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We present a computational framework to address the flow of two immiscible vis-
cous liquids which co-flow into a shallow rectangular container at one side, and flow
out into a holding container at the opposite side. Assumptions based on the shallow
depth of the domain are used to reduce the governing equations to one of Hele-Shaw
type. The distinctive feature of the numerical method is the accurate modeling of
the capillary effects. A continuum approach coupled with a volume-of-fluid formu-
lation for computing the interface motion and for modeling the interfacial tension
in Hele-Shaw flows is formulated and implemented. The interface is reconstructed
with a height-function algorithm. The combination of these algorithms is a novel
development for the investigation of Hele-Shaw flows. The order of accuracy and
convergence properties of the method are discussed with benchmark simulations. A
microfluidic flow of a ribbon of fluid which co-flows with a second liquid is simu-
lated. We show that for small capillary numbers of O(0.01), there is an abrupt change
in interface curvature and focusing occurs close to the exit. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4817374]

I. INTRODUCTION

Microfluidic devices for droplet production are often based on forcing a jet of one liquid
sandwiched in another liquid through a series of channels.1–4 The investigation of the transition
between a stable jet and its breakup into a stream of droplets is a model paradigm for the much
needed control of co-flowing systems, ubiquitous in current technological applications. Regimes for
stable jets and unstable dripping jets are being studied experimentally, with theoretical models, and
numerical simulations.5–8 The breakup of a liquid jet into ever smaller and more complex droplets
includes the experimental investigation of the effects of relative sizes of the channels, as well as
channel geometry. An attractive experimental technique is recently addressed for a channel which
is shallow compared to its width and length, emptying into a larger channel. The shallow area
forces the jet to become a ribbon rather than a cylinder, and the ribbon remains stable until it flows
into a holding tank. In this light, the suppression of instabilities in multiphase flow by geometric
confinement is studied in Ref. 9, where the experimental work on decreasing the depth of the channel
and simplified estimates are compared to conclude that when the depth is sufficiently shallow, the
ribbon is stabilized. This idea is used for a single step emulsification.10, 11

In Ref. 11, experimental data for step emulsification are compared with a model for the size of
the drops that emerge at the step where the ribbon flows into a deeper tank, where the cylindrical
necking takes place. Although this is proving to be one of the simplest methods to rapidly produce
droplets with controllable sizes and morphologies,12, 13 the optimal operating conditions are not
entirely understood.
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The numerical simulation of a ribbon or jet sheathed in another liquid, pressure-driven and
co-flowing through a shallow channel, is a time-dependent simulation because of the kinematic free
surface condition, and the solution quickly reaches a steady state. A first step toward understanding
the main features is to take advantage of the smallness of the depth of the channel compared
with the other dimensions. Thus, the original governing equations are reduced to the Hele-Shaw
equations. The key assumptions are given in Sec. II. Our volume-of-fluid (VoF) formulation uses
the balanced-force height-function (HF) formulation of Ref. 14. The accuracy for modeling the
capillary effects is highlighted in this reference. Our implementation is developed for a more general
class of Hele-Shaw flows of two immiscible viscous liquids than that considered in this paper, and
is novel for the particular regime where the interfacial tension force is dominant. The quad-tree
adaptive mesh refinement14–16 is enforced in regions where much of the important dynamics takes
place. The balanced-force HF method has the feature of reaching an equilibrium solution without
spurious solutions.16–18 For an overview of methods for surface-tension dominated multiphase flows,
and recent developments, including the phase-field method and the level-set method, the reader is
referred to recent publications.19–21

In Sec. III, we present our numerical methodology. Benchmark computations are given in
Sec. IV. These results form a baseline and a standard for numerical accuracy. This is followed in
Sec. V with numerical simulations for the experimental conditions of Ref. 11. This reference derives
a formula for the size of the neck at the outlet, as a first step toward understanding the mechanism
of capillary focusing. However, this is not a closed formula, and requires empirical input, because
certain assumptions were made to arrive at a tractable model. Basically, the model reflects inflow
and outflow flux balances. We perform numerical simulations in order to investigate whether the
flowfield satisfies those assumptions.

II. GOVERNING EQUATIONS FOR A VOLUME-OF-FLUID FORMULATION

Figure 1 is a schematic of the flow domain, 0 ≤ x ≤ �, |y| ≤ w
2 . The depth b in the z-direction

is small compared with the width w and the length �. The jet and surrounding liquid are separated
by a wall for x < 0, and pumped under pressure through the boundary at x = 0. At the exit
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FIG. 1. Schematic of the flow domain for the Hele-Shaw model. The depth is small compared to the width w in the y-direction
and the length of the domain � in the x-direction. At x = 0, Fluid 1 occupies |y| ≤ w1∞

2 and Fluid 2 occupies w1∞
2 ≤ |y| ≤ w

2 ;

w2∞ = w − w1∞. The flow is driven by ∂p
∂x , which is related to the flow rates Qi for Fluid i, i = 1, 2. The fluids exit at x =

�, where the width δ of Fluid 1 must be determined as part of the solution. The domain is bounded by walls at |y| = w
2 .
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x = �, the width of the jet is unknown and is denoted by δ. The exit boundary condition is constant
pressure P0, which is a first approximation for the outflow into a reservoir. Capillary effects are
expected to decrease the jet width across the domain. The governing equations prior to a Hele-Shaw
approximation are the 3D Stokes equations and incompressibility

0 = −∇ p(x, y, z, t) + μ∇2v(x, y, z, t) + FST , ∇ · v(x, y, z, t) = 0, (1)

where v = (v1, v2, v3), FST denotes the body force with the continuum surface tension formulation,22

and the viscosity of Fluid i is μ = μi, i = 1, 2. Fluid 1 occupies �1 = {(x, y, z) : 0 ≤ x ≤ �, |y| ≤
h(x, t) < w

2 , 0 ≤ z ≤ b}. Fluid 2 occupies �2 = {(x, y, z) : 0 ≤ x ≤ �, h(x, t) ≤ |y| < w
2 , 0 ≤ z ≤

b}. We denote �1 ∪ �2 = � ⊂ R3.
The volume-of-fluid formulation identifies each fluid by assigning a VoF function,

f̃ (x, y, z, t) =
{

1 in Fluid 1
0 in Fluid 2

. (2)

The interface is calculated by reconstructing the curve where the step discontinuity takes place.
The sign convention of FST stems from our equilibrium state for (1) where Fluid 1 (the jet)

bulges into Fluid 2. Since the pressure in Fluid 1 is higher than in Fluid 2, ∇p points into Fluid 1.
The unit normal n = ∇ f̃ /|∇ f̃ | also points into Fluid 1. Therefore,

FST = γ κδSn, (3)

where δS(x, y, z) = |∇ f̃ (x, y, z, t)| at the interface S in the distribution sense.23 The curvature is

κ = −∇ · n, (4)

where ∇ · n < 0 if the interface bulges into the direction −n (into Fluid 2), and >0 otherwise. The
fluids are advected by the velocity field:

∂ f̃ (x, y, z, t)

∂t
+ (v · ∇) f̃ (x, y, z, t) = 0. (5)

A. The 2D Hele-Shaw approximation

Although the 2D Hele-Shaw equations are well known,24 we remind the reader of the key ideas
in the context of a two-fluid flow.

1. In the momentum equation for the x-y plane, ρ Dv
Dt is assumed to be negligible compared

with ∇p and ∇2v. The assumption is that b is small, so that ∇2 ∼ ∂2

∂z2 = O( 1
b2 ). This means

p = O( 1
b2 ). Thus, ρ Dv

Dt in the x-y plane is assumed to be smaller order than O( 1
b2 ).

2. The vertical depth between the walls, b, is assumed small compared with the length of the
walls in the x-direction, �, and the width w in the y-direction: b

w
� 1, b

�
� 1. The components

of the velocity have magnitudes v1 = O(1), v2 = O(1), v3 = O(b). We define an in-plane
depth-averaged velocity field V = (V1(x, y, t), V2(x, y, t)),

V(x, y, t) = 1

b

∫ b

0
(v1(x, y, z, t), v2(x, y, z, t))dz. (6)

3. The out-of-plane interface shape is assumed to be semi-circular, with contact angle 180◦ at the
walls, and radius b/2. Thus, the out-of-plane curvature is 2/b and contributes −γ 2

b ∇ f̃ to the
surface tension force. From here, we replace κ in (3) by 2

b + κ(x, y, t):

FST = γ

(
2

b
+ κ(x, y, t)

)
∇ f̃ . (7)
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4. We integrate (5) with respect to z. We have (v · ∇) f̃ (x, y, z, t) = ∇ · (v f̃ (x, y, z, t)) since
∇ · v = 0. Thus, ∫ b

0

[
∂ f̃ (x, y, z, t)

∂t
+ ∇ · (

v f̃ (x, y, z, t)
)]

dz = 0. (8)

The first term is ∂
∂t

∫ b
0 f̃ (x, y, z, t)dz. The second term is ∂

∂x

[∫ b
0 v1 f̃ (x, y, z, t)dz

]
+ ∂

∂y

∫ b
0

[
v2 f̃ (x, y, z, t)dz

] + ∫ b
0

∂
∂z

[
v3 f̃ (x, y, z, t)

]
dz. We define a depth-averaged VoF func-

tion f (x, y, t),

f (x, y, t) = 1

b

∫ b

0
f̃ (x, y, z, t)dz. (9)

The first integral becomes b ∂
∂t f (x, y, t). The last integral vanishes because f̃ is bounded, and

v3(x, y, 0, t) = v3(x, y, b, t) = 0 due to zero penetration at the walls. The interface occupies
approximately a tubular volume with length O(1) in the x-y plane and cross-sectional area of
O(b2), so that the volume is O(b2). The projection in the x-y plane has area O(b), which shrinks

to 0 as b → 0. We replace
∫ b

0

[
v1 f̃ (x, y, z, t)

]
dz with f (x, y, t)

[∫ b
0 v1dz

]
, and we define an

error E(x, y, t) in L∞ by

E(x, y, t) = 1

b

∣∣∣∣
∫ b

0
v1

(
f̃ (x, y, z, t) − f (x, y, t)

)
dz

∣∣∣∣ . (10)

We see from (9) that f̃ − f is bounded in the interfacial region, and vanishes away from it.
The L1 norm of this error is

∫
�E(x, y, t)dxdy ∼ b, which goes to 0 as b → 0. Therefore, we

can approximate (8) by ∂
∂t f (x, y, t) + 1

b
∂
∂x

[
f (x, y, t)

∫ b
0 v1dz

]
+ 1

b
∂
∂y

[
f (x, y, t)

∫ b
0 v2dz

]
=

0 in the L1 norm. In terms of the depth-averaged velocity,

∂

∂t
f (x, y, t) + ∂

∂x
[ f (x, y, t)V1(x, y, t)] + ∂

∂y
[ f (x, y, t)V2(x, y, t)] = 0. (11)

Integration of the incompressibility condition,
∫ b

0 (∇ · v)dz = 0, yields ∇plane · V = 0, where
∇plane ≡ ( d

dx , d
dy ). Therefore, ∇plane( f V) = (V · ∇plane) f , which means the advection equa-

tion (11) becomes

∂

∂t
f (x, y, t) + (V · ∇plane) f (x, y, t) = 0. (12)

Note that V, as defined in (14), depends on the curvature, which involves the second derivatives
of f̃ . Therefore, (12) is not linear in f, and the Courant–Friedrichs–Lewy (CFL) stability
condition does not guarantee stability. The stability condition is complicated by the estimates
for V, which require estimates on the singular contributions of p and ∇ f̃ at the interface (see
Sec. III G).

5. We return to (1), and define, for convenience, p∗(x, y, z, t) = p(x, y, z, t) + 2γ

b f̃ (x, y, z, t).

The classical Hele-Shaw approximation is v3 = O(b), ∂
∂z = O( 1

b ), ∇2 ∼ ∂2

∂z2 = O( 1
b2 ), as b

→ 0. The z-component of (1) is ∂p∗
∂z = μ∂2v3

∂z2 − γ κ(x, y, t) ∂ f̃
∂z . We assume that the coeffi-

cients, μ, γ , κ , are of O(1). We see that ∂p∗
∂z dominates over the other terms if p∗ = O( 1

b ).

With ∂p∗
∂z ∼ 0, we conclude that p* is independent of z. Upon consideration of the rest

of (1), ∂p∗(x,y,t)
∂x ∼ μ∂2v1

∂z2 − γ κ(x, y, t) ∂ f̃
∂x , and ∂p∗(x,y,t)

∂y ∼ μ∂2v2
∂z2 − γ κ(x, y, t) ∂ f̃

∂y , we obtain
∂p∗(x,y,t)

∂x + γ κ(x, y, t) ∂ f̃
∂x = O( 1

b2 ). Hence, the z-dependence disappears and we have

p∗(x, y, t) = p(x, y, t) + 2γ

b
f (x, y, t). (13)

Away from the interface, f̃ is a constant, and (1) reduces to the classical Hele-Shaw equation.
The ∇planep∗ terms and ∇ f̃ terms drive the Poiseuille flow. Also, we find that p∗ = O( 1

b2 ).
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Together with v1 = v2 = v3 = 0 at z = 0, b, we find v1 = 1
2μ

(
∂p∗(x,y,t)

∂x + γ κ(x, y, t) ∂ f
∂x

)
(z2− bz),

v2 = 1
2μ

(
∂p∗(x,y,t)

∂y + γ κ(x, y, t) ∂ f
∂y

)
(z2 − bz), and v3 = 0. The depth-averaged velocities are

V1(x, y, t) = − b2

12μ

(
∂p∗(x, y, t)

∂x
+ γ κ(x, y, t)

∂ f

∂x

)
,

(14)

V2(x, y, t) = − b2

12μ

(
∂p∗(x, y, t)

∂y
+ γ κ(x, y, t)

∂ f

∂y

)
.

In vector form, the Hele-Shaw equations are

12μ

b2
V = −∇ p∗ + FST , 0 ≤ x ≤ �, |y| ≤ w

2
, t ≥ 0. (15)

6. In the interface region, the flow does not satisfy the assumption that ∇plane p∗ + γ κ∇plane f̃
is a constant with respect to z. However, even though (14) does not hold pointwise near the
interface, the Hele-Shaw limit is correctly obtained in the sense of distributions (for details,
see Ref. 23). This implicitly enforces the normal stress balance at the interface, which is the
continuity of

p∗ + γ κ f. (16)

If this is violated, then the velocity normal to the interface contains a Delta function, which
contradicts incompressibility.

III. NUMERICAL METHODOLOGY

We implement an iterative procedure toward a unique solution, detailed in this section. In brief,
the initial interface position determines the pressure. With the pressure and interface position known,
the velocity is found from (14). The velocity field advects the interface to a new position, and the
process repeats until a steady-state solution is obtained. The basis for our in-house numerical model
is an early version of Gerris code.15

A. Finite volume discretization

The computational domain (2D) is initially discretized into square cells with uniform width
	, aligned to the x-y coordinates. During the course of a computation, a quadtree adaptive mesh
method25 halves 	 repeatedly in certain parts of the domain. The criteria for adaptive mesh refinement
are based on the pressure gradient, as well as the location of the interface for the adaptively refined
solutions. The procedure for the spatial mesh refinement is detailed in Ref. 15 and is not repeated
here.

The equation for p* is formulated from (15), using ∇ · V = 0,

∇ ·
(

b2

12μ
∇ p∗(x, y)

)
= ∇ ·

(
b2

12μ
FST

)
. (17)

The weak formulation over cell (i, j) of volume �i, j and bounding surface Si, j is∫
Si, j

b2

12μ
∇ p∗ · n̂ d S =

∫
�i, j

∇ · (
b2

12μ
FST ) d�, (18)

where n̂ is the outward unit normal of Si, j. The finite volume method for the simplest case of uniform
grid size 	 yields

∑
m

b2

12μm
m̂ · ∇ p∗	2 = D	3, (19)
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for each cell. The summation over m consists of the four cell faces, and m̂ denotes the outward
normal at a face. D is the non-zero finite-volume divergence of the vector field b2

12μ
FST defined as

D =
∑

m

b2

12μm

Fm
ST

	
, (20)

where Fm
ST is the component of the surface tension force at the center of the face in the direction of

its normal m̂. The computation of μm for interface cells is discussed in Sec. III E.

B. Calculation of curvature

Within the VoF-based sharp surface tension representation, δSn̂ in (3) is equivalent to ∇f

FST = γ κ∇ f. (21)

The curvature is computed at cell centers with the second-order HF method described in detail in
Refs. 14 and 16, and is not repeated here. This is currently one of the most accurate techniques,26, 27

and contributes to reduce the overall computational cost. At the cell face, the curvature is interpolated
from cell-center values.

C. Boundary conditions

Solid wall: At a solid wall, the boundary condition for the pressure is a second-order discretization
of ∇ p · n̂solid = 0, i.e., V · n̂solid = 0, where n̂solid is the unit normal vector to the solid wall.
The boundary condition for the volume fraction function at the top and bottom walls is that
f = 0.

Inflow: With respect to our application in Sec. V, the two fluids are separated by a wall up to
inflow, so that the inflow boundary condition is (Ui∞, 0) for Fluid i, where i = 1, 2. The parallel
flow at inflow is equivalent to prescribed pressure gradients for both fluids,

∂pi

∂x
= −12μi Qi

b3wi∞
, i = 1, 2, (22)

where subscripts refer to Fluid i, wi∞ is the width occupied by Fluid i at the inlet, and Qi is
the inflow rate. The boundary condition for f at the inlet is that it is 1 for |y| ≤ w1∞ and 0
otherwise.

Outflow: At outflow, the pressure is set equal to a reference pressure in the tank adjoining the
Hele-Shaw cell: p = 0. The boundary condition for f is that the interface has zero slope:
∇ f · n = ∂ f

∂x = 0.

D. Pressure calculation

A multigrid V-cycle Poisson solver, accelerated with point relaxation (using Jacobi iterations),
is used to compute the solution of the system of equations generated from (17). The adaptive
multilevel solver is described in detail in Ref. 15; in particular, (17) is solved on a multilevel basis,
in which boundary conditions are interpolated from a previous coarser level solution to capture
the boundary conditions across the multigrid hierarchy. The criterion for terminating the iterative
solution procedure is that the maximum of the relative residual be smaller than a specified threshold
which is set equal to 10−6 here. The Jacobi pre-smoother with six relaxations per level is used. It
is known that the convergence of the multigrid method is independent of the grid size. It is also
known that the standard multigrid convergence can be degraded in the case of elliptic equations with
discontinuous coefficients and/or source terms (the condition number of the discretization matrix
for (17) increases as the ratio of the discontinuous coefficients grows). Since we do not encounter
large viscosity ratios, this degradation does not arise in our application.
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E. Velocity at a cell face

Consider a small discretized cell with volume vcell which is cut by the interface into a portion
vcell1 occupied by Fluid 1 and vcell2 occupied by Fluid 2. In the cell, (15) is satisfied, and μ is
discontinuous at the interface. In the full Navier-Stokes equations, the velocity is assumed to be
mostly tangential to the interface, and the Hele-Shaw approximation picks up the dominant terms in
the governing equations for this case; for instance, at inflow, this is true, and the in-plane curvature
κ is small. The regions where this approximation breaks down are small areas such as near the exit,
which do not propagate into the bulk of the flow and we check this a posteriori.

By projecting (15) in the direction normal to the interface, we see that ∂p∗
∂n is small and p∗ is

a constant in the cell. In the direction tangent to the interface, p∗ is continuous, and so is ∇p∗ · t
where t denotes a tangent vector to the interface. Therefore, the left-hand side of (15) contains μ and
V which are both discontinuous, and the right-hand side contains the continuous p*. We formulate
this balance by first dividing by μ, so that both sides have the same singularities. Since vcell is small,
and ∇p* is continuous, the right-hand side is approximated by the linearization and we obtain∫∫

vcell

12

b2
Vdxdy = (−∇ p∗ + FST )

∫∫
vcell

1

μ
dxdy. (23)

Let us isolate the integral term on the right-hand side∫∫
vcell

1

μ
dxdy =

∫∫
vcell1

1

μ1
dxdy +

∫∫
vcell2

1

μ2
dxdy

= 1

μ1
vcell1 + 1

μ2
vcell2 =

(
f

μ1
+ 1 − f

μ2

)
vcell . (24)

Therefore, (15) gives the average of the velocity over the volume

1

vcell

∫∫
vcell

Vdxdy = b2

12
(−∇ p∗ + FST )(

f

μ1
+ 1 − f

μ2
). (25)

The last bracketed term shows that the viscosity for a mixed cell with index i, j is calculated from
the weighted harmonic average

1

μi, j
= (1 − fi, j )

μ2
+ fi, j

μ1
. (26)

Thus, the velocity at the center of a cell face is denoted

V̂ =
{

b2

12μ

(−∇ p∗ + FST
)}

f c

, (27)

where the subscript “fc” denotes the face-centered quantities.
The harmonic mean of the viscosities of adjacent cells, say at (i, j) and (i + 1, j), is interpolated

to compute the viscosity at the cell face (i + 1/2, j)

1

μi+1/2, j
= 1

2
(

1

μi, j
+ 1

μi+1, j
). (28)

This viscosity calculation gives a computed nodal velocity that is closer to the true average (25) than
a simple average of the viscosities. This property is demonstrated for the benchmark computation
in Sec. IV A.

F. Advection of the VoF function

The nonlinear advection equation (12) presents a challenge in terms of spatial and temporal
discretization. An alternative expression is used:

∂ f

∂t
+ ∇plane · (V f ) = 0. (29)
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The normal component of the face-centered velocity V̂ is used to advect the VoF function f by
solving (29). This defines new domains for each fluid, and hence a new position of the interface.
A piecewise linear interface calculation is used for the interface reconstruction28 and the Eulerian
implicit-explicit scheme described in detail in Ref. 20 is used for the discretization of (29).

G. Stability conditions

It is well known that the explicit formulation of the surface tension force as a body force
is restricted by numerical stability if the governing equations are the Euler equations.22, 29, 30 The
constraint on the time step is 	t ∼ (	x)3/2, and this ensures that capillary waves are not amplified
at the interface. The constraint for the viscous Navier-Stokes equations is found in Ref. 31 to be

	t ∼ (
c2μ

γ
	x	t + c1ρ

γ
	x3)1/2, (30)

where ci are positive constants.
In this section, we clarify the time constraint for the Hele-Shaw equations because it differs

from the aforementioned estimates. A trivial base solution to the two-fluid Hele-Shaw problem is
that of a flat interface with zero velocity field. Consider the effect of small perturbations on the length
scale of a grid cell, localized at the interface, for instance with compact support. The corresponding
perturbed solution for the interface position and velocity is found from linearizing the governing
equations about the base solution. The kinematic condition is D

Dt (y − h(x, t)) = 0 where h represents
the perturbed interface position: yt = ht or

v = ht , (31)

where the vertical velocity is yt = v. The Young-Laplace equation is

−γ hxx = [[p∗]], (32)

where [[ ]] denotes the jump across the interface. We perform a normal mode analysis, and seek
solutions proportional to eiαx where 2π /α is the wavelength, resolved to the length scale 	x of the
discretized cell. Consider the simplest case, with matched viscosities, so that the steady-state stress
balance is [[∇p* · n]] = 0. Let the variable y be shifted to equal 0 at the interface; in this notation,
[[ ∂p∗

∂y ]] = 0.
In each fluid, the governing equation for the pressure is the Laplace equation. The solution

which decays away from the interface is

p∗ =
{

(α2/2) exp(iαx) exp(αy), if y < 0,

−(α2/2) exp(iαx) exp(−αy), if y > 0,
(33)

where, for the investigation of stability, we focus on large α. The vertical velocity at the interface is,
up to a constant factor,

v = − b2

12μ

∂p∗

∂y
= −α3b2

24μ
exp(iαx). (34)

This equals ht by (31). Substitution of (33) into (32) gives −γ hxx = α2exp (iαx). Hence, ht =
−α3b2

24μ
exp(iαx) = γ b2α

24μ
hxx . Next, hxx = −α2h, which gives

ht = − γ b2

24μ
α3h, (35)

up to a constant factor. Thus, the solution is proportional to e− γ b2

24μ
α3t which is approximated in a

first-order Euler scheme with the Taylor series 1 − γ b2

24μ
α3t + . . .. For a time step 	t, this truncation

is correct if γ b2

24μ
α3	t � 1. Otherwise, the explicit scheme is unstable. The largest wavenumber α

which can be numerically resolved is of order 1/	x; therefore, the stability condition is

	t � 24μ

γ b2
(	x)3. (36)
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Both this condition and (30) must be satisfied for stability of the explicit scheme for the viscous
time-dependent Hele-Shaw equation; our numerical results meet these criteria.

IV. BENCHMARK COMPUTATIONS

Three benchmark computations are presented. The first clearly shows the need for the imple-
mentation of the weighted harmonic mean (26)–(28) for computing the viscosity in a mixed cell. The
second highlights the accuracy of the implemented balanced-force HF method and the calculation of
the curvature. Spatial convergence is demonstrated by refining the mesh, and tabulating the errors.
The third concerns the accurate implementation of the advection of the VoF function. The stability
conditions of Sec. III G are enforced to obtain the simulation results.

A. Two-phase parallel flow driven by a pressure difference:
Planar interface, zero surface tension

Consider two fluids of different viscosities in parallel flow. The Hele-Shaw equations (15)–(29)
are solved for γ = 0. The boundary conditions are: (i) prescribe pressures pin at the inlet and pout at
the outlet such that a constant pressure difference 	p = pin − pout is maintained; (ii) zero pressure
gradient ∂p

∂y = 0 in the direction normal to the top and bottom boundaries; and (iii) prescribe f at

the inlet, and zero gradient normal to the outlet ∂ f
∂x = 0, to maintain parallel flow at the outlet (see

Figure 2(a)).
The exact solution is a planar horizontal interface, with horizontal velocities

Ui = b2

12μi

	p

L
. (37)

The computations are performed for the following values: 	p/� = 1, and the viscosity ratio λ =
μ1/μ2 = 100, where subscripts 1 and 2 refer to the lower and upper fluids, respectively. Figure 2(b)
shows the computed velocities. The solid (magenta online) line shows the location of the interface,
defined to be where the volume fraction of cells cut by the interface is 0.5. The computed velocities
are shown in Figure 2(b), and agree with the exact solution in each fluid. At the interface, the exact
slip velocity is

U1 − U2 = μ2 − μ1

μ1μ2

b2

12

	p

L
. (38)

∂p
∂x

= −1

Fluid 1

Fluid 2

(b)(a)

FIG. 2. (a) Computational domain for the benchmark problem of Sec. IV A for parallel flow of Fluid 2 over Fluid 1 with a
flat interface shown with a solid (red) line. The domain is 1 × 1. The boundary conditions are prescribed pressures at inlet and
outlet, and zero vertical pressure gradient at the top and bottom walls of computational domain. The interface is adaptively
refined, with the smallest mesh size 	 = 1/256. (b) Computed velocities in Fluid 1, bottom, and Fluid 2, top; the viscosity
ratio λ = 100.
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FIG. 3. Benchmark computation from Sec. IV B. Fluid 1 occupies the interior of the circle, and Fluid 2 occupies the exterior.
The circular interface is shown as a solid (red) line with radius 0.25, at the center of a 1 × 1 computational domain. The
interface is adaptively refined; here, the smallest mesh size 	 = 1/128.

The computed slip velocity in cells that are cut by the interface is

U2 + f (U1 − U2). (39)

Note that the implementation of the weighted harmonic average for the viscosity, (26) and (28),
achieves this exact slip velocity. On the other hand, if a naive “weighted mean” average of the two
viscosities is used to compute the viscosity of a mixed cell, and a simple average of cell center
viscosities is used to interpolate the viscosity to the face of the cell, then the slip velocity of the
mixed cell would be strongly shifted towards the more viscous fluid (Fluid 1 in this example). We
avoid this inaccuracy.

B. Circular interface in equilibrium: Non-zero surface tension

Consider a circular drop placed at the center of a square computational domain that is initially
at rest, as shown in Figure 3. The inflow and outflow boundary conditions are zero normal pressure
gradients. The numerical simulation presented here is a test for the accuracy of the computation
of the interfacial tension force. The initial configuration is a solution of (17) and satisfies the
Young-Laplace condition, [[p]] = γ κ .

The computations are started at the discretized equilibrium solution, with zero velocity and a
circular interface of radius r = 0.25. The viscosity ratio is chosen as λ = 1, the interfacial tension
is γ = 1, and the time step is 	t = 10−6. Table I presents the spatial convergence based on the L1,
L2, and L∞ norms of the velocity field, and the pressure jump across the interface at the 5000th time
step (p1 is the averaged pressure for cells with r < 0.25 and p2 is the averaged pressure for cells with
r > 0.25). It is clear that the velocity field decreases to zero with the mesh size (	 = 1

32 , 1
64 , 1

128 ). At
the 5000th time step, the computed velocity is not zero because the numerically computed interface
shape has not reached an equilibrium. At each mesh resolution, there is a difference between the exact
circular shape and the numerically computed interface shape; however, after a sufficient number of
time steps, our balanced-force HF method has the feature of reaching the equilibrium velocity of

TABLE I. Convergence results for the benchmark problem for Sec. IV B. The norms L1, L2, and L∞ of the velocity, and the
pressure jump across the interface are shown as a function of mesh refinement.

	 = 1/32 	 = 1/64 	 = 1/128

L1 3.416 × 10−6 5.686 × 10−7 1.326 × 10−7

L2 5.234 × 10−6 8.882 × 10−7 2.083 × 10−7

L∞ 1.680 × 10−5 2.879 × 10−6 6.461 × 10−7

p1 − p2 4.03114 4.00750 4.00179
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pout = 0

∂p
∂y

= 0

∂p
∂y

= 0

pin = 1

FIG. 4. A droplet of Fluid 1, with a circular interface of radius 0.0625, is placed in a 1 × 1 computational domain. The
interface is shown as a solid (red) line. The domain is adaptively refined while the droplet translates in response to the flow
of the surrounding Fluid 2.

zero to machine precision.16 At a fixed time step, the non-zero velocity diminishes at a second-order
rate with mesh refinement. Additionally, the pressure jump across the interface approaches the exact
value with second-order accuracy. Hence, Table I demonstrates that our numerical methodology for
the interfacial tension force yields converged solutions.

C. Translation of a viscous droplet in an unbounded Hele-Shaw flow

Here we consider translational motion of a highly viscous droplet with high interfacial tension
in an unbounded Hele-Shaw cell with an imposed uniform flow far from the droplet. The exact
solution is the translation of the droplet. The fluid within the droplet moves as a rigid body with no
recirculation. The boundary conditions for the pressure are: (i) at the upper and lower boundaries,
the pressure gradient ∂p/∂y = 0; (ii) the pressure at the inlet is prescribed by the constant pin and
at the outlet by the constant pout so that sufficiently far away from the drop, ∂p

∂x < 0. The boundary
conditions for the VoF function are: (i) f is prescribed to be Fluid 2 at the inlet and top and bottom
walls, and df/dx = 0 at the outlet. Computationally, the droplet must be much smaller than the cell
to guarantee a constant pressure gradient far from the droplet.

We check the velocity of droplet translation. In this case it can be shown that a circle is an exact
solution for the steady shape of the translating droplet of an arbitrary surface tension32, 33 with the
corresponding pressure distribution given in polar coordinates (r, θ ) by

pdrop =
(

2

b
+ 1

a

)
γ + 2μ1

μ1 + μ2

−	p

L
r cos θ, (40)

pmatrix =
(

1 + a2

r2

μ1 − μ2

μ1 + μ2

) −	p

L
r cos θ, (41)

where a is the droplet radius, θ is measured from the direction of the applied pressure gradient, and
r represents the radial distance from the center of the drop. The steady (rigid body) translational
velocity of the circular drop is

U = b2

12μ1

2μ1

μ1 + μ2

	p

L
. (42)

Here we consider a drop of radius 0.0625 placed in a 1×1 computational domain. We check
that the radius of the drop is small enough so that it will not affect the far field pressure distribution
(Figure 4). We set γ = 1, 	p/� = 1, and vary the viscosity ratio λ from 0.1 to 5. The comparison
between the numerically computed steady translational velocity of the drop and (42) is shown
in Table II. We observe that the comparison is improved with better resolution of the flowfield.
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TABLE II. The steady translational velocity of the circular drop for different
viscosity ratios compared with the predicted velocity by (42).

λ = 0.1 λ = 1 λ = 5

Ucomputed 1.90 1.005 0.41
Utheory 1.82 1.0 0.33

Figure 5 shows the snapshots of the numerical simulations for viscosity ratios of 0.1, 1, and 5. More
detail about the velocity and pressure fields follow.

First, it is evident that the initially circular drop (solid white line) remains in equilibrium for all
cases. We also note that the translational velocity (42) does not depend on the interfacial tension;
this is confirmed with numerical simulations at γ = 0.1, 0.01. Second, Figure 5 shows the pressure
distribution inside the drop (color contours). For λ = 1, the pressure gradient inside the drop is
simply ∂p/∂x = −	p/� = −1, in agreement with the theoretical value (40). This is the pressure
gradient imposed at the far field. According to (40) for λ = 0.1, the pressure gradient inside the
drop is smaller and for λ = 5, the pressure gradient inside the drop is larger than the imposed far
field pressure gradient 	p/� = 1. Figures 5(a)–5(c) support this prediction. It is also noted that the
pressure distribution inside the drop for λ = 0.1 is approximately a constant because it should be
close to the pressure distribution of an inviscid drop (λ → 0) in a Hele-Shaw cell which is known to
have a steady translational velocity of 2. Third, Figure 5 shows the velocity field inside and outside
the drop. Clearly, each drop undergoes a rigid body translation with a steady velocity that is predicted
by (42), i.e., the velocity inside the drop is a zero velocity field in a frame of reference moving with
the drop steady-state velocity.

V. PRESSURE DRIVEN FLOW OF A CO-FLOWING RIBBON

We turn to the pressure-driven flow of a jet or ribbon of one fluid co-flowing with a second
fluid which is shown in Figure 1, through a channel that is much wider than it is deep. For this flow,
it is possible to make the jet form a tongue at the exit boundary, where the width of the tongue is
extremely small. The production of small droplets, on the order of the depth of the channel, ensues
in the reservoir, and is known as capillary focusing. Of practical importance is a simple estimate for
the jet width δ at the exit; Ref. 11 is a first attempt to estimate δ and compare with the experimental
data. However, capillary focusing occurs at small capillary numbers, and the comparison appears to
suffer in this regime, while the comparison for O(1) capillary number is satisfactory. Questions arise
about the assumptions that are built into their estimate. This section clarifies this issue by directly
interrogating the flow with numerical simulations.

(c)(b)(a)

FIG. 5. Linear pressure distribution and the velocity field for λ = 0.1 (a), 1 (b), and 5 (c). Contours show the pressure field
distribution with a maximum value colored in dark (red) and a minimum value colored in light (blue).
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A. A rough estimate for jet width at exit

A summary of the main assumptions in the prior estimate11 follows:

(1) The x-component of the Hele-Shaw equation without the presence of the interface24 is
12μ

b2 V1(x) = − ∂ P(x,y)
∂x . This equation is integrated along two streamlines from the inflow to the

outflow. Together with the outflow condition P1(0) = P2(0), the result is −Pi (−∞) + P(0) =
12μ

b2

∫ 0
−∞ V1(x, y)dx . The two streamlines are (i) along the centerline y = 0 (Fluid 1), and (ii)

at the wall y = w
2 (Fluid 2). Subtraction of one equation from the other yields

−P2(−∞) + P1(−∞) = 12

b2

∫ 0

−∞
D(x)dx,

(43)

D(x) = μ2U2(x,
w

2
) − μ1U1(x, 0).

This relates the quantities at outflow to the prescribed inflow quantities, but in order to simplify
this further, a decay property is imposed on D(x).

(2) At the interface between the fluids, the jump in the normal stress is balanced by surface tension
effects. Here, because the depth b is small, the in-plane curvature is neglected in comparison
with the out-of-plane (y-z) value 2

b , which originates from the semi-circular diameter. Hence,
at inflow,

2γ

b
= P2(−∞) − P1(−∞). (44)

Substitution into (43) yields
∫ 0
−∞ D(x)dx = −γ b

6 . Thus, the left-hand side is a convergent
improper integral. Therefore, the integrand must decay sufficiently fast to 0 at the lower end of
the integration. This is taken one step further with the assumption that there is a decay length
�0, defined by

∫ 0
−∞ D(x)dx = �0 D(0). This leads to a tractable expression

�0 D(0) = −γ b

6
, D(0) = μ2U2(0) − μ1U1(0). (45)

This and (43) are equations that link inflow (prescribed) and outflow (unknown) quantities.
(3) Since the interior flow is not known a priori, a flux conservation is imposed

U1∞w1∞ = U1(0)δ, U2∞w2∞ = U2(0)(w − δ). (46)

Since wi∞ denotes the width of Fluid i at inflow, we have w1∞ + w2∞ = w. Combined with
(45), the unknown outflow velocities are eliminated and we have D(0) in terms of the inflow
data. Substitution in (44) gives the estimate for δ. The final equation is z2β − z(1 + CaM) +
CaM = 0, where

β = w1∞
w

, z = δ

w1∞
= δ

wβ
(47)

and

CaM = μ2
6U2∞�0

bγ
= μ1

6U1∞�0

bγ
. (48)

The equivalence of the two formulas follows from D(− ∞) = 0. The usefulness of CaM is
limited because it depends on the unknown decay factor �0. The estimate becomes

z = (1 + CaM )

2β

(
1 −

√
1 − 4CaMβ

(1 + CaM )2

)
. (49)

(4) Some observations: (i) If the interfacial tension is large enough, then CaM � 1, and (49)
predicts that δ decreases at the rate z ∼ CaM. (ii) If the interfacial tension is small, then CaM

� 1 and (49) predicts that δ is the same as the inflow width: z ∼ 1. Indeed, any reasonable
estimate must predict that the interface becomes flatter through the domain with increasing
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δ
w

∞
Ca

FIG. 6. The width of the jet δ upon exit scaled with w1∞ as a function of the capillary number Ca. w/b = 10, k = 1, and
w1∞/b = 5. Numerical results (•) and an apparent fit (–) using (49) with �0/w = 0.125.

CaM. (iii) The free parameter �0, set to w/2, is found to be a good fit to experimental data in
Figure 2(c) of Ref. 11.

B. Numerical simulations

The flow conditions of Ref. 11 are numerically simulated with μ1 = μ2, and dp1/dx = dp2/dx at
the inflow. The exact solution which provides the inflow conditions is w1∞/w = 1/(1 + k) where k
= (Q2∞μ2)/(Q1∞μ1), and the flow rates Qi∞ for i = 1, 2 are defined in (22). Our capillary number
is defined by

Ca = μ1U1∞
γ

, (50)

and is not CaM in (48). The channel aspect ratio w/b is assumed large, and the Hele-Shaw ap-
proximation is expected to be more accurate as w/b increases. Figure 6 reports the results of the
numerical simulations (•) for δ as a function of the capillary number Ca for w/b = 10, k = 1, and
w1∞/b = 5, together with an apparent fit (–) using (49), with �0/w = 0.125. Note that the interface
remains straight when the interfacial tension is small; this accounts for δ/w1∞ ≈ 1 when Ca is large.
This is also found in Figure 2(c) of Ref. 11, where the trend at Ca = O(1) is used to choose �0/w.
The problem with this method is that on the scale of the figure, the results for Ca � 1 are too small
to be discerned. The line in Figure 6 represents the estimate (49) with a choice of �0/w = 0.125,
and shows an apparent fit. However, the jet forms a tongue only if Ca � 1, and we next focus on
this regime.

Figure 7 shows the numerically computed steady-state shapes of the jet for w/b = 10, k = 1,
and w1∞/b = 5. The capillary number is varied from 0.01 to 0.2 in order to show the same trend

FIG. 7. Steady-state jet solution for Ca = 0.01, 0.025, 0.05, 0.1, and 0.2 (small to large δ), for w/b = 10, k = 1, and
w1∞/b = 5. The curvature at the outlet is κ = 2/b.
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FIG. 8. Relative error E(z) of (49) as a function of Ca for �0/w = 0.5 (•) and 0.125 (�).

as in the available experimental data: the jet narrows more at the outlet as the capillary number
decreases.10, 11

It is informative to present the relative error of the model zm (49) with respect to the exact
computed values zc, defined by

E(z) = zc − zm

zc
.

Figure 8 shows E(z) as a function of Ca. If Ca increases past 0.1, then the interfacial tension
is weak and the interface tends to stay undeformed; δ/w1∞ naturally approaches 1, no matter
the choice of �0/w = 0.5 (•) and 0.125 (�). However, if Ca is small, then Figure 8 shows that
the relative errors are large no matter what value of �0/w is picked. Therefore, the assumption in
Sec. V A that the decay length �0 is comparable to the channel width w is not correct. With hindsight,
we see that the assumption of such a large decay region is incompatible with the assumption in
Sec. V A that the velocity is uniform in each fluid along x = constant, and also with the assumption
that the y-component of velocity has no role in the derivation of (49). The numerical simulations
also confirm the expectation that there is a significant y-component of velocity in a much smaller
“decay region” very close to the exit.

Figure 9 confirms that the flux does not satisfy the assumption (46), which feeds into (49).
The figure shows numerically computed velocities U1(0) and U2(0) (here we use x = 0 to denote
the outflow position and x = −∞ for inflow), normalized by U1∞ and U2∞, respectively, along
the outflow boundary. The numerical results show a complex non-uniform velocity field at outflow,
which is ignored if only the inflow and outflow flux conditions are used in the theoretical analysis.
An interesting feature of the velocity distribution in Figure 9 is a strong slip between the inner
and outer fluids. There is more than an order of magnitude difference between the inner phase and
outer phase velocity at the Fluid 1-Fluid 2 interface. The corresponding velocity field is shown in
Figure 10. The square cells depicted in Fluid 1 illustrate the spatial discretization for the adaptive
mesh refinement. The shading indicates the pressure distribution. The numerical results of Figures 9
and 10 are for Ca = 0.05 where the flow focusing is moderate compared with the stronger focusing
at smaller values of Ca shown in Figure 7. On the other hand, if Ca is larger than 0.1, we find that
the assumption of gentle flow variation from inflow to outflow, which was used to obtain (49), is
reasonable.

Figure 11 shows the numerical results of the steady-state shapes of the interface at three values of
the capillary number, and confirms that the focusing effect is stronger for smaller capillary numbers.
The significant focusing is evident at Ca = 0.016 (Figure 11(a)), i.e., high surface tension yields
improved self-focusing. Figure 11 also shows an important feature that by decreasing the channel
depth, the narrow jet develops a sharp tip at the outflow boundary. The pressure distributions are
shown in Figure 11 for varying Ca and w/b.

To show the effect of the flow rate of the inner phase on the narrowing of the tip, interface
profiles are shown in Figure 12(a) when varying w1∞/b. The main feature is that increasing the
flow rate of the inner phase results in an abrupt change in the interface curvature, i.e., the length
over which the deformation of the interface takes place decreases. If the flow rate of the inner phase
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FIG. 9. (a) U1(0) and (b) U2(0), normalized by U1∞ and U2∞, respectively, along the outflow boundary x = 0; Ca = 0.05,
w1∞/b = 5, and w/b = 10; μ1/μ2 = 1 and k = 1.

is small, then the change in the interface curvature is more gentle. However, in this scenario, the
Hele-Shaw approximation breaks down because δ < b. This may be the contributing factor for the
different breakup mechanisms reported in Ref. 10 when changing the flow rate of the inner phase
from low to high.

FIG. 10. Flow field and the pressure distribution in the focusing region for Ca = 0.05, w1∞/b = 5, and w/b = 10; μ1/μ2

= 1 and k = 1. The pressure contours show that at the outflow boundary, the pressures in both phases equilibrate.
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)c()b()a(

FIG. 11. Effect of surface tension and channel depth on self-focusing. Contours depict the pressure field distribution with a
maximum value colored in dark (red) and a minimum value colored in light (blue). The adaptive mesh and the streamlines in
the inner stream are also shown. (a) Ca = 0.016, w1∞/b = 10, and w/b = 20; (b) Ca = 0.033, w1∞/b = 5, and w/b = 10;
and (c) Ca = 0.052, w1∞/b = 3.33, and w/b = 6.66. μ1/μ2 = 1 and k = 1.

(b)(a)

FIG. 12. Interface profiles. (a) w1∞/b = 10, 5, and 3.33 (top to bottom profiles); Ca = 0.033. (b) Ca=0.05, 0.033, and 0.025
(top to bottom profiles); w1∞/b = 5, and w/b = 10. μ1/μ2 = 1 and k = 1. Only half of the computational domain is shown.

κ
b

x w

FIG. 13. Computed interface curvature normalized by 2/b, the magnitude of the curvature at the outflow (x = 0), as a function
of x/w for Ca = 0.03 (�), 0.1 (red, �), and 0.3 (green, •); the dashed line, κ = 0, is only plotted to guide the eye. w1∞/b = 5
and w/b = 10; μ1/μ2 = 1 and k = 1.

In Figure 12(b), w1∞/b and w/b are kept constant while varying Ca. Figure 12(b) shows that
the characteristic length over which the abrupt change of the interface curvature occurs is weakly
dependent on Ca once the capillary number is below a critical value.

To demonstrate the local change of the interface shape in the focusing region, the computed
interface curvature is shown in Figure 13 for Ca = 0.03, 0.1, and 0.3. This shows the abrupt change
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in the narrowing region, where the curvature changes sign from being −2/b at the outflow to zero at
inflow. (Note that with p = 0 at the outflow boundary, we arrive at κ = −2/b at the outlet x = 0.) As
shown, the increase in the capillary number results in the decrease of the length scale over which
the curvature changes sign.

VI. CONCLUSIONS

The formulation and implementation of a robust volume-of-fluid height-function numerical
algorithm for the Hele-Shaw equations with two immiscible liquids are presented. The components
of the numerical scheme are validated with benchmark computations. The simulation of a ribbon of
fluid which co-flows with a second liquid through a Hele-Shaw cell is carried out to give a critical
assessment of the theory of Ref. 11 for an estimate of the jet width at exit. The parameters in the
numerical simulations are taken from the controlled experiments in the literature.10, 11 The results
show that when the capillary number is small, there is a region just short of the exit where the
flowfield changes in a complex manner, and which is not captured by simply looking at the inflow
and outflow fluxes. An example is the sign reversal in curvature at the exit, which is clearly seen
in the numerical simulations. We also find that the effect of increasing the jet phase flow rate is to
encourage the abrupt change in the interface curvature.
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