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A viscoelastic constitutive model which combines the partially extending strand convection model and
a Newtonian solvent is used in the regime of large relaxation time. Prior work on one dimensional
time-dependent solutions at prescribed shear stress predicts some of the features expected of thixotropic
yield stress fluids, such as delayed yielding. In this paper, we present the linear stability analysis of two-
MSC: dimensional plane Couette flow, for parameter regimes that support a two-layer arrangement consisting

74H55 of an unyielded layer and a yielded layer. Asymptotic analysis and computational techniques are applied.
76A05 We find that the one layer yielded flow can have bulk instabilities which also emerge in the two-layer
76E05 flow. Bulk instabilities in the yielded phase appear not to have been observed in prior literature. For
Keywords: some parameters, an interfacial mode is unstable and is driven by the normal stress difference across the

interface. The yielded zone has the higher first normal stress difference, as for the well-studied Johnson-
Segalman model. In order to assess the importance of the sign of the first normal stress difference at the
interface, we specifically design a modification to the model to reverse the sign. It is found that instabil-
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1. Introduction

Shear banding is the coexistence of high shear rate (“yielded”)
and low shear rate (“unyielded”) zones at the same shear stress,
and occurs in many complex fluids such as wormlike micellar solu-
tions, pastes and suspensions [1-6]. In this work, we are interested
in instabilities of shear banded flows. We find that these arise both
from the bulk and at the interface between the two zones.

In the limit of a long relaxation time, the PECN model (partially
extending strand convection model and Newtonian solvent) pre-
dicts certain characteristic behaviors of thixotropic yield stress flu-
ids [7], allowing a precise mathematical expression of the idea that
yield stress behavior is really a limit of extremely long relaxation
time [8]. The yielding and unyielding hehavior of the model under
an imposed constant stress has been analyzed in prior work [7],
and we briefly summarize the results. Specifically, the model equa-
tions contain a small paramter €, which physically corresponds to
a ratio of retardation time to relaxation time; in our nondimen-
sionalization below, time is scaled with the retardation time. If we
formally set € =0, the PECN model reduces to a nonlinear elastic
model, and this phase describes the initial evolution from equilib-
rium when a stress is suddenly imposed. The elastic shear stress
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assumes a maximum at a certain value of shear deformation and
then decreases to zero as the shear is increased further.

With small but non-zero €, the steady shear response is non-
monotone, with a stress maximum of order 1 at a shear rate of
order €, and a stress minimum of order ¢!/ at a shear rate of or-
der €'/, For nonzero e, there is no “true” yield stress; the shear
rate in the “unyielded” regime is nonzero but small, of order e.
Thus, simply setting € =0 in the governing equations gives only
an incomplete picture of the dynamics, because different asymp-
totic regimes that depend on € arise when long times and/or large
deformations arise. These different regimes are considered in de-
tail in [7]. One of the results of the interplay of these dynamic
regimes is delayed yielding: The value of the stress maximum in
steady shear flow is lower (by a factor +/2) than the elastic shear
stress maximum. If the imposed shear stress is higher than the
elastic maximum, yielding will happen immediately, but if the im-
posed stress lies between the steady and elastic maxima, yielding
will happen eventually, on a long time scale of order 1/e. In sum-
mary, the small € asymptotic analysis shows that flow is induced if
either the shear stress exceeds the elastic stress maximum (imme-
diate yielding), or the maximum on the steady flow curve (delayed
yielding). Once flow begins, the yield stress is lowered, i.e. there is
yield stress hysteresis.

If the shear stress is suddenly removed in an established
yielded flow, the motion will cease quickly, but the viscosity will
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return to its equilibrium value (which is of order 1/¢) only over a
timescale of order 1/e, i.e. we observe thixotropic behavior. This is
documented in [9].

In a shear rate controlled experiment, there is no stable homo-
geneous steady flow if the imposed shear rate falls into the interval
where the steady response curve is decreasing. However, there are
shear banded solutions, where two or more layers are formed, and
in each layer the shear rate is on an increasing part of the steady
flow curve. The shear stress is continuous across the boundary be-
tween layers, but the normal stress is not.

Parallel flows consisting of layers of two different viscoelastic
fluids may have interfacial instabilities driven by a normal stress
jump at the interface. Such instabilities were first found in the flow
of two upper convected Maxwell fluids by Renardy [10] and Chen
[11]. A shear banded flow, resulting from a non-monotone consti-
tutive curve is analogous to this; although the two layers are the
same fluid, they have different shear rates and normal stresses, and
the interface can be treated as a material surface. Renardy [12] in-
vestigated the shear-banded flow of a Johnson-Segalman fluid and
found interfacial instabilities driven by a normal stress jump. Her
analysis was later expanded, most notably by a study of the long
wave limit and by the inclusion of stress diffusion at the interface
[13-15]. Even earlier, McLeish [16] found a normal-stress driven
interfacial instability in shear-banded flow of a Doi-Edwards fluid.
Rather than a full linear stabiity analysis, he used a simplified set
of equations which was intended to capture the essential physics
of long-wave instabilities.

There is much work based on the Johnson-Segalman model
[13-15,17-19]. On the other hand, there are other established mod-
els that display non-monotone constitutive behavior and shear
banded flows; for example, PECN is a Newtonian solvent model
combined with a “partially extending strand convection” model,
originally introduced by Larson [20] for entangled polymer melts.
The Vasquez-Cook-McKinley (VCM) model is a refinement of this,
which has had success in modeling the behavior of wormlike mi-
cellar solutions [21].

Fluids which show shear banding include wormlike micelles,
some polymers and soft glassy materials [3]. Instabilities in shear
banded flows have been observed in wormlike micelles. Experi-
ments are typically done in curved geometries, where, aside from
the interfacial instability there is also the possibility of a vis-
coelastic Taylor instability. It is believed that the Taylor instabil-
ity is the dominant mechanism in most of the experimental ob-
servations [3]. There are, however, some experiments showing in-
stabilities which have been attributed to interfacial mechanisms;
we cite in particular [22] and [23]. Both first and second normal
stress jumps can cause interfacial instabilities. The instability ob-
served in [22] leads to interface oscillations in the spanwise direc-
tion, as would be expected from a second normal stress effect. In
[22], the authors link the experimental observations to an analysis
of the Johnson-Segalman model [18], which shows that although
streamwise waves have a larger linear growth rate, nonlinear in-
teractions ultimately favor spanwise perturbations. However, Fig.
2 in [22] shows no evidence of transient growth of any stream-
wise waves. The experiments of [23] show streamwise corruga-
tions of the interface as would result from an instability driven by
a jump in the first normal stress difference. We note that, unlike
the Johnson-Segalman model, neither the PEC nor the VCM model
has a second normal stress difference.

The analysis presented below shows that shear banded flows of
the PECN model have instabilities. We are not aware of prior stud-
ies of the PECN model per se. However, [24] studied the stability of
diffusive interfaces for the VCM model, and interfacial instabilities
were found.

Our analysis shows that actually there are instabilities in the
yielded phase even when there is no interface. Where they are

0.05]; _

0 0.05 ” 0.1 0

Fig. 1. Total shear stress « (5) + Ti2(s) as a function of shear rate k(s). The dashed
line denotes the prescribed total shear stress r, and intersects the increasing parts
of the curve at x, and & ,. The specific parameters for the PECN model are o = —1,
€ =0.001.
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Fig. 2. Altered PEC model with yr(5) = exp(—s), @ = —2.8, € = 0.001. (a) Steady
state solutions for total shear stress T versus shear rate x (=U’(y)). (b) Steady
state solutions for the first normal stress difference N, versus «.

present, these bulk instabilities, rather than interfacial instabilities,
turn out to be the dominant mechanism of instability in shear-
banded flows. The modes responsible for these bulk instabilities bi-
furcate from the (stable) continuous spectrum at some wave num-
ber, then become unstable over an interval of wave numbers, and
in some cases eventually restabilize and merge back into the con-
tinuous spectrum. Such modes do not seem to have been observed
in prior literature. The only results on single-phase instabilities
in viscoelastic shear flow without streamline curvature that we
are aware of are those of [25,26]; these papers, however, studied
Poiseuille rather than Couette flow.

We also find unstable interfacial modes. We note that, for both
the Johnson-Segalman and PEC-based models, the normal stress
difference in the yielded phase is larger than in the unyielded
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Fig. 3. The real (*) and imaginary (x) parts of the pressure eigenfunction are plotted in fluid 1, and (real +; imaginary o) in fluid 2. This illustrates the pressure field of a
spurious mode, and shows oscillations in the yielded phase between every discretized point.

0.8} have in common, and it is a natural question whether this is im-
06} portant for generating interfacial instability. We note, however, that
04k in the flow of two-layer upper convected Maxwell fluids the ques-
tion of, “Which sign of the normal stress jump leads to instabil-

02 ity?” does not appear to have a straightforward answer; for short
0.0002 0.0004 0.0006 0.0008 K wave disturbances, a higher normal stress difference in the fluid

with lower viscosity is actually stabilizing [10]. In contrast, the

08¢ Johnson-Segalman and PEC models show instability with a higher
0.6} normal stress in the yielded (low viscosity) phase. This motivates
04 us to pose a more strongly shear thinning model where the yielded
phase has the lower normal stress. We introduce this model below

02p in more detail. It is natural to ask whether interfacial instabilities
1 . " . K disappear when the normal stress jump is reversed. We find that

00 02 04 06 08 this is not the case. The VCM model also allows for the possibil-
Fig. 4. Shear rate « vs applied shear stress t, € = 0.001, @ = —2.8. ity that the normal stress is lower in the yielded phase [27,28];

the data to which the model is fitted, however, do not show this.
Interfacial stability for this model was studied [24] for a specific
set of parameters fitted to experiments. For these specific parame-
ters, the model does have a lower normal stress differences in the
yielded phase, but this particular feature is in disagreement with

phase. The experimental data for wormlike micelles reported in
[27] are consistent with this. Since the normal stress jump is driv-
ing the instability, this is an important feature that both models
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Fig. 6. Computed spectrum for yielded flow, @ = —1, ¥ = 0.08397, § = 3.6.

the data. The model discussed below has a much more drastic de-
crease in the first normal stress difference than what is reported
in [27] for the VCM model.

Our analysis does not include stress diffusion. Diffusive effects
favor a particular stress level for the shear banding transition,
while without diffusion any stress between the maximum and
minimum value of the nonmonotone curve can lead to a shear
banded flow. However, there is considerable uncertainty about the
magnitude and precise form of diffusive terms. Strictly speaking,
the diffusion requires another constitutive law on which little is
known. It has been shown that the form of stress diffusion does
affect the location of the shear banding transition [29]. Moreover,
diffusive effects are small, and there is a separation in time scales
between the formation of a shear banded flow and the migration
of the transition to its ultimate location [30]. Instabilities therefore
have time to grow before the ultimate location is reached, and the
stability analysis without diffusion is relevant for predicting them.
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Fig. 5. (a) Growth rate of unstable mode for yielded flow, @ = —1, k = 0.08397. (b) Perturbation stream function for £ = 3.6. Contour values are in units of 10>,
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magnifies for small «.

2. Governing equations and steady shear flow

We consider flow in the region between two parallel horizontal
plates, of which the lower plate is stationary and the upper plate is
moving. The governing equations for the PEC model are presented
in the form given in [7].

Let v* denote the velocity, p* the pressure, p the density, n the
constant solvent viscosity, A the relaxation time, (x*, y*) the spa-
tial coordinates, C the conformation tensor, T* the extra stress ten-
sor, L* the plate separation, I the undisturbed lower fluid depth,
Up the upper plate speed in the x*-direction. The governing equa-
tions for momentum conservation, incompressibility, and constitu-
tive law are:

PRV (PT4S 4T, Vivi =0, (1)
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Fig. 9. Computed spectrum for f =5, other parameters corresponding to Fig. 8.

Comparison of N = 100 and N = 200.

v+ %(gb(trC)C - x(ron =0,
T* = ¥*(trC)C, (2)

0 0.5 1 1.5
x

Fig. 11. Stream function contour plot for the most unstable mode at § =4, param-
eters corresponding to Fig. 8. Contour values are in units of 1075,

where the PEC model functions are
. k1
Yr(s) = STa
d(s) = x(s) =s+a. (3)

CV* denotes the upper convected derivative, CV* = %—

(V*v*)C—C(V*v*)T, where & =2 +v*.V* The Newtonian
contribution to the stress tensor is

, §=trC,

dv}
(V*v*); = E% (4)
The microstructure is fully relaxed when C=1 (hence s = 3), and
only states with s > 3 are physically reachable and relevant. The
model functions are defined if @ > —3. Let t* denote the applied
shear stress. The retardation time is defined by t = 1/k;.

We shall replace the dimensional variables, denoted by asterisks
above, with dimensionless quantities. To this end, time is scaled
with the retardation time, length with the plate separation, and
stress and pressure with k. The ratio of retardation to relaxation
time is

1
€= ox (5)

The dimensionless upper plate speed is U, = U;f/L".

S* = p(V*v* + (V*v9)T),

(b)

Fig. 10. Stream function contour plots of unstable modes for f = 1.5, other parameters corresponding to Fig. 8. Contour values are in units of 10>, Plot (a) shows the mode

with higher growth rate.
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Fig. 12. Stream function contour plot for the most unstable mode at g =7, param-
eters corresponding to Fig. 8. Contour values are in units of 10-5. There is a pair of
unstable modes, the second mode is symmetric to the one shown here.
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Fig. 13. Growth rate of unstable modes for € = 0.001, @ = —2.8, T = 0.65. Solid
curve: I, = 0.2, dashed: I, = 0.5, dash-dotted: I, = 0.7.

In dimensionless form, the governing equations are

Dv

Repr = V- (—pl+S+T), (6)
V.v=0, (7)
YV +e(@(tro)C— x(trol) =0, (8)
where V=% - (W)C-C(W)T, H==2Z+v.V, S=

Vv+ (VW) Vv = g;l and the elastic stress tensor is
1

T=y()C, w(s)=5+1a. (9)

The Reynolds number is Re =L*2pk;/n?, and We =Up/e has
the role of a Weissenberg number. The focus of this paper will be
on the case where Re and € are small.

Apart from €, the only dimensionless model parameter is a.
More physically meaningful combinations of these parameters are

the ratio of yielded to unyielded (zero shear rate) viscosity, which
is €(3+ )2, and the ratio of the yield stress in fast yielding to the
instantaneous elastic modulus, which is +/3 + a/2. Hence a large
value of « corresponds to a high yield stress, while o close to —3
corresponds to a low yield stress. Fits to wormlike micelles yield
positive values of a, which are typically on the order of 1-10, the
ratio of yielded to unyielded viscosity is on the order of 10-3-10-2,
On the other hand, soft glassy materials typically have a low yield
stress (o < —2.5) and € is extremely small (see [9] for some fits of
the model to experimental data).

Our “base flow" is a steady parallel flow in the x-direction, with
a velocity that depends only on the vertical coordinate y and a
shear stress 7 is that is constant across the flow region. We be-
gin by showing the single shear rate case, before defining the base
flow with two shear rates more precisely.

In parallel shear flow, the components of the conformation ten-
sor satisfy

Cii = 2(7 — ¥ ()Ci2)Crz + € (X (5) = $()Crn).

Cz = T — Y (5)Ci, — €4 (5)Cr,

C3=C3=0  Cp=Ci=1 (10)
The shear rate is denoted

K =0u/dy =1t — ¥ (5)Ca,

and the trace of the conformation tensor is

s=Cn+2.

A steady homogeneous shear flow solution is given by the velocity
v=(ky, 0,0),0 <y <1, at the total shear stress 7. The conforma-
tion tensor satisfies
2k (5)? k(s)

Gi=14+—=——, GCa=——-

"CITEEs T Ee
The elastic contribution to the shear stress, Ty,, shear rate «, and
normal stress difference satisfy:

=Ca, (11)

1 s—3
Ty, = - 12
12 S+a 2 (12)
s—3
== (+a)/—. (13)
2
s—3
N1=T11—T22=s+d- (14)

Fig. 1 illustrates the total shear stress T =T, + k£ as a function
of shear rate for steady solutions. The solutions on the decreasing
part of the curve are unstable. Moreover, this gives the range of
t that forms shear banded flows with two different shear rates.
The base flow for two-layer parallel shear flow is given by vp =
(U(y), 0,0) where

K1y
uy) = {x;@_ 1) + Up.

The continuity of velocity at y =1I; gives k1ly = xk2(ly — 1) +Up,
which determines Up once the shear rates are determined. The
shear rates are determined from the continuity of the total shear
stress. The base conformation tensor is given by (11) in each fluid.
The lower layer is denoted by subscript Bl, where s = sp; for the
base flow (15) that produces the shear rate k1 = k' (sp1). The upper
layer is at the shear rate k3 = k(sg2), which defines the value of
Spy. These are shown in Fig. 1 where the dashed line guides the eye
at a constant t, to its intersections with the curve on the increas-
ing branches. Physically, the plate speed controls the development
of shear banded flows by playing the role of the average shear rate.

O0<y<h

L<y<1 (15)
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Fig. 14. Stream function of interfacial mode for Fig. 13 at I; = 0.7. (a) base flow profile, (b) § = 5.6. Contour values in units of 10~5.
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Fig. 15. Stream function of interfacial mode for Fig. 13 at I, = 0.5. Contour values in units of 10~>. (a) base flow profile, (b) # = 0.5, (c) 8 =2.7, (d) 8 = 20.
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Fig. 17. Growth rate of unstable modes for @ = -1, T =0.22, [, =0.8.

The first normal stress difference is Ny = Eg_ﬁ?' and we note from

(13) that the N7 and the shear rate are both monotone functions
of s. Hence, the normal stress difference increases with shear rate.
In particular, the high shear rate region in a shear banded flow has
the higher normal stress difference.

Altered PEC model with lower N; at higher shear rates

To investigate an alternative model where the high shear rate

region has the lower N;, we modify the PEC model by keeping
¢(s) = x(s) =s+a, but setting

y(s) =€ (16)

The base flow remains the same as (15), with ¥ =U’(y). The for-
mula (11) for the base conformation tensor stays the same. The
total shear stress is now given by

Torz +S e
T=Ip2+512=K m—i— .

Fig. 2(a) shows t(s) versus k(s) and displays the non-
monotonicity that leads to shear banding, and we see this also in

(17)

Fig. 1. The difference is that in Fig. 2(a), the graph approaches a
line T ~ k for large s, irrespective of € or a, because of the ex-
ponential decay of ¥/(s). The two values of shear rates which sat-
isfy continuity of shear stress are found from drawing the dashed
horizontal line, as before. Fig. 2(b) shows the normal stress differ-
ence, which is now lower in the high shear rate phase. For lack of

a more established name, we introduce this model as the “altered”
PEC model.

3. Linear stability of shear banded PECN flow

We consider small two-dimensional perturbations of shear
banded flow (15) and linearize the governing equations. The per-
turbations are denoted by lower case variables, e.g., (u, v, p). The
interface position is perturbed by h(x, t). We separate variables
and seek solutions proportional to exp(ot +iBx). This results in

the following linearized system. The governing equations are the
momentum equations,

Re (o0 +UiB)u+Rev U’ = —ifp— f*u+u" +ifTy + T},
Re (o +Uip)yw =—p — Bv+v" +iBTy, +Ts,, (18)

where the perturbed extra stress components are

Tyt = ¥ (s)Ci1 + Cupy’ (s8) (Cr1 + Ca2),

T1z = ¥ (sp)Crz + Crap¥' (sp) (Ci1 + C22),

Ty = ¥ (sp)Caz + Goap¥' (s8) (Ci1 + C22)-

(19)
The incompressibility condition is,
iBu+v =0, (20)
and the constitutive equations are
(o +ipU(y) +€(sp+a) +€(Cpnn — 1))Cn
+€Cy (Cpi1 — 1) — (2iBCenu + 2CppU" + 2U'Cr2) =0,
(0 +iBU(Y) + €(sp + @))Crz2 + € (Ci1 + C2)Cp12
—(iBC1v + Cpizt’ + Cpraiffu +u’ +U'C2) =0,
(0 +iBU(y) +€(sg+a))Co2 — (2Cp12ifv +20") = 0. (21)

Let [[-]] denote the jump of a quantity across the interface lin-
earized at y =I;. In the base flow, the velocity gradient and first
normal stress difference both jump across the interface. The lin-
earized interface conditions imposed at y =1[; are: continuity of



Y. Renardy, M. Renardy/ Journal of Non-Newtonian Fluid Mechanics 244 (2017) 57-74

o 0.002 0.004 0.006 0.008 0.01
U(y)

>0.

oﬂ 005 01 015 02 025 03 035 04 04
X

(c)

0.025 T T T T
/\....
002 | & '.‘ R
s %
: .
- -
; 3
0.015 | : E
— : M
=) . §
1 . 5
T : .
001 N S -
.
* .
. -
. A
- ..
0.00s | N A J
.‘
3
. -,
.
o 2 4 [:] B 10 12 14 16 18 20
Fig. 19. Growth rate of unstable modes for ¢ = -1, 1 =0.22, I, =0.7.

65

t'0 01 02 03 04 05 06 07 08 09
X

(b)

0
0 0.05 0.1 0.15 0

(d)

Fig. 18. Stream functions of unstable modes for Fig. 17. (a) base flow profile, (b) # =5.9, (c) f = 13, (d) # = 30. Contour values in units of 10-5.

velocity,

[ull + h[U'] = O,
vl =0, (22)

continuity of stresses,

—iBh[Nyg]l + [Tz +ifr+u'] =0,
[T +2V — p=0, (23)

and the kinematic free surface condition

(o +iBU)h =v.

The boundary conditions are no slip at the walls. At y =0 and
y = 1, the perturbed velocities vanish u = v = 0.

This completes the formulation of the eigenvalue problem, sym-
bolically written L,[V] = oL,[V], where the eigenfunction v consists
of {u, v, p, Cn1, C12, Gy in layer 1}, {u, v, p, Cy1, Cr2, Gy3 in layer 2},
and h. The linear operators L1 and L; depend on {a, B, €, 1, Re,
I;}. The spectrum consists of discrete and continuous parts, which
need to be examined for the range of o > —3, small Re, small €,
and t such that the steady state shear rate shear stress curve is
non-monotone, and for 0 < Iy < 1. For each parameter set, the

(24)
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Fig. 20. Stream functions of unstable modes for Fig. 19. (a) base flow profile, (b) f = 1.5, (c) f =4, (d) A = 10.1. Contour values in units of 10~°.
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Fig. 21. Growth rate of unstable modes for « = -1, T =0.22, I, =0.5.

20

spectrum is calculated at all disturbance wavenumbers . The flow
is unstable when there is an eigenvalue o of positive real part at

some values of f.

4. Discrete spectrum in the long wave limit

In the long wave limit, the wavenumber S is zero. The terms
that contain U(y) disappear from the linearized equations, which
become a system with constant coefficients. In addition, the vari-
ables v and (57 become zero in this limit. This system is solved in
closed form, and finally, a characteristic equation for o is derived.
This characteristic equation is solved analytically, and with Mathe-
matica, and our numerical results agree with the solutions.

5. Continuous spectra

Stability problems in viscoelastic flows always involve continu-
ous spectra. These continuous spectra arise because the equations
expressing the constitutive law involve the material time derivative
of the stresses but no derivative of stresses across the flow direc-
tion. When the differential equations are combined into a single
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Fig. 22. Stream functions of unstable modes for Fig. 21. (a) base flow profile, (b) 8 = 1.4, (c) # = 6.3. Contour values in units of 10-3.
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Fig. 23. Growth rate of unstable modes for ¢ = -1, t =0.22, I, =0.2.

equation, there are certain values of o for which the coefficient of
the highest derivative is zero, and these yield the continuous spec-
trum. We can determine these continuous spectra explicitly, and
thereby show that they are stable. These explicit formulas are a
useful tool for testing our numerical code that computes the en-
tire spectrum.

We determined the continuous spectra in an analytical calcula-
tion performed with Mathematica, and we simply present the re-
sult.

For the PECN model, the continuous spectrum is composed of
three parts per fluid layer, making a total of six parts. One branch
is given by
o =—ipU(y) —e(sp+a). (25)
The rest of the continuous spectrum is determined by the
quadratic equation

bo(o +iBUY))* + bi(o +iBUY)) + by =0, (26)
where

bo = —(sg +)?,

by = =3 —a —e(sp+a)?(=3 + 353 + 2a),

by = —€(6 +a —sp)(at +5p) — €2(ax +58)° (—6 + ¢ + 3sp). (27)
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Fig. 24. Stream functions of unstable modes for Fig. 23. (a) base flow profile, (b) 8 = 1.6, (¢) f = 4.4. Contour values in units of 10~>.
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,.". The Chebyshev collocation method [31] is used. The equations
001 F s 7 are discretized by expanding each perturbation variable within
. each fluid in a series of Chebyshev polynomials of the first kind,
0.005 o multiplied by the factor e!#*t9t_ For instance, the horizontal veloc-
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Fig. 25. Growth rate of unstable modes for @ =5, t =0.12, I; = 0.9. n=0 2
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Fig. 26. Stream functions of unstable modes at growth rate maxima in Fig. 25. (a) base flow profile, (b) 8 =7.5, (c) B = 11, (d) 8 = 34.5. Contour values are in units of 10~7.

0.05 T T T T T T T

0.045 - b

0.0% F . . E

LY
T I R L

L R
0.02 . o

o

=

&
T
1

Fig. 27. Growth rate of unstable modes for @ =5, T =0.12, I; =0.5.

and in the upper fluid by

) n=N-1
Uy = PN a4y Ta(ys).
n=0
1-4
y=h+ 502+ 1. ~1<y2 <1, (30)

In each fluid, there are two velocity components, three conforma-
tion tensor components and the pressure. Together with the in-
terface position perturbation helf*+9t  these constitute the eigen-
vector of 12N+ 1 unknowns, say a. Each equation is evaluated at
the N collocation points per layer: y; and y; at cos[km /(N —1)],
k=0,...N—1. This generates a matrix equation of size 12N+ 1,
say Aa = o Ba. The boundary and interface conditions are incorpo-
rated as follows. The momentum equations require the boundary
conditions. Therefore, the first and last rows of the u and v mo-
mentum equations in each fluid are replaced by the four boundary
conditions and 4 continuity conditions at the interface. Finally, the
kinematic condition for h is placed as the last row of equation of
the matrix equation.
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Fig. 28. Stream functions of unstable modes at growth rate maxima in Fig. 27. (a) base flow profile, (b) = 1.2, (c) B =6.2, (d) p = 6.8. Contour values in units of 105,
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Fig. 29. Growth rate of unstable modes for ¢ =5, T =0.12, [, = 0.2

20

Code validation

Our numerical results were checked against the continuous
spectra discussed above. For the case of a single fluid phase, we
have also checked the consistency for different placements of the
artificial “interface.” We also compared numerical results for small
B with the asymptotic analysis for the limit 8 — 0.

Some care needs to be taken about the possibility of spuri-
ous modes. As an illustrative example, we show a result with
€ =0.001, Re=0.001, ¢ =-1, B=2, 1=0.22 and « =0.084,
s =25.85 in both layers, but with an artificial interface b at z =
Iy =0.7. The computation shows an eigenvalue at approximately
o = —0.03655 — 0.103i. This eigenvalue converges with increasing
N, but is not reproduced when we change [;. Fig. 3 is a plot of the
pressure field for the eigenfunction, which shows rapid oscillations
at every discretized point in the yielded phase, clearly revealing its
spurious nature. The results reported below are converged not only
for the eigenvalues, but also the eigenfunctions.

It is well known that the Chebyshev approximation used in our
numerical scheme yields rapid convergence for discrete eigenval-
ues; the error decreases exponentially with N [32]. On the other
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Fig. 30. (a) Growth rate versus . Re = 0.001, I; = 0.7, t =0.013, @ = —2.8, ¢ = 0.001. The interfacial mode is unstable for long waves. Another mode is unstable for shorter
waves. The interval 0.2 <= f < 5.2 is stable. (b) Magnification of long wave curve. (c) Emergence of short wave curve from the continuous spectrum.

hand, the approximation of continuous spectra is not well under-
stood theoretically, and all prior experience with viscoelastic fluids
shows that they are approximated poorly. This poor approximation
of continuous spectra can lead to artificial “instabilities,” especially
for large B, and we shall see instances of this below.

7. Numerical results: yielded flow

This section is focussed on the stability of one-fluid flows in the
yielded state, at shear rates chosen to correspond to those which
will also arise later in shear banded flows. As discussed earlier in
Section 2, we focus on small values of Re and €. The numerical
results throughout are therefore presented at Re = 0.001, and € =
0.001, unless otherwise stated. The effects of varying the following
parameters are studied: the ‘yielding parameter’ @, the total shear
stress T, the perturbation wave number 8 and, for shear banded
flow, the interface position I7.

The values @ = —2.8, @ = —1 and « = 5 are chosen as a repre-
sentative set to show the variety of possible behaviors.

For a = -2.8, we chose t =0.65, x =0.5743. This is in the
yielded phase, in the upper part of the range where shearband-
ing is possible. See Fig. 4 for the shear stress vs. shear rate curve.
No instabilities were found for single layer flow.

For a = —1, the behavior is exemplified by the shear rate x =
0.08397, and shear stress T = 0.22, which also corresponds to the

yielded phase, in a range where shearbanding can occur. The con-
stitutive curve for this case is shown in Fig. 1. We find an unsta-
ble mode roughly in the range 2.6 < B < 4.4. The eigenvalue cor-
responding to this mode emerges from the continuous spectrum
roughly at B = 1.8, then goes unstable near § =2.6. For 8 > 4.5,
the eigenvalue becomes stable again and eventually merges back
into the continuous spectrum. Fig. 5 shows the growth rate as a
function of 8 and the perturbation stream function for 8 = 3.6,
which is roughly where maximum growth occurs. The stream func-
tions at other values of B look similar. The flow pattern is symmet-
ric, with stream line contours slanted in the direction of the shear.
Fig. 6 shows the overall spectrum at 8 = 3.6. We see the single un-
stable eigenvalue in the right half plane and the lines representing
the continuous spectrum in the left half plane, as well as a number
of other (stable) discrete modes, some of which are spurious. The
continuous spectrum consists of three lines, the one in the middle
corresponds to (25) and the outer ones to (26).

For a =5, the dependence of shear stress on shear rate is
monotone at € = 0.001, so we chose € =0.0001 instead. The be-
havior of unstable modes is exemplified by the parameters 7 =
0.12 and « = 0.0422. We show the constitutive curve in Fig. 7.

We find several unstable modes, and a number of instances
where two modes merge and form a pair.
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Fig. 8 shows the growth rates of unstable modes as a function
of B. The figure appears to show a cluster of eigenvalues with
small growth rate for 8 > 5. These actually result from poor ap-
proximation of the stable continuous spectrum. The discrete modes
shown in the figure are converged. Fig. 9 shows the full spectrum
for B =5. We see four unstable discrete eigenvalues. The contin-
uous spectrum, which should be a vertical line, bulges out to-
wards the right and will cross the axis for larger values of 8. This
part of the continuous spectrum is the more unstable one corre-
sponding to (26); the second line comes from (25). The second
line corresponding to (26) is further to the left, outside the win-
dow of the plot. As the number of modes is increased, approxima-
tion of the continuous spectrum slowly improves. In general, we
find that N = 20 or 30 is enough to capture the most unstable dis-
crete modes, for modes of very low growth rate higher values are
needed, on the order of 200 or 300.

For B =1.5, there are two unstable modes. Their streamfunc-
tions are shown in Fig. 10. Plot (a) shows the mode with the higher
growth rate, and plot (b) shows the mode with the lower growth
rate. Both modes are symmetric about the centerline. The mode
shown in plot (b) shows contours inclined in the direction of the
shear, while the mode in plot (a) shows no such inclination.

Fig. 11 shows the stream function for the most unstable mode
at B =4. The streamline pattern is similar to the mode with
the lower growth rate at 8 = 1.5. Indeed, the growthrate plot in
Fig. 8 shows that the two modes which are unstable at 8 = 1.5 es-
sentially cross over near 8 =2, with a small interval where they
form a pair. So it is natural to think of the more unstable mode at
B =4 as a continuation of the less unstable mode at § = 1.5.

Fig. 8 shows several instances where two unstable eigenvalues
merge and form a pair. For instance, there is such an occurrence
for B just above 5. The result of such pairings are asymmetric
modes. We show the stream function for one of the pair of most
unstable modes at B =7 in Fig. 12; the other mode is symmetric
to it.

8. Numerical results: shear banded flow

In this section, we show stability results for shear banded flow,
with the same parameters for @ and t which we used above for
single layer yielded flow.

We begin with o = —-2.8, v = 0.65. For this case, we found no
bulk instabilities in the preceding section. For the two-layer case,
we investigate three different interface positions: [; =0.7, I; =0.5
and I, = 0.2. Fig. 13 shows the growth rate of an interfacial mode.
The instability shifts to longer wavelengths as [; is decreased. This
would be expected, since the same ratio of perturbation wave
length to the depth of the yielded fluid is reached at a smaller .
The maximum growth rate is roughly at 8 =5.6 for Iy =0.7. For
Iy = 0.5, there are two maxima, at 0.5 and 2.7. For |; = 0.2, maxi-
mum growth is at 8 =1.8.

Figs. 14-16 show stream functions of the interfacial mode at the
growth rate maxima in Fig. 13. Part (d) of Fig. 15 shows the stream
function for Iy = 0.5 and 8 = 20, which is in the range where the
mode is stable. It illustrates the interfacial character of the mode,
showing localization at the interface.

For o« = -1, v =0.22, we investigate four different depth ra-
tios between the unyielded and yielded phases: [y = 0.9, Iy =0.7,
Iy =0.5 and [} =0.2. Fig. 17 shows the growth rates of unstable
modes for I; = 0.9. There is a long wave instability for § less than
about 10. This is an interfacial mode. Then there are two unsta-
ble modes for higher B, which correspond to the bulk modes in
the single fluid case. Fig. 18 shows the stream function of each
mode, roughly at that value of 8 which corresponds to its maxi-
mum growth rate. Figs. 19 and 20 show the analogous information
for I} = 0.7. As the width of the yielded layer increases, the insta-

bility shifts to longer wave length. For the other two depth ratios,
we find an interfacial long wave mode and one unstable bulk mode
at shorter wave lengths. The growth rates and stream functions are
shown in Figs. 21-24,

The long wave modes are “interfacial” in the sense that they
connect to the neutrally stable interfacial mode at f =0. The
streamline pattern is more suggestive of an interface mode when
the yielded fluid is in a thin layer, see Fig. 18 (a) and 20 (a). For
smaller values of I, even this mode shows a streamline pattern
dominated by circulation in the yielded phase. The growthrate of
the long wave becomes much smaller as the width of the yielded
layer is increased. The other modes are essentially bulk modes. In
terms of growth rates, one of these is dominant.

We now turn to the case @ =5, v =0.12; the corresponding
stability problem for the single layer yielded flow is analyzed in
the previous section. We investigate three positions of the inter-
face: 1 =09, I =0.5 and [; =0.2. Fig. 25 shows the growth rate
of unstable modes for [; = 0.9. One of these is a long wave mode
which connects to the neutrally stable interfacial eigenvalue at
B =0. A new feature in this plot is that the modes seems to re-
main unstable for large 8; this is not observed in the single layer
case. Fig. 26 shows streamline plots of the unstable mode at the
growth rate maxima at B =7.5 and B = 34.5 (uppermost curve in
Fig. 25) and S =11 (second curve from the top in Fig. 25). The
maxima at 7.5 and 34.5 are on the same curve. The visual picture
of the stream function at § = 7.5 still suggests an interfacial mode,
while the picture at B = 34.5 looks more like a bulk mode in the
yielded phase. This is also reflected in the wave speeds of the un-
stable mode. For the parameters chosen, the fluid speed at the in-
terface is 0.00156, and the base flow speed in the middle of the
yielded layers is 0.00367. The mode at 8 =7.5 has a wave speed
of 0.00279, at S =34.5 it is 0.00309. So for higher 8, the wave
speed shifts closer to the fluid speed in the center of the yielded
layer, and the mode becomes more like a bulk mode.

Figs. 27 and 28 show growth rates and stream function plots
for I; =0.5. As we saw above for o = —1, the maximum growth
rate shifts to lower waves numbers as [; is decreased. The base
flow speed at the interface for this case is 0.00086, and the bases
flow speed in the middle of the yielded layer is 0.0114. The wave
speeds of the unstable modes are 0.00225 at 8 = 1.2, 0.0085 at
B =6.2 and 0.0086 at S = 6.8. Again, the character of the unstable
mode becomes more like that of a bulk mode as B is increased.
Fig. 29 shows the growth rate for Iy = 0.2. The overall pattern
is similar to the previous cases. The cluster near the axis which
emerges for B > 12 is from poor approximation of the continuous
spectrum and should be ignored.

9. A more strongly shear thinning model

For both the PEC and Johnson-Segalman fluid, the first normal
stress difference is larger in the yielded phase than in the un-
yielded phase. It is natural to ask whether this is crucial for creat-
ing instability of shear banded flow, since the normal stress jump
enters the interface conditions and plays a crucial role in driv-
ing the instability. For this reason, we investigate a model with
a structure similar to PEC, but with a lower normal stress in the
yielded phase. This model is given at the end of Section 2 by
Egs. (16) and (17). We find no instabilities for the case of a sin-
gle layer in this model. However, there are instabilities in shear
banded flow. Fig. 30 shows growth rates computed for I, =0.7,
T =0.013, o = -2.8, € =0.001. Fig. 2 shows the steady state con-
stitutive behavior for these parameters. We find instabilities for
short waves, B > 5.2. There is also a narrow range of wave num-
bers for long waves, with very small growth rates. The instability
is interfacial; the long wave mode connects to the neutrally sta-
ble mode at 8 =0, and for the short wave mode, the Im o is
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Fig. 31. Stream functions for unstable modes shown in Fig. 30. (a) base flow profile, (b) 8 = 0.16, (c) # = 10. Contour values in units of 10-5.

roughly —iBU(l;). The short wave curve does not connect to the
long wave curve, but emerges from the continuous spectrum at a
finite value of B; this is demonstrated in part (c) of Fig. 30. Fig. 31
shows stream functions for the long and short wave modes.

10. Conclusions

We have investigated the linear stability of shear banded flows
for the PECN model. We investigated three representative cases:
o =-28, a=-1and a = 5. The model parameter « is related to
the ratio of the yield stress to the stress modulus, which is given
by V@ +3/2. For « =—1 and @ =5, we found bulk instabilities
in the yielded phase. These bulk instabilities become the domi-
nant mechanism of instability in shear banded flows, but interfa-
cial long wave instabilities are also present. Bulk instabilities are
absent for o = —2.8, but there are interfacial long wave instabil-
ities. We also investigated a more strongly shear thinning model
in which the first normal stress difference in the yielded phase is
smaller than that in the unyielded phase, in contrast to both the
PEC and Johnson-Segalman models. For this model, we found no
bulk instabilities, but there are interfacial instabilities for both long
and short wave modes.

All the cases of shearbanded flows that we investigated show
instabilities. However, due to the presence of both interfacial and
bulk instabilities, the final picture is quite varied and depends on
the model in ways that are far from obvious.
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