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Thixotropy in yield stress fluids as a limit of viscoelasticity
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Thixotropic yield stress fluids have a yield stress and viscosity which change slowly over time as the fluid
undergoes structural changes. This article reviews recent work which shows how such behaviour can arise
as a limit of viscoelastic flow when a relaxation time becomes large. The large relaxation time introduces
a small parameter which can be used as a basis for singular perturbation studies. A simple prototype for
a viscoelastic model will be used to illustrate the analysis. We review the behaviour in startup of shear
flow, oscillatory shear flow and elongational flow and identify potential directions for future research.
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1. Introduction

Complex fluids such as polymers, pastes, suspensions and colloids show behaviour intermediate between
fluids and solids. Traditionally, one distinguishes yield stress fluids, in which fluid versus solid behaviour
depends on the magnitude of stress, and viscoelastic fluids, in which fluid versus solid behaviour depends
on time scales. Yield stress fluids will start flowing only if the applied stress exceeds a critical value.
Simple models for yield stress fluids are typically formulated in terms of generalized Newtonian models
such as the Bingham or Herschel-Bulkley model.

However, for many complex fluids solid versus liquid behaviour depends on both time scales and the
magnitude of stress. They show phenomena which place them well outside the realm of Bingham-like
models. For instance, stress overshoots are common, see e.g. Nguyen & Boger (1992). Hysteresis has
been observed, i.e. fluids ‘unyield” at a much lower stress than the stress at which they yield (Coussot &
Gaulard, 2005; James et al., 1987). The hysteresis leads to coexistence of yielded and unyielded phases
at the same stress and to shear banding (see e.g. Mgller et al., 2006). Moreover, the value of yield stress
may depend on the time of observation; ‘slow yielding occurs at lower values of stress than ‘fast yielding
(Caton & Baravian, 2008; Cheng, 1986; Stokes & Telford, 2004). We refer to Barnes (1999), Nguyen &
Boger (1992), Coussot (2014) and Mewis & Wagner (2013) for reviews of the literature on yield stress
fluids.

A typical example of ‘delayed’ yielding is shown in the data on ketchup displayed in Fig. 1. Here the
fluid starts from rest, and after time r = 0 a constant shear stress is imposed. For sufficiently high stress,
the fluid yields immediately. At low stresses, unyielded behaviour is observed. In between, however,
there is a range of stresses in which yielding occurs at a time which increases with decreasing stress.
Once yielding has occurred, many yield stress fluids remain in a yielded state long after motion has
ceased. This is referred to as ‘thixotropy.’

There are a number of theoretical efforts to explain more complex yield behaviour than provided by
Bingham-like models. A popular approach starts from simple yield stress models such as Bingham or
Herschel-Bulkley and introduces some kind of structural variable on which for instance the viscosity,
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FiG. 1. Left: Observations of delayed yielding in ketchup (reproduced from Caton & Baravian (2008)). Right: Fit of these data
using a modified PEC model (reproduced from Maki & Renardy (2012)).

yield stress or power law exponent may depend (Fielding, 2009; Picard et al., 2002). An evolution
equation is then postulated for the structure parameter. On the other hand, one may try to obtain complex
yield stress behaviour as a limit of viscoelastic behaviour when a relaxation time becomes very large. In
this point of view, there is no true yield stress, but yield stress behaviour arises in a singular limit where
the relaxation time tends to infinity. This point of view was advocated in Barnes & Walters (1985). This
article reviews recent work on the systematic use of asymptotics to analyse the large relaxation time limit
of a viscoelastic model which is able to produce thixotropic yield stress behaviour. This approach was
developed in recent work by Renardy (2010). He showed that the ‘partially extending strand convection’
(PEC) model of Larson (1984) is capable of explaining the salient features of thixotropic yield stress
fluids. Larson obtained his model from a molecular theory of entangled polymers. The model has recently
also been applied to wormlike micelles (Zhou et al., 2008). Wormlike micelles are surfactant solutions
which include such popular household items as shampoo. They are often viewed as ‘apparent’ yield
stress fluids. In these fluids, the viscosity in the unyielded phase is two or three orders of magnitude
higher than in the yielded phase, but is still small enough to observe a flow.

In Renardy (2010), the PEC model is formulated as a modification of the upper- convected Maxwell
model which includes a ‘microstructural parameter.” The model is described in terms of a conformation
tensor C, which satisfies a differential equation of the form

CY 4+ A(¢(trC)C — x(tr OI) = 0. (1.1)

Here CV denotes the upper-convected time derivative given by

c = % + (V- V)C = (VV)C = C(VV), (1.2

where v is the velocity of the fluid. The constant A has the dimension of inverse time, and is assumed to
be small in a sense made precise below. The stress tensor T is related to C by

If the functions ¢, ¥ and x are constant, this model reduces to the upper-convected Maxwell model. In
a thixotropic yield stress fluid, on the other hand, we should expect the viscosity and relaxation time to
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decrease when the fluid yields; this is built into the model via the dependence on tr C. The trace of the
conformation tensor thus fulfils the role of a microstructural parameter.

Let s = tr C. Larson’s PEC theory leads to the model functions ¢ (s) = x(s) = s + «, ¥(s) =
k/(s + a), where k is a stress modulus and @ > — 3 is a dimensionless constant. Larson’s molecular
theory would lead to « > 0. However, the only mathematical constraint that needs to be imposed on the
model is the s + « should remain positive, and it can be shown that s always remains greater or equal to
3. We note that s = tr C is equal to 3 in equilibrium where C = L.

The PEC model leads to a yield stress because, due to the term s + « in the denominator of v, the
magnitude of Tpgc as given by (1.3) cannot exceed a threshold value. To account for the response of the
fluid after yielding, we augment the PEC model by a Newtonian viscous term. Thus the total stress will
be given by

T =y (trC)C + n(Vv + (Vv)!). (1.4)

We can non-dimensionalize the model by scaling stresses with k and time with n/k. After redefining the
stress as T/k and time as tk/n, we can and shall therefore set k and 1 equal to 1. The PEC model then
has two dimensionless constants left: @ and € = An/k, which we assume to be small. Both parameters
have a natural physical interpretation. The ratio of yielded to unyielded viscosity, or equivalently, the
ratio of the retardation time 1(3 + &) /k to the relaxation time 1/((3 + a)A, is €(3 + «)?. The parameter
« is related to the magnitude of the yield stress relative to the shear modulus: in ‘fast’ yielding (see the
section on shear flows below), the ratio of yield stress to stress modulus is /3 4+ « /2. Thus a large value
of o corresponds to a high yield stress, while a value close to —3 corresponds to a low yield stress.

We view the PEC model as a prototype of a theory which can explain thixotropic behaviour as a limit
of viscoelasticity. The small number of parameters makes the model relatively simple, which allows a
quite explicit analysis of a number of time-dependent flows in the limit of small €. This paper will review
results obtained by the authors along those lines over the last few years, including startup and cessation
of shear flow (Maki & Renardy, 2010, 2012; Renardy, 2010), oscillatory shear flow (Renardy & Wang,
2015) and elongational flow (Grant & Renardy, 2015; Renardy & Grant, 2013).

2. Shear flows
In a shear flow, we have v = (u(y),0,0). In this case the PEC model reduces to C,, = C3; = 1,
Ci3 = Cy; = 0, and the remaining components of the conformation tensor satisfy the system

Cii =26Cpy — e(s + @)(Ciy — 1),

Cih =k —e(s+a)Chy. .1

Here « = u'(y) is the shear rate and s = tr C = Cy; + 2. Under the assumption of creeping flow, we
have

Cp
s+

+k=r1, 2.2)

where 7 is the total shear stress.
A basic observation about shear flow is that the qualitative dynamics is independent of «. Specifically,
if we scale Cj, with /3 + a, C;; — 1 with 3+«, 7 with 1/+4/3 + «, time with 3+« and € with (3 +a) 2,
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FIG. 2. Shear rate « /€, shear stress T2 pec and first normal stress N; as given by (2.3) for o = 0.

then o scales out of the equations. By contrast, @ profoundly influences the qualitative dynamics in
elongational flow (see the relevant section below).

2.1. Steady shear flow

In steady shear flow, we obtain from the above equations that

-3
s+o’

1
Ny =T _TZZ—S_(CII - )—

C12 1 s—3
TIZ’PECZS—FO[:S—FO[ >
(s+ ot),/ (2.3)

We note that k /e and N, are monotone functions of s, but 7, pgc is not. We show a plot for « = 0
in Fig. 2. Indeed, the elastic shear stress reaches a maximum value at s = « + 6; the value of this
maximum is

K
€

1
2/2B +a)

As s increases beyond « 4 6, T, prc decreases with increasing s and actually approaches zero as s — 00.
We note that the shear rate value at which s = a+6isreached is proportional to €. As 7', pgc decreases, the
total shear stress goes through a minimum and then increases again, due to the Newtonian contribution.
It can be shown, to leading order in €, the value of the shear stress at the minimum is

Ty = (2.4)

= 232374l (2.5)

and the corresponding shear rate is 373/4271/2¢1/4,

2.2. Startup and cessation of shear flow

In the following, we shall regard the total shear stress t as given. In startup of steady shear flow, we
initially have equilibrium, i.e. « = 0, C;; = 1, C;, = 0. Starting from r = 0, we impose a prescribed

50
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constant shear stress 7. From (2.1) and (2.2), we obtain the system
. Cp
Ci=2(t ———)Cpp —e(s+a)(Cy; — 1),
s+ o
. C
Ch=1— —2> —e(s+a)Cp. (2.6)
s+ o
We can distinguish three distinct dynamical regimes: fast, slow and yielded.

2.2.1. Fast dynamics If we simply set € = 0, then the system (2.6) reduces to

Cll =2(t — Co )Cia,
s+
: Cp
Cp=1— . 2.7
12 prpy (2.7)
We refer to this regime as fast dynamics. We can conclude from (2.7) that
C, —C;, =K, (2.8)

where K is a constant. If the shear flow starts from equilibrium, then K = 1. Substitution into the second
equation of (2.7), noting that s = C; + 2, leads to

C12

Ch=1— ——= .
2 K+2+a+C

(2.9)
We note that the function Cy, > Cj2/(K +2+a+C3,) goes through a maximum when C}, = K+2+a.

2.2.2. Slow dynamics 1If t < 1/(24/K + 2 4 «), then fast dynamics can reach an equilibrium point.
When this happens, there is a transition to another regime which we call slow dynamics. In slow
dynamics, the shear rate « is small on the same order as €. To obtain a leading order approximation of
slow dynamics, we note that

d
€ - Ci) = —€e(s+a)(Cy, — 1 —2C3). (2.10)

In this equation, we approximate Cy, by (s + o). We can further scale out € by setting 7 = ez. We
obtain a single equation, which can be written in terms of s as

%(s—rz(s—i—a)z) =—(s4+a)s—3—=2t%(s+a)). (2.11)

The points of particular interest are equilibrium points and singular points. At equilibrium points,
s — 3 —272%(s + @) = 0. This leads exactly to the equilibrium point for steady shear flow discussed
above. At a singular point, we have

d 2 2
LE-TE+e) =0, 2.12)
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i.e.s+a = 1/(2t?). These singular points are points of tangency between the slow curve C;, = 7(s+a)
and a fast curve Cy; — C?, = K. If the slow dynamics converges to one of these singular points, there is
a transition to fast dynamics.

2.2.3. Yielded dynamics Inyielded dynamics, we cannot neglect the € terms because they are multiplied
by a large quantity. Specifically, we set C;, = € '/3Cy,, C;; = € 23Cy, and t = €~'/*%. With these
rescalings, the leading order balance in (2.6) becomes

d_Cll = 2TC12 - C“,

d A A A
§C2—‘C_C11C12. (213)

Ifr > 0, yielded dynamics has a fixed point in the first quadrant given by Cy, = 23723, Cy, = 271/3¢ 153,
Moreover, this fixed point can be shown to be globally attracting with the invariant region C > C12

2.2.4. Startup of shear flow If shear flow is started from equilibrium, fast dynamics (with K = 1)
describes the initial evolution. The governing equations are given in (2.7). Eventually, either an
equilibrium is reached, or the solution will tend to infinity. The former case occurs if

t<T,=1/2V3+ ). (2.14)

If 7 is larger than this threshold value, then the solution for fast dynamics goes to infinity, and there
is a transition to yielded dynamics at a time of order € ~'/3 (see Section 2.2.3). Yielded dynamics then
reaches an equilibrium. If t < T, fast dynamics reaches equilibrium, and there is a transition to slow
dynamics (see Section 2.2.2). During slow dynamics, the shear rate is of order € and the evolution takes
place on a slow time scale of order 1/¢. Eventually, an unyielded steady state is reached if 7 < T),.
If, on the other hand, T > T}, then there is no equilibrium for slow dynamics. Instead, the solution
approaches a singular point. At that point, there is a transition to another fast curve, along which the
flow eventually yields.

We note that 7, = \/ETM. If 7 is between T), and T,, there will be unyielded behaviour over short
times: the fast dynamics approaches an equilibrium. Over long times, however, the fluid eventually
yields. Yielding is delayed, and the delay lengthens as T approaches T),. This is the behaviour which is
illustrated in Fig. 1.

2.2.5. Cessation of shear flow Now suppose we start with an established yielded shear flow and then
lower the imposed value of shear stress. If we lower the shear stress to any non-zero value (more
precise, to any value large relative to €'/4), then the flow will remain yielded and simply approach a
new equilibrium via yielded dynamics. On the other hand, if we lower the imposed shear stress to zero,
then the yielded dynamics will approach C; = Cp, = 0, and at this point there is a transition to slow
dynamics. Following slow dynamics, Cy; relaxes to its equilibrium value of 1 on a time scale of order

~!. On the other hand, the shear rate approaches zero on a much faster time scale; indeed « is virtually
zero for t >> €~ 1/? (see Renardy (2010) for details). Suppose we now impose a new shear stress before
the fluid has fully relaxed to equilibrium. This sets up a new initial value problem, which initially is
described by fast evolution. However, the fast curve that is followed is not the one with K = 1, but one
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with a larger value of K. Consequently, we observe a much lower yield stress. This phenomenon is what
is commonly referred to as thixotropy.

2.3. A modified PEC model

A potential flaw of the PEC model is that, in the limit € = 0, the stress threshold for unyielding goes all
the way down to zero. This is somewhat ameliorated by the fact that the stress minimum is only of order
€'/4 as noted above. Nevertheless, if € is extremely small, it becomes desirable to modify the model and
allow a non-zero stress for unyielding. This can be accomplished by modifying the constitutive functions
which appear in (1.1) and (1.3). Maki & Renardy (2010, 2012) have investigated a model which leaves
¢ and ¢ the same as for PEC, but changes x (s) to (s + «)(1 4+ g(s — 3)), where ¢ is an ‘unyielding
parameter.” They fitted data for bentonite suspensions with € = 107°, @ = —2 and g = 0.05. For this
modified model, the value of the stress minimum in the limit ¢ — 0 is equal to /(1 — 3g)q/2 rather
than zero.

The analysis of the modified model is significantly more complex than that of the PEC model,
although it shows many similarities. The basic asymptotic regimes of fast, slow and yielded dynamics
persist. The most striking new feature of qualitative dynamics is that both unyielded and yielded steady
shear flows can lose stability to subcritical Hopf bifurcations. If the imposed shear stress falls into the
range where this happens, relaxation oscillations result where a solution alternates between a phase of
fast yielding and a phase of slow unyielding. Such ‘fracture-heal’ cycles appear to have been observed
in laponite suspensions (Ianni ef al., 2008).

2.4. Oscillatory shear flows

We now consider an oscillatory imposed shear stress t(f) = Bsin(wt). This adds another time scale,
namely the period of the oscillation 277 /w. This time scale should be compared with the relaxation time
and retardation time. We are interested in a regime where the ratio of relaxation time to retardation time
is large (of order 1/€). The behaviour in limiting cases is easily understood. First, if the period of the
oscillation is long relative to the relaxation time, then a quasisteady state results: at each instant of time
the flow is effectively given by a steady shear flow with the imposed stress t(¢) . If B > Ty, then a cycle
of yielding and unyielding occurs during each oscillation; if B < T),, then the flow remains unyielded.
Secondly if, on the other hand, the period of oscillation is short relative to the retardation time, then
there is insufficient time to build up an elastic stress, and the response is dominated by the Newtonian
‘solvent’ viscosity. Thus the shear rate simply undergoes a sinusoidal oscillation synchronous with that
of the shear stress. The interesting range is where the period of the oscillation is intermediate between
retardation time and relaxation time. This regime was investigated in recent work by Renardy & Wang
(2015).

The flow considered in Renardy & Wang (2015) is stress controlled and homogeneous. In prior
literature, the PEC model and a refinement of it, known as the VCM model, were used to analyse large
amplitude oscillatory shear flows of wormlike micelles (Dimitriou et al., 2012; Zhou et al., 2010).
However, the experimental data addressed there are for prescribed (nominal) strain rather than stress. In
prescribed strain experiments, the shear rate becomes inhomogeneous as soon as yielding occurs, and
shear bands develop. The analysis of this problem is more complex than the analysis of homogeneous
shear flows; we shall return to this point in a later section. Although a direct comparison is not possible, the
analysis in Renardy & Wang (2015) explains some qualitative features of the results found in Zhou et al.
(2010). The parameters used by Zhou et al. (2010), in our notation, are @ = 1.286, ¢ = 0.00027. Stress
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controlled experiments on simple yield stress fluids such as Carbopol are in the literature (Dimitriou
et al., 2013); analogous experiments on thixotropic yield stress fluids in oscillatory shear are yet to be
conducted.

Renardy & Wang (2015) consider an imposed shear stress t=Bsin(wf). In the non-
dimensionalization we have chosen, the retardation time is of order 1, and the relaxation time is of
order 1/€, so the range of interest is

e<w<l. 2.15)

As we have noted above, the qualitative dynamics for shear flows is independent of «; in Renardy &
Wang (2015), « has been setequal to 1. We now set w = €”, where 0 < p < 1,0t = randu = Cy; —Clzz.
The system (2.6) then assumes the form

dC12 R . C12
& =< B0 - s o)
d
d—“ =P+ u+3)(1 —u+ ). (2.16)
.

We first consider ‘yielded’ solutions of the system (2.16). If the amplitude of the sine function exceeds
the maximum of the function C, — Clz/(Clz2 + u + 3), then Cy, grows to a magnitude of order €7,
and the term C,/(C?, + u + 3) then becomes small of order €”. As a result, there is a balance between
the derivative dCy,/dr and € ?Bsinr, and C), oscillates with an amplitude of order ¢ 7. In the second
equation of (2.16), we can use an averaging approximation. This leads to a solution, where, to leading
order, we have

Ci, =—BePcosr, u=e *B*/3/8. 2.17)

This approximation is valid as long as the terms denoted by O(¢) in (2.16) remain negligible; this turns
out to be the case as long as p < 1/3.

This ‘yielded’ solution exists for any positive B. If B is sufficiently small, however, there is another
‘unyielded’ solution, where, in the first equation of (2.16), B sin r is balanced against Clz/(Clz2 +u+3).
Averaging can still be applied to the second equation, i.e. to leading order u is constant and satisfies the
equation

—u* —2u+3+4(C%) + (C}) =0, (2.18)

where (-) denotes the temporal average. The condition for this unyielded solution to exist is that B does
not exceed the maximum of the function Cy,/ (Clz2 + u + 3). If the unyielded solution exists, it is, to
leading order, independent of p € (0, 1). Yielded and unyielded solutions can coexist at the same shear
stress, leading to shear bands.

While the unyielded solution, if it exists, persists over the entire range of p, the assumptions used
to obtain the yielded solution break down if p exceeds 1/3. In this case, the O(¢) terms indicated in
the first equation of (2.16) cannot be neglected any more, and a transition to yielded dynamics occurs.
To describe yielded dynamics, we rescale C;; = € >3Cy; and C), = € '/>C),. The rescaled system, at
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leading order, is as follows:

dq. . -
d_cl1 = €'FP@2Bsin(r)Cy, — C}),
.

d - ..
d—c12 = €' P(Bsin(r) — C,;Cyp). (2.19)
p

Since p > 1/3, we expect a solution which can be approximated by setting the right hand sides equal to
Zero:

0 = 2Bsin(r)Cy, — C?,
0 = Bsin(r) — C;,Ca. (2.20)

This leads to Cj, = (Bsinr/2)'/3 and C;; = 2'/3(Bsin r)*3. The assumption that the left hand side of
(2.19) can be neglected becomes inconsistent when sin r is small on the same order as € *”~1/> At that
point, the full system (2.19) must be considered.

This asymptotic regime persists as long as 1/3 < p < 3/4. When p exceeds 3/4, the oscillation
becomes slow enough to allow time for partial unyielding. A detailed description of the asymptotics is
quite intricate, and the reader is referred to Renardy & Wang (2015). The yielded dynamics as described
in the preceding paragraph prevails when r is not close to a zero of the sine function. Near zeros of the
sine function, we have the following stages:

(1) Yielded dynamics breaks down when nm — r becomes small of order €'/4. At this point, elastic
stresses become of the same order as viscous stresses and must be included in the leading balance.
The behaviour remains quasistatic as it was in the yielded regime, i.e. the time derivatives of Cy;
and C), can be neglected. The orders of magnitude of C;; and C), are, respectively, e "'/? and e ~/4
during this stage.

(2) Atacritical value & of (nm — r)/e'/*, the existence of a quasistatic solution is lost. We then enter
a new regime of more rapid change, during which r = nw — 5€'/* + O(e”~/?). During this phase,
C,; and C), decrease to order of magnitude €”~>* and €”~!, respectively.

(3) This is followed by a phase of slow evolution, during which the shear rate is negligible, i.e. to
leading order T = Bsin r is balanced by the elastic stress Cy,/(C; + 3). During this phase, Cy; is
slowly decreasing. This phase persists until » — nr is of order €!~?. At this point, C;; has decreased
to the order of magnitude e~2.

(4) Finally, there is a yielding phase which occurs over a short time scale. At the end of this phase, the
system returns to yielded dynamics.

One of the crucial aspects in understanding these results is that yielding happens on a faster time
scale than unyielding. For a stress amplitude of order 1, a period of order e ~'/3 is long enough to allow
full unyielding and a transition to yielded dynamics. On the other hand, a much longer period of order
€73/* is needed before any unyielding occurs.

3. Elongational flows

The PEC and related models have been applied successfully to interpret elongational flows in wormlike
micelles, see Cromer et al. (2009). One of the most striking findings in such flows is a significant
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difference between uniaxial and biaxial extension (Rothstein, 2008; Walker et al., 1996): extensional
thickening is observed in uniaxial extension but not in biaxial extension. Wormlike micelles have a yield
stress that is relatively high compared to the stress modulus; this allows some elongational deformation
before yielding occurs. For fluids with a low yield stress, on the other hand, it is difficult to set up an
elongational flow, and there are few if any data. There are some measurements of yield stress values,
which suggest a von Mises criterion correlating yield stress values in elongation to yield stress values
in shear (Shaukat et al., 2012); the PEC model is consistent with this (for ‘fast’ yielding) if « is close to
—3 (Grant & Renardy, 2015).

Renardy & Grant (2013) and Grant & Renardy (2015) have studied the startup and cessation of
elongational flow of the PEC model in a manner analogous to the analysis of shear flow described
above. In elongational flow, the velocity gradient has the form

k 0 0
Vv=10 -5 0], (3.1
0 0 =3
and the conformation tensor C has the form
Ch O 0
C=10 Cy»n 0. (3.2)
0 0 Cxn

The flow is uniaxial if k > 0 and biaxial if ¥k < 0. The imposed elongational stress is given by

Cll - C22
‘[:T“ —T22:3K+—’ (3.3)
s+ o
where s = Cy; + 2Cy,. The flow is uniaxial if T > 0 and biaxial if T < 0.
The dynamics of the PEC model is now described by

dc
F” =2kCyy+e(s+a)(1 —Cyy),
dcC
dtzz = —KC22 —+ G(S +a)(1 - C22)a
1 Ci—Cx
= —(p— Tty 34
K 3(T Py ) G4

3.1. Steady elongational flow

In steady elongational flow, it can be shown that k /€ and s are related by the quadratic equation
K., K
2(2) s+2(s—3)(s+oz)+(3—s)(s+a)=O. (3.5)

For any s > 3, this equation has a positive solution k /e corresponding to uniaxial flow and a negative
solution corresponding to biaxial flow. We find

E:—S+a(:|:\/3(s—3)(3s—1)+s—3). (3.6)

4s
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The corresponding elongational stress is

s—3+/36-3)Gs— 1D

=3
‘ o 4(s + )

3.7

In contrast to shear flow, the dependence of T on k is non-monotone only if « is sufficiently negative.
Specifically, it is shown in Renardy & Grant (2013) and Grant & Renardy (2015) that non-monotone
dependence of elongational stress on elongation rate arises in uniaxial flow if « < —2 and in biaxial
flow if ¢ < —1.

3.2. Fast, slow and yielded dynamics

We now consider the transient dynamics for startup or cessation of flow. As in the case of shear flow,
we can distinguish distinct regimes of fast, slow and yielded dynamics.
In fast dynamics, we neglect the € terms in (3.4). As a result, we have

dCy
—L = 2%Cyy,
dr At
= — C N
dr KCa
1 Ci—Cxn
=—(1— —). 3.8
K 3(r P ) (3.8)

We conclude that Cy;C3, is equal to a constant K. By setting C;; = K/C3, and using the last equation
of (3.8) to express k, we find a single equation for the evolution of C,,.
In slow dynamics, « is close to zero (of order €). We can deduce from (3.4) that

d(c CL) = —eC | CL(s +a)(3 — L 2) (3.9
dl‘ 11%22) — 11%22 Cll ng . :

The equation for slow dynamics is obtained by setting « = 0, which yields a relationship between Cy;
and C,,, resulting in a single equation for Cy,.
In yielded dynamics, either C;; (in uniaxial extension) or Cp, (in~biaxial extension) is of order

1/€. For instance, if we assume uniaxial extension and set C;; = ¢~!C},, then to leading order (3.4)
reduces to
dCyy e
F = 2KC11 — Clzl,
dCy ~
ar = —kCyp + Ci (1 = Cyp),

K = %(r — . (3.10)
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In the biaxial case, we find instead

dc 2
F” =2kCyy +2C»(1 - Cyy),
dCy, > -
& =—kCy — 2C222’
1 n 1 (3.11)
=—1|7 = ). '
K 3 2

3.3. Startup and cessation of elongational flow

The analysis of startup and cessation of elongational flow is similar to that of shear flow, but the details are
considerably more complicated. We refer to Renardy & Grant (2013) and Grant & Renardy (2015) for the
specifics, and merely give a brief summary of the results. The initial dynamics starting from equilibrium
always follows a fast curve. If T < 1 for uniaxial extension or t > — 1/2 for biaxial extension, then the
initial fast curve reaches equilibrium, and there is a transition to slow dynamics, ultimately leading to
an unyielded steady flow.

If, on the other hand, t > 1 or t < —1/2, and @ > 0, then there is a transition to yielded dynamics,
leading to a yielded steady flow. A more complicated scenario arises when o < 0. In this case, fast
yielding occurs only if

"= 3(1—1)'3 (21’ + 1)2/3.

2 (3.12)

T

If « is less than this threshold value, the fast dynamics reaches equilibrium, and there is a transition to
slow dynamics. If an unyielded steady flow exists at the given values of o and t, the slow dynamics
will converge to that state. If not, then there is delayed yielding, i.e. the slow dynamics approaches a
singularity, and then there is transition to yielding along another fast curve. We note that the critical
value of « given by (3.12) approaches zero when T = 1 or t = —1/2, but approaches —3 if |t| — oo.
The upper curve in each of the plots in Fig. 3 shows the critical value of « as given by (3.12) in uniaxial
and biaxial flow. In the region below the upper curve, the flow transitions to slow dynamics. Steady

0.0

FiG. 3. Ceritical value of « as given by (3.12) (solid curve) and existence boundary for steady unyielded flow (dashed curve) for
uniaxial (left) and biaxial (right) extension.
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Titeady

0.8 L L L Ksteady
1077 103 0.001 0.1

FiG. 4. Steady elongational flow curves for « = —2, —2.2, —2.5 and —2.8. The value of « is decreasing from right to left.
Reproduced from Fig. 1b of Renardy & Grant (2013).

unyielded flows exist below the lower curve. In the parameter region between the two curves, there is
delayed yielding. Figure 4 shows the steady flow curve in uniaxial flow. Non-monotone behaviour exists
only if o < —2.

The behaviour in elongational flow is thus quite different from that in shear. In particular, non-
monotonicity and delayed yielding do not occur for o > 0, i.e. in the range relevant to wormlike micelles.
The unyielding behaviour is also different. If we start from an established yielded flow and then lower
the imposed stress, then we saw above that (in the limit e — 0) we have to lower the stress all the way to
zero for shear flows. In elongational flow, on the other hand, unyielding will occur if | 7| is lowered below
1 (uniaxial case) or 1/2 (biaxial case). Unyielding occurs via slow dynamics, resulting in thixotropic
behaviour as in shear flow.

4. Future directions: inhomogeneous flows and shear banding

The flows considered so far have all been assumed spatially homogeneous. If the flow is not homoge-
neous, then yielded and unyielded regions may coexist, and different asymptotic regimes of fast, slow
and yielded dynamics will apply in different regions of space, with moving boundaries. In general, the
asymptotic description of solutions can be expected to become quite complicated. The resolution of this
problem poses a future challenge.

Perhaps the simplest situation for a spatially inhomogeneous flow is a pressure-driven Poiseuille
flow. Let us say the flow is in the x-direction, in the channel —1 < y < 1, t denotes the shear stress,
and P, is the given pressure gradient. If creeping flow is assumed, we have the stress balance 7, = P,,
i.e. we find T = P,y. For each y, we then have a problem of shear flow with prescribed stress as was
discussed above. However, the dependence on y raises new questions for asymptotic analysis.

Consider startup of Poiseuille flow, i.e. the fluid is initially at rest, and the pressure gradient is
imposed starting at ¢t = 0. We assume P, > T,, where 7, is as in Section 2.2.4 above. We know from the
discussion of startup of shear flow above that there will be fast yielding for |t| > T,, i.e. |y| > T,/P,,
delayed yielding for 7y, /P, < |y| < T,/P,, and unyielded flow for |y| < T),;/P,. The transition between
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TABLE 1 Yield time and width of yield zone as a function of
shear stress

Value of © Yield time Width of yield zone
148,85 >> e 5§12 832
T48,8=0(") e\ €
1—8,8>>¢ Se! €
Between 1/(4+/2) and 1/4 e €
Tn+68,6>0 e~ 1§12 €83

yielded and unyielded regions moves inward and sharpens as time progresses. How do the location and
width of this transition zone depend on time? In Renardy & Wang (2015) we address this question. The
results are summarized in Table 1. We have set« = I, sothat 7T, = 1/4and Ty, = 1/ (4«/5). T,, 18 the
stress maximum in steady shear flow, which is equal to 7), plus a correction of order €.

In viscometric devices, the shear stress is not perfectly homogeneous, due to imperfections of the
device. If the imposed shear stress falls in the region where delayed yielding occurs, transient shear bands
can form. All of the fluid eventually yields, but the yield time varies across the sample. See Moorcroft
& Fielding (2013) for an analysis of this phenomenon for the Rolie—Poly model, which behaves in a
similar way as the PEC.

As time tends to infinity, the shear banding transition becomes infinitely sharp. Also, the transition
may occur at any stress level between the minimum and maximum of stress in the steady flow curve,
depending on flow history. These features change if regularizing effects are included in the analysis. This
adds another small parameter to the analysis. The idea is to include effects which are usually negligible,
but need to be taken into account if there is a large gradient in the shear rate. Such effects will lead
not only to a smoothing of the transition, but will also determine the ultimate location and stress level
at which the transition occurs. Stress diffusion has been widely used as a regularizing mechanism, see
Fardin et al. (2012), Lu et al. (2000), Spenley et al. (1996) and Zhou et al. (2012). Stress diffusion is
motivated by theories of dilute polymer solutions, where polymer molecules diffuse in a Newtonian
solvent and take their stresses with them. The molecular structure of fluids in which shear banding
actually occurs, however, tends to be quite different. Recent work by one of us suggested a different
mechanism, based on Korteweg stresses which result from an interfacial energy, which can, for instance,
be motivated as a tube mismatch energy in theories of entangled polymers (see Renardy, 2014). With
either stress diffusion or Korteweg stresses, there is now a second small parameter in addition to €. A
systematic investigation of the asymptotics generated by the interplay of these two parameters remains
as a challenge for the future.
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