factors. This can be indexed by a loading of 0.7, which implies that about 50% of the variability in the
manifest variable is explained by the latent variable. Because cognitive measures especially in
neuropsychological testing are often noisy, we opt for accepting manifest variables with loading of 0.6
and greater. Indicators with considerably lower loadings may have to be reconsidered.

The diagonal of Figure 3 contains cells that show the loading of each set of manifest variables on
the latent variable they are meant to represent. Each bar in a cell is a separate manifest variable. For
example, the first cell contains two bars representing scores from the two comprehension tests and
their loadings on the comprehension latent variable, and so on. All the loadings are higher than 0.6,
except for the words/sec measure of fluency which has a loading of 0.48 (see Table B1 in the Appendix B
for all loading and crossloading values). This value is borderline, and one approach is to drop this
variable from the model. On the other hand, we expected WAB-R fluency scores and word/sec to be
sensitive to different aspects of fluency, and this was our reason for including both variables in the
model. Therefore, we retain both variables, keeping in mind that the WAB-R fluency scores influence the
results more heavily in this model. We then run a second model with only words/second as the fluency

measure and compare the results.

-- Figure 3 about here —
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Figure 3 - Loading (diagonal cells) and cross-loading (off-diagonal cells) of the manifest variables under

each latent variable on that variable and other latent variables in the model. The dashed line marks the

criterion 0.6. The diagonal (black-outlined boxes) show that the tests that are meant to measure a

certain variable indeed have the highest loading on that variable. See Table B1 in Appendix B for the

values of loading and crossloading for each test.

Step 3 - Checking the cross loadings of the manifest variables. 1deally, each manifest variable should

reflect significant contribution of one latent variable, and as little contribution of the other latent

variables as possible. This can be tricky for tasks reflecting cognitive functions, as many such tasks tap

into several cognitive abilities. It is nevertheless important to ensure that the loading of a manifest

variable is indeed highest on the latent variable it is assumed to represent. The off-diagonal cells in

Figure 3 show the crossloadings of the manifest variables on other latent variables, and Table B1 in

Appendix B lists the values of all the crossloadings. Using these values, we can check if a variable such as

VNT which involves producing a verb, is correctly placed under word production, or if it is better suited
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as representing syntactic production abilities. Table B1 shows that VNT loads 0.88 on word production
and 0.41 on syntactic production. We thus conclude that its placement under word production is the
more appropriate choice, in keeping with the theoretical arguments we discussed in section 1.3. This

approach can be used to revise the model and determine the best arrangement of variables.

Step 4 - Checking the general fit of the model. The first three steps evaluated the quality of the model by
examining the outer model. These checks are used to revise the model, by potentially dropping manifest
variables or reconsidering the latent variable constructs. The revised models must be checked through
the same steps again. Once a viable model is obtained, the fourth check is performed to assess the
overall fit of the model, which also includes the inner model. Two indices are used for this purpose: (a)
R’ is reported for the latent variable of interest and, similar to simple regression models, indicates the
amount of variance explained by the independent latent variables, i.e., predictors. (b) The model also
generates an index of the goodness of fit (GoF). The problem is that, similar to multi-level models, there
is no absolute criterion to measure the overall quality of the model. For this reason, we will focus on R?
instead. The R%in the current model was 0.44, meaning that 44% of variance in fluency was explained by

the model.

3.3. Interpreting the model’s results

Figure 4 shows the parameter values estimated by the pls-pm for both the inner and the outer
models. While most of the model evaluation work focused on the outer model, it is the inner model that
answers questions of theoretical interest to us. The output of the inner model is similar to that of any
generalized linear model with parameter estimates (path coefficients) and their corresponding t

statistics. Since pls-pm does not rely on any distributional assumptions, significance levels of path
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coefficients are best estimated through resampling methods. We report 95% confidence intervals
obtained via bootstrapping’ with 10,000 iterations.

Table 3 presents the results of the bootstrapping procedure. Two sets of effects are reported.
The upper part of the table reports the direct effects. This is similar to a simple regression, where the
effect of an independent variable is reported on a dependent variable that it is immediately connected
to. The table shows that our assumptions about the interdependence of the independent variables were
correct: the 95% Cl for the effect of comprehension over word production, the effects of both
comprehension and word production on the working memory scores, and the effect of working memory
on syntactic production do not contain zero, suggesting that all these effects are significant at a = 0.05.
Of the independent variables included in the model, the only one that has a statistically-reliable direct

effect on fluency is syntactic production.

-- Figure 4 about here --

! Bootstrapping is a technique for estimating the sampling distribution of a statistic using random
sampling with replacement.
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parentheses next to the path coefficients are their corresponding t statistics. See Table 3 for 95%Cls
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Table 3- Results of the inner model, obtained by 10,000 bootstrapping iterations.

Original Mean 95% Cl - 95% CI -
path bootsrapped Lower Upper
Direct effects coefficient  coefficient SE bound bound
comp ->word 0.55 0.55 0.07 0.42 0.68
comp ->wm 0.21 0.22 0.08 0.07 0.38
word ->wm 0.57 0.57 0.08 0.41 0.71
wm -> syntax 0.44 0.45 0.06 0.33 0.57
comp -> fluency 0.13 0.13 0.10 -0.09 0.31
word -> fluency 0.13 0.13 0.12 -0.12 0.35
wm -> fluency 0.11 0.11 0.13 -0.15 0.35
restart -> fluency -0.07 -0.07 0.08 -0.23 0.10
syntax -> fluency 0.45 0.43 0.12 0.21 0.60
Total effects (direct _ indirect effects)
comp ->word 0.55 0.55 0.07 0.42 0.68
comp ->wm 0.53 0.54 0.06 0.41 0.65
comp -> syntax 0.23 0.24 0.05 0.16 0.34
word ->wm 0.57 0.57 0.08 0.41 0.71
word -> syntax 0.25 0.26 0.05 0.17 0.36
wm -> syntax 0.44 0.45 0.06 0.33 0.57
comp -> fluency 0.36 0.36 0.12 0.20 0.51
word -> fluency 0.30 0.30 0.11 0.13 0.46
wm -> fluency 0.30 0.30 0.14 0.03 0.55
restart -> fluency -0.07 -0.07 0.08 -0.23 0.10
syntax -> fluency 0.45 0.43 0.12 0.21 0.60

Note that we now have a dilemma on our hands. A variable such as working memory has a
significant effect on syntactic production, which in turn has a significant effect on fluency, but the direct
effect of working memory on fluency is not statistically significant. Should we conclude that working
memory affects fluency or not? The solution to this problem in the pls-pm framework is provided by the
inspection of indirect effects, which are presented in the lower part of Table 3. An indirect effect
characterizes the influence of one variable over another through intermediate variables. The indirect
effects are calculated as the product of the path coefficients involved in the indirect path. For example,

the indirect effect of working memory on fluency (Figure 1) is calculated as the path coefficient of wm
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- syntax (0.44) times the path coefficient of syntax = fluency (0.45), returning an indirect effect of 0.19
for wm = fluency. Once we have the values of the indirect effects, we can calculate the total effect of
an independent variable on the dependent variable of interest, by summing its direct and indirect
effects on that variable. In this case, the total effect of wm = fluency would be calculated as 0.11 (taken
from the upper part of Table 3) plus 0.19, returning a total effect of 0.30 (the effect reported in the
lower part of Table 3). Figure 5 shows the direct and indirect effects for each of the five independent
latent variables on our dependent variable of interest, fluency. Looking at the total effects in Table 3, we
now see that the 95% Cls for the effects of four out of five independent variables on fluency do not
contain zero, suggesting a reliable influence of comprehension, single-word production, and working

memory, in addition to syntactic production abilities, on fluency.

-- Figure 5 about here --
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Figure 5 - Direct and indirect effects of the five independent variables on the dependent variable fluency.

The full height of the bars shows the total effect.
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To summarize, the results of the pls-pm in a model with fluency represented by both WAB-R
spontaneous fluency scores and words/second revealed reliable effects of comprehension, working
memory, single-word production abilities, and syntactic production abilities on fluency. Of these,
however, only syntactic production abilities had a reliable direct effect on fluency (see Figure 5). Recall
that during model evaluation, the loading of WAB-R fluency scores on the fluency latent variable was
much higher than that of words/second. Recall also that WAB-R spontaneous fluency scores inherently
contain an evaluation of syntactic abilities. Thus, it is fair to question whether the obtained results are
biased towards finding a stronger influence of syntactic production abilities (compared to any other
variable) on fluency. To address this concern, we ran the model again, this time including only
words/second as the manifest variable representing fluency. This variable, unlike WAB-R fluency scores,
does not favor good syntactic abilities. In other words, “He want go my store” and “He goes to the
store” would receive the same score (5 words each) if spoken within the same time window. Thus, if the
reliable effect of syntactic abilities on fluency obtained in the previous model was due to the use of
WARB-R fluency scores as the dependent variable, we could expect a different pattern when the

dependent variable is changed to words/second.

The same checks were applied to the reduced model. The model passed all the criteria and its R’
was 0.33, showing a lower explanatory power than the previous model (R? = 0.44). Critically though, the
95% Cl for the effect of syntax = fluency was 0.47 to 0.74, which did not contain zero, confirming the
statistically-reliable effect of syntactic production on predicting fluency in the absence of a scoring
system that is biased towards giving more weight to syntactic abilities. In fact, in the reduced model
with only words/sec as the outcome variable, syntactic production was the only independent variable
whose total effect was a reliable predictor of fluency (see Table B2 in the Appendix B for the full results

of this analysis).
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4. Discussion

This paper followed two goals: (a) to present an overview of path modeling, a statistical
approach to testing complex relationships between multiple variables each represented by several
observed measures, and to show its usefulness in exploring cognitive and neuropsychological data; and
(b) to employ the model to examine the origin of nonfluency in post-stroke aphasia. In fulfilling the first
goal, we discussed the advantages of pls-pm over simple regression methods, followed by a step-by-step
walk-through of how to set up, evaluate, and interpret a path model. The general framework discussed
here is easily adaptable to various kinds of neuropsychological or cognitive phenomena with multi-
factorial origin. For example, one could study the contribution of inhibitory control and working memory
to production of agreement attraction errors in neurotypical children and adults by constructing a
model with agreement errors as its dependent variable, and inhibitory control and working memory as
independent latent variables each represented by several manifest variables. Similarly, the origin of
language impairment in non-aphasic syndromes, such as semantic dementia, or natural conditions such
as aging, can be probed by constructing a model that includes latent variables of possible interest such
as comprehension, working memory, repetition, etc. Importantly, path modeling presents an alternative
to routine statistical approaches that often overlook the interdependent network of factors that

underlie a variable of interest.

In addressing the second goal, we reviewed several bodies of literature that have proposed
contradictory evidence for the association between disfluent/nonfluent speech and various cognitive
abilities. Importantly, none of these studies have simultaneously accounted for all the variables included

in the current study.

The results unequivocally supported an effect of syntactic production abilities on nonfluency.

This finding indicates a robust connection between agrammatism and nonfluency in aphasia (also see
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Bonner & Grossman, 2010 for the same link in primary progressive aphasia; but see Saffran et al., 1989;
Thompson et al., 2012). Critically, word production, comprehension and working memory also had a
significant, albeit indirect, effect on fluency. There is an important message in this finding: impairment in
any of these abilities could cause disfluency. For example, impairment in working memory alone could
lead to nonfluency, even though this impairment will also manifest as a breakdown in morphosyntactic
abilities. In other words, working memory provides a common cause for both morphosyntactic problems
and nonfluency. This, in turn, has implications for language rehabilitation. While syntactic impairment

and nonfluency are correlated, the focus of treatment should be on a variable that mediates both.

One remaining variable (restarts) did not show a reliable effect on fluency. Recall that this
variable was used as an index of monitoring. However, as acknowledged in the earlier sections, revisions
and retraces are sub-optimal indices of monitoring abilities. For one thing, the main monitoring ability
(i.e., detection of errors) is not well captured by these measures, as both repetition and retracing may
happen on already correct words. Moreover, there are reasons other than monitoring that may cause
speakers to repeat a word or a phrase. For example, problems with lexical and phonological retrieval
may lead to repetitions (Fraundorf & Watson, 2014). Thus better measures of monitoring are required

before a role of impaired monitoring in nonfluent production in PWA can be refuted.

While the study succeeded in its goal to take the first step in elucidating the cognitive
architecture of nonfluency in aphasia, there are several caveats that must be improved upon in future
studies. The R’ for the model with both fluency measures was 0.44, suggesting that only about half the
variance in the data is accounted for by the variables included in this model. Model performance can be
improved in two ways: (a) selection of better tests for the existing variables, and (b) inclusion of more
variables. As alluded to in the earlier sections, AphasiaBank is an excellent resource for large,

consistently administered and coded data in PWA. However, the tests are not always ideal for
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representing the cognitive processes targeted in psycholinguistic and cognitive theories. For example,
ideally, we would have liked to represent semantic comprehension with tests that involved no language.
Similarly, working memory could have been represented using measures that distinguish between the
dissociable semantic and phonological working memory (Martin, Shelton, & Yaffee, 1994). Future
studies should aim at exploring the contribution of each variable indicated in this model using manifest
variables that more closely capture the cognitive mechanisms represented by that variable. In a similar
vein, some of the independent latent variables can be dissected into finer sections informed by relevant
theories. For example, while we included syntactic production as one latent variable, various syntactic
operations can perhaps be dissociated and may have different bearings on nonfluency. Due to the
nature of our data, the current variable weighs morphosyntactic production more heavily than other
aspects of syntactic operations, such as differences in the number of arguments associated with a verb
and its effect on the difficulty of verb retrieval (e.g., Kim and Thompson 2004). Fortunately, the pls-pm
framework can be easily applied to further break down each latent variable in the model. For example,
with a dataset rich in various syntactic measures, one could define more fine-grained latent variables
representing different aspects of syntactic processing, each with their own set of manifest variables, and

test which aspect contributes most significantly to nonfluency.

Finally, there are also certain variables that are very likely to affect fluency, but were not
included in the current model because AphasiaBank either contained no measure for such variables or
the scores were missing for a large number of patients on the existing measures. Two such variables are

particularly noteworthy: apraxia of speech, and executive control abilities.

Apraxia of speech. Apraxia of speech sometimes follows lesion to the left hemisphere, and is
characterized by phonological and phonetic errors, distorted prosody, visible struggle in controlling

articulators (also called groping) and inconsistency in errors. The origin of speech apraxia is
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controversial, but most likely lies somewhere between phonological encoding and motor
implementation (e.g., Hickok, 2012; McNeil, Robin, & Schmidt, 2009; Laganaro, 2012), and possibly
concerns a specific stage of articulatory planning/programming (Galluzzi, Bureca, Guariglia, & Romani,
2015). Apraxia of speech typically causes nonfluency, which has been attributed by some to the loss of
stored motor programs (e.g., Varley & Whiteside, 2001) and by others to a procedural impairment in
online computation of articulatory plans (e.g., Ziegler, 2011). As such, it is an important variable to

include in nonfluency studies, the scope of which reaches past phonological encoding.

Executive control abilities. Executive control abilities are a family of functions that regulate other
cognitive operations, such as language production (Nozari & Novick, in press). A large number of studies
show interference in producing a target word among semantically-related (e.g., Costa, Alario, &
Caramazza, 2005; Schnur et al., 2006; Schriefers, Meyer, & Levelt, 1990, but see Mahon et al., 2007) and
phonologically-related items (Breining, Nozari, & Rapp, 2016; Nozari et al., 2016). There is both
behavioral and neural evidence that resolving such competition requires executive control (Shao,
Meyer, & Roelofs, 2013; Shao, Roelofs, & Meyer, 2012; Schnur et al., 2009). At the sentence level too,
accuracy and timing of processing have been shown to depend on executive control abilities and their
neural correlates, especially the left lateral prefrontal cortex, in both sentence comprehension (Nozari,
Mirman, & Thompson-Schill, 2016; Nozari, Trueswell, & Thompson-Schill, 2016) and sentence
production (Arnold & Nozari, 2017; Nozari, Arnold, & Thompson-Schill, 2014; see Nozari & Thompson-

Schill, 2015 for a review).

These and similar studies suggest that impaired executive abilities could render the processes
involved in word and sentence production less efficient, by prolonging the time required to resolve
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competition between alternatives, and in some cases failing to resolve such competition altogether, as
has been implied in certain individuals with dynamic aphasia (Robinson, Blair, & Cipolotti, 1998;
Robinson, Shallice, Bozzalli & Cipolotti, 2010), as well as semantic aphasia (Jefferies, Patterson, &
Lambon Ralph, 2008). To directly test the relationship between executive control abilities and fluency,
Nozari and Schwartz (2012) tested three PWA, two nonfluent and one fluent, matched on
comprehension and single-word production abilities, and showed that the two nonfluent individuals
were significantly impaired in their ability to efficiently switch between tasks (a hallmark of executive
control), while the fluent individual showed no impairment in this task when compared to neurotypical
age-matched control. Thus indices of executive control, including inhibitory control and task-switching,
seem quite relevant to fluency. Unfortunately, AphasiaBank contains no such measures, but future

research must focus on integrating these measures in models of speech fluency.

Finally, the study of nonfluency in aphasia can benefit from more comprehensive measures. A
particularly appealing candidate is discourse measures, such as coherence and cohesion. Indeed, in a
recent study Arnold and Nozari (2017) showed that prefrontally-mediated operations, especially
working memory, were critical to maintaining discourse connectivity. Thus, it is reasonable to assume
that impairment of such abilities could lead to disruption in discourse, which could in turn contribute to

nonfluency.

5. Conclusion

This work took the first step in illuminating the multi-faceted origin of nonfluency in PWA using
path modeling, and identified word production, comprehension, and working memory deficits as
contributing to nonfluency, in addition to syntactic impairment which had a strong and direct impact on
speech fluency. We urge future studies to focus on speech apraxia, monitoring and executive control

abilities as the three remaining variables with the greatest likelihood of contributing to nonfluent
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aphasia. More generally, we demonstrated that a path model is an excellent tool for exploring complex

neuropsychological symptoms of multi-factorial origin.
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Appendix A
Fluency scoring system of the Western Aphasia Battery -Revised (Kertesz, 2006) WAB-R
0 = No words or short meaningless utterances.
1 = Recurrent, brief, stereotypic utterances with varied intonation; the emphasis on prosody may convey
some meaning.
2 = Single words, often paraphasia, effortful and hesitant.
3 = Longer, recurrent stereotypic or automatic utterances without information, or mumbling.
4 = Halting, telegraphic speech; mostly using single words; paraphasias; occasional prepositional
phrases; severe word-finding difficulty. No more than two complete sentences with the exception of
automatic sentences (e.g., “Oh | don’t know.”); characteristic of agrammatic nonfluent aphasia.
5 = Often telegraphic but more fluent speech with some grammatical organization; marked word-finding
difficulty. Paraphasias may be prominent; few but more than two propositional sentences.
6 = More propositional sentences with normal syntactic patterns; may have paraphasias; significant
word-finding difficulty and hesitations may be present.
7 = Phonemic jargon with semblance to English syntax and rhythm with varied phonemes and
neologisms. May talk excessively; must be fluent; characteristic of severe Wernicke’s aphasia.
8 = Circumlocutory, fluent speech; moderate word-finding difficulty; with or without paraphasias; may
have semantic jargon. The sentences are often complete but may be irrelevant.
9 = Mostly complete, relevant sentences; occasional hesitations and/or paraphasias; some word-finding
difficulty; near normal but still perceptibly aphasic.

10 = Sentences of normal length and complexity, without definite slowing, halting or paraphasias.
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Additional pls-pm results

Appendix B

Table B1 - Loading and cross-loading of manifest variables under each latent variable on that and other

latent variables in the model. See Table 2 for information on each measurement.

Manifest Variable Latent Variable comp word wm restart syntax fluency
WAByesno comp 0.75 0.39 0.35 -0.04 0.30 0.28
WABaudWrec comp 0.83 0.52 0.51 0.07 0.40 0.45
WAB sentence comprehension comp 0.83 0.55 0.51 0.03 0.26 0.25
WAB object naming word 0.56 0.88 0.51 0.08 0.21 0.25
Verb Naming Test word 0.54 0.88 0.63 -0.23 0.41 0.47
BonnieBoston Naming Test (revised

scoring) word 0.54 0.91 0.67 -0.04 0.28 0.42
AphasiaBank Repetition 1A wm 0.37 0.57 0.81 -0.03 0.23 0.36
AphasiaBank Repetition 1B wm 0.30 0.51 0.82 0.07 0.25 0.20
AphasiaBank Repetition 1B- Serial wm 0.27 0.48 0.79 0.05 0.23 0.17
AphasiaBank Repetition 2A wm 0.64 0.59 0.87 -0.04 0.48 0.46
AphasiaBank Repetition 2B wm 0.63 0.66 0.90 -0.05 0.49 0.56
Retracing restart 0.08 -0.05 -0.02 0.82 0.06 -0.02
Repetition restart 0.03 -0.09 -0.01 0.99 -0.12 -0.13
% Verbs syntax 0.11 0.10 0.16 -0.09 0.66 0.35
DSS syntax 0.25 0.17 0.22 0.00 0.76 0.48
% Grammatical syntax 0.37 0.49 0.45 -0.13 0.70 0.44
% Prepositions syntax 0.35 0.18 0.38 -0.04 0.65 0.42
% Past tense verbs syntax 0.18 0.08 0.13 -0.02 0.63 0.27
Words/Second fluency -0.04 -0.08 -0.03 -0.16 0.45 0.48
WAB spontaneous fluency score fluency 0.46 0.49 0.51 -0.09 0.55 0.98
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Table B2- Results of the inner model with fluency only represented by words/second, obtained by

10,000 bootstrapping iterations. Rows with all zeros represent connections dependencies that are not

defined in the model.

Original Mean 95% Cl- 95% CI -
path bootsrapped Lower Upper
Direct effects coefficient  coefficient SE bound bound
comp ->word 0.55 0.55 0.07 0.42 0.68
comp ->wm 0.21 0.22 0.08 0.06 0.38
word ->wm 0.56 0.56 0.08 0.40 0.71
wm -> syntax 0.41 0.42 0.07 0.27 0.56
comp -> fluency -0.09 -0.08 0.09 -0.26 0.09
word -> fluency -0.15 -0.14 0.15 -0.42 0.14
wm -> fluency -0.14 -0.15 0.13 -0.39 0.10
restart -> fluency -0.12 -0.12 0.07 -0.23 0.07
syntax -> fluency 0.61 0.61 0.07 0.47 0.74
Total effects (direct _ indirect effects)
comp ->word 0.55 0.55 0.07 0.42 0.68
comp ->wm 0.51 0.53 0.06 0.40 0.64
comp -> syntax 0.21 0.22 0.05 0.13 0.33
word ->wm 0.56 0.56 0.08 0.40 0.71
word -> syntax 0.23 0.24 0.05 0.14 0.34
wm -> syntax 0.41 0.42 0.07 0.27 0.56
comp -> fluency -0.11 -0.10 0.09 -0.28 0.08
word -> fluency -0.09 -0.08 0.12 -0.30 0.17
wm -> fluency 0.11 0.11 0.14 -0.15 0.38
restart -> fluency -0.12 -0.12 0.07 -0.23 0.07
syntax -> fluency 0.61 0.61 0.07 0.47 0.74
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Figure captions

Figure 1- The architecture of the fluency pls-pm model. The circles show latent variables, and the
rectangles the manifest variables (see also Table 2). The large gray circle represents the inner model.
The direction of the arrows indicates which variable exerts an influence over the other variables. Note

that the latent variables in the model are all reflective.

Figure 2- Box plots for the two measures of fluency in the participants (N = 112). The left panel shows
fluency measured as words/second. Right panel shows fluency measured as WAB-R spontaneous fluency

scores.

Figure 3 - Loading (diagonal cells) and cross-loading (off-diagonal cells) of the manifest variables under
each latent variable on that variable and other latent variables in the model. The dashed line marks the
criterion 0.6. The diagonal (black-outlined boxes) show that the tests that are meant to measure a
certain variable indeed have the highest loading on that variable. See Table B1 in Appendix B for the

values of loading and crossloading for each test.

Figure 4- Parameter estimates for the inner and outer models in the fluency pls-pm. The values on the
arrows from the latent variables (circles) to manifest variables (rectangles) are factor loadings. The
values on the arrows between the latent variables are path coefficients. The values inside the
parentheses next to the path coefficients are their corresponding t statistics. See Table 3 for 95%Cls

obtained through bootstrapping. The values inside the circles are DG rho’s.

Figure 5 - Direct and indirect effects of the five independent variables on the dependent variable

fluency. The full height of the bars shows the total effect.
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ACCEPTED MANUSCRIPT

Footnote

1- Bootstrapping is a technique for estimating the sampling distribution of a statistic using random

sampling with replacement.
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