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a b s t r a c t 

A viscoelastic constitutive model which combines the partially extending strand convection model and 

a Newtonian solvent is used in the regime of large relaxation time. Prior work on one dimensional 

time-dependent solutions at prescribed shear stress predicts some of the features expected of thixotropic 

yield stress fluids, such as delayed yielding. In this paper, we present the linear stability analysis of two- 

dimensional plane Couette flow, for parameter regimes that support a two-layer arrangement consisting 

of an unyielded layer and a yielded layer. Asymptotic analysis and computational techniques are applied. 

We find that the one layer yielded flow can have bulk instabilities which also emerge in the two-layer 

flow. Bulk instabilities in the yielded phase appear not to have been observed in prior literature. For 

some parameters, an interfacial mode is unstable and is driven by the normal stress difference across the 

interface. The yielded zone has the higher first normal stress difference, as for the well-studied Johnson–

Segalman model. In order to assess the importance of the sign of the first normal stress difference at the 

interface, we specifically design a modification to the model to reverse the sign. It is found that instabil- 

ities still occur. 

©2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Shear banding is the coexistence of high shear rate (“yielded”)

nd low shear rate (“unyielded”) zones at the same shear stress,

nd occurs in many complex fluids such as wormlike micellar solu-

ions, pastes and suspensions [1–6] . In this work, we are interested

n instabilities of shear banded flows. We find that these arise both

rom the bulk and at the interface between the two zones. 

In the limit of a long relaxation time, the PECN model (partially

xtending strand convection model and Newtonian solvent) pre-

icts certain characteristic behaviors of thixotropic yield stress flu-

ds [7] , allowing a precise mathematical expression of the idea that

ield stress behavior is really a limit of extremely long relaxation

ime [8] . The yielding and unyielding hehavior of the model under

n imposed constant stress has been analyzed in prior work [7] ,

nd we briefly summarize the results. Specifically, the model equa-

ions contain a small paramter , which physically corresponds to

 ratio of retardation time to relaxation time; in our nondimen-

ionalization below, time is scaled with the retardation time. If we

ormally set = 0 , the PECN model reduces to a nonlinear elastic

odel, and this phase describes the initial evolution from equilib-

ium when a stress is suddenly imposed. The elastic shear stress
∗Corresponding author. 
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ssumes a maximum at a certain value of shear deformation and

hen decreases to zero as the shear is increased further. 

With small but non-zero , the steady shear response is non-

onotone, with a stress maximum of order 1 at a shear rate of

rder , and a stress minimum of order 1/4 at a shear rate of or-

er 1/4 . For nonzero , there is no “true” yield stress; the shear

ate in the “unyielded” regime is nonzero but small, of order .

hus, simply setting = 0 in the governing equations gives only

n incomplete picture of the dynamics, because different asymp-

otic regimes that depend on arise when long times and/or large

eformations arise. These different regimes are considered in de-

ail in [7] . One of the results of the interplay of these dynamic

egimes is delayed yielding: The value of the stress maximum in

teady shear flow is lower (by a factor 
√ 
2 ) than the elastic shear

tress maximum. If the imposed shear stress is higher than the

lastic maximum, yielding will happen immediately, but if the im-

osed stress lies between the steady and elastic maxima, yielding

ill happen eventually, on a long time scale of order 1/ . In sum-

ary, the small asymptotic analysis shows that flow is induced if

ither the shear stress exceeds the elastic stress maximum (imme-

iate yielding), or the maximum on the steady flow curve (delayed

ielding). Once flow begins, the yield stress is lowered, i.e. there is

ield stress hysteresis. 

If the shear stress is suddenly removed in an established

ielded flow, the motion will cease quickly, but the viscosity will
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.04.005&domain=pdf
mailto:renardy@vt.edu
http://dx.doi.org/10.1016/j.jnnfm.2017.04.005


58 Y. Renardy, M. Renardy / Journal of Non-Newtonian Fluid Mechanics 244 (2017) 57–74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Total shear stress κ(s ) + T 12 (s ) as a function of shear rate κ( s ). The dashed 
line denotes the prescribed total shear stress τ, and intersects the increasing parts 
of the curve at κ1 and κ2 . The specific parameters for the PECN model are α= −1 , 
= 0 . 001 . 

Fig. 2. Altered PEC model with ψ(s ) = exp (−s ) , α= −2 . 8 , = 0 . 001 . (a) Steady 
state solutions for total shear stress τversus shear rate κ(= U  (y )) . (b) Steady 
state solutions for the first normal stress difference N 1 versus κ. 
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return to its equilibrium value (which is of order 1/ ) only over a

timescale of order 1/ , i.e. we observe thixotropic behavior. This is

documented in [9] . 

In a shear rate controlled experiment, there is no stable homo-

geneous steady flow if the imposed shear rate falls into the interval

where the steady response curve is decreasing. However, there are

shear banded solutions, where two or more layers are formed, and

in each layer the shear rate is on an increasing part of the steady

flow curve. The shear stress is continuous across the boundary be-

tween layers, but the normal stress is not. 

Parallel flows consisting of layers of two different viscoelastic

fluids may have interfacial instabilities driven by a normal stress

jump at the interface. Such instabilities were first found in the flow

of two upper convected Maxwell fluids by Renardy [10] and Chen

[11] . A shear banded flow, resulting from a non-monotone consti-

tutive curve is analogous to this; although the two layers are the

same fluid, they have different shear rates and normal stresses, and

the interface can be treated as a material surface. Renardy [12] in-

vestigated the shear-banded flow of a Johnson–Segalman fluid and

found interfacial instabilities driven by a normal stress jump. Her

analysis was later expanded, most notably by a study of the long

wave limit and by the inclusion of stress diffusion at the interface

[13–15] . Even earlier, McLeish [16] found a normal-stress driven

interfacial instability in shear-banded flow of a Doi-Edwards fluid.

Rather than a full linear stabiity analysis, he used a simplified set

of equations which was intended to capture the essential physics

of long-wave instabilities. 

There is much work based on the Johnson–Segalman model

[13–15,17–19] . On the other hand, there are other established mod-

els that display non-monotone constitutive behavior and shear

banded flows; for example, PECN is a Newtonian solvent model

combined with a “partially extending strand convection” model,

originally introduced by Larson [20] for entangled polymer melts.

The Vasquez-Cook-McKinley (VCM) model is a refinement of this,

which has had success in modeling the behavior of wormlike mi-

cellar solutions [21] . 

Fluids which show shear banding include wormlike micelles,

some polymers and soft glassy materials [3] . Instabilities in shear

banded flows have been observed in wormlike micelles. Experi-

ments are typically done in curved geometries, where, aside from

the interfacial instability there is also the possibility of a vis-

coelastic Taylor instability. It is believed that the Taylor instabil-

ity is the dominant mechanism in most of the experimental ob-

servations [3] . There are, however, some experiments showing in-

stabilities which have been attributed to interfacial mechanisms;

we cite in particular [22] and [23] . Both first and second normal

stress jumps can cause interfacial instabilities. The instability ob-

served in [22] leads to interface oscillations in the spanwise direc-

tion, as would be expected from a second normal stress effect. In

[22] , the authors link the experimental observations to an analysis

of the Johnson–Segalman model [18] , which shows that although

streamwise waves have a larger linear growth rate, nonlinear in-

teractions ultimately favor spanwise perturbations. However, Fig.

2 in [22] shows no evidence of transient growth of any stream-

wise waves. The experiments of [23] show streamwise corruga-

tions of the interface as would result from an instability driven by

a jump in the first normal stress difference. We note that, unlike

the Johnson–Segalman model, neither the PEC nor the VCM model

has a second normal stress difference. 

The analysis presented below shows that shear banded flows of

the PECN model have instabilities. We are not aware of prior stud-

ies of the PECN model per se. However, [24] studied the stability of

diffusive interfaces for the VCM model, and interfacial instabilities

were found. 

Our analysis shows that actually there are instabilities in the

yielded phase even when there is no interface. Where they are
resent, these bulk instabilities, rather than interfacial instabilities,

urn out to be the dominant mechanism of instability in shear-

anded flows. The modes responsible for these bulk instabilities bi-

urcate from the (stable) continuous spectrum at some wave num-

er, then become unstable over an interval of wave numbers, and

n some cases eventually restabilize and merge back into the con-

inuous spectrum. Such modes do not seem to have been observed

n prior literature. The only results on single-phase instabilities

n viscoelastic shear flow without streamline curvature that we

re aware of are those of [25,26] ; these papers, however, studied

oiseuille rather than Couette flow. 

We also find unstable interfacial modes. We note that, for both

he Johnson–Segalman and PEC-based models, the normal stress

ifference in the yielded phase is larger than in the unyielded
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Fig. 3. The real ( ∗) and imaginary (x) parts of the pressure eigenfunction are plotted in fluid 1, and (real + ; imaginary o) in fluid 2. This illustrates the pressure field of a 

spurious mode, and shows oscillations in the yielded phase between every discretized point. 

Fig. 4. Shear rate κvs applied shear stress τ, = 0 . 001 , α= −2 . 8 . 
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hase. The experimental data for wormlike micelles reported in

27] are consistent with this. Since the normal stress jump is driv-

ng the instability, this is an important feature that both models
ave in common, and it is a natural question whether this is im-

ortant for generating interfacial instability. We note, however, that

n the flow of two-layer upper convected Maxwell fluids the ques-

ion of, “Which sign of the normal stress jump leads to instabil-

ty?” does not appear to have a straightforward answer; for short

ave disturbances, a higher normal stress difference in the fluid

ith lower viscosity is actually stabilizing [10] . In contrast, the

ohnson–Segalman and PEC models show instability with a higher

ormal stress in the yielded (low viscosity) phase. This motivates

s to pose a more strongly shear thinning model where the yielded

hase has the lower normal stress. We introduce this model below

n more detail. It is natural to ask whether interfacial instabilities

isappear when the normal stress jump is reversed. We find that

his is not the case. The VCM model also allows for the possibil-

ty that the normal stress is lower in the yielded phase [27,28] ;

he data to which the model is fitted, however, do not show this.

nterfacial stability for this model was studied [24] for a specific

et of parameters fitted to experiments. For these specific parame-

ers, the model does have a lower normal stress differences in the

ielded phase, but this particular feature is in disagreement with
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Fig. 5. (a) Growth rate of unstable mode for yielded flow, α= −1 , κ= 0 . 08397 . (b) Perturbation stream function for β= 3 . 6 . Contour values are in units of 10 −5 . 

Fig. 6. Computed spectrum for yielded flow, α= −1 , κ= 0 . 08397 , β= 3 . 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Steady shear stress versus shear rate κ. α= 5 , = 0 . 0 0 01 . The upper plot 
magnifies for small κ. 
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the data. The model discussed below has a much more drastic de-

crease in the first normal stress difference than what is reported

in [27] for the VCM model. 

Our analysis does not include stress diffusion. Diffusive effects

favor a particular stress level for the shear banding transition,

while without diffusion any stress between the maximum and

minimum value of the nonmonotone curve can lead to a shear

banded flow. However, there is considerable uncertainty about the

magnitude and precise form of diffusive terms. Strictly speaking,

the diffusion requires another constitutive law on which little is

known. It has been shown that the form of stress diffusion does

affect the location of the shear banding transition [29] . Moreover,

diffusive effects are small, and there is a separation in time scales

between the formation of a shear banded flow and the migration

of the transition to its ultimate location [30] . Instabilities therefore

have time to grow before the ultimate location is reached, and the

stability analysis without diffusion is relevant for predicting them. 
. Governing equations and steady shear flow 

We consider flow in the region between two parallel horizontal

lates, of which the lower plate is stationary and the upper plate is

oving. The governing equations for the PEC model are presented

n the form given in [7] . 

Let v ∗denote the velocity, p ∗the pressure, ρthe density, ηthe
onstant solvent viscosity, λthe relaxation time, ( x ∗, y ∗) the spa-
ial coordinates, C the conformation tensor, T ∗the extra stress ten-

or, L ∗the plate separation, l ∗
1 the undisturbed lower fluid depth,

 ∗p the upper plate speed in the x 
∗-direction. The governing equa-

ions for momentum conservation, incompressibility, and constitu-

ive law are: 

D v ∗

∗
= ∇ ∗·(−p ∗I + S ∗+ T ∗) , ∇ ∗·v ∗= 0 , (1)
Dt 
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Fig. 8. Unstable modes for α= 5 , = 0 . 0 0 01 , τ= 0 . 12 , κ= 0 . 0422 . 

Fig. 9. Computed spectrum for β= 5 , other parameters corresponding to Fig. 8 . 
Comparison of N = 10 0 and N = 200 . 

C

Fig. 11. Stream function contour plot for the most unstable mode at β= 4 , param- 
eters corresponding to Fig. 8 . Contour values are in units of 10 −5 . 
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∇∗+ 

1 

λ
(φ( tr C ) C −χ( tr C ) I ) = 0 , 

T ∗= ψ ∗( tr C ) C , (2) 
ig. 10. Stream function contour plots of unstable modes for β= 1 . 5 , other parameters c
ith higher growth rate. 
here the PEC model functions are 

 
∗(s ) = 

k 1 
s + α

, s = tr C , 

φ(s ) = χ(s ) = s + α. (3) 

C ∇∗ denotes the upper convected derivative, C ∇∗≡ D C 
Dt ∗−

(∇ ∗v ∗) C −C (∇ ∗v ∗) T , where D 
Dt ∗= 

∂ 
∂t ∗+ v 

∗·∇ ∗. The Newtonian
ontribution to the stress tensor is 

 
∗= η(∇ ∗v ∗+ (∇ ∗v ∗) T ) , (∇ ∗v ∗) ij = 

dv ∗
i 

dx ∗
j 

. (4) 

he microstructure is fully relaxed when C = I (hence s = 3 ), and

nly states with s ≥3 are physically reachable and relevant. The

odel functions are defined if α> −3 . Let τ∗denote the applied
hear stress. The retardation time is defined by ̄t = η/k 1 . 
We shall replace the dimensional variables, denoted by asterisks

bove, with dimensionless quantities. To this end, time is scaled

ith the retardation time, length with the plate separation, and

tress and pressure with k 1 . The ratio of retardation to relaxation

ime is 

= 
η
k 1 λ
. (5) 

he dimensionless upper plate speed is U p = U 
∗
p ̄t /L 

∗. 
orresponding to Fig. 8 . Contour values are in units of 10 −5 . Plot (a) shows the mode 
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Fig. 12. Stream function contour plot for the most unstable mode at β= 7 , param- 
eters corresponding to Fig. 8 . Contour values are in units of 10 −6 . There is a pair of 

unstable modes, the second mode is symmetric to the one shown here. 

Fig. 13. Growth rate of unstable modes for = 0 . 001 , α= −2 . 8 , τ= 0 . 65 . Solid 
curve: l 1 = 0 . 2 , dashed: l 1 = 0 . 5 , dash-dotted: l 1 = 0 . 7 . 
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In dimensionless form, the governing equations are 

Re 
D v 

Dt 
= ∇ ·(−pI + S + T ) , (6)

∇ ·v = 0 , (7)

C ∇ + (φ( tr C ) C −χ( tr C ) I ) = 0 , (8)

where C ∇ ≡D C 
Dt −(∇v ) C −C (∇v ) 

T , D 
Dt = 

∂ 
∂t + v ·∇, S =

∇v + (∇v ) T , ∇v = dv i 
dx j 
, and the elastic stress tensor is 

T = ψ (s ) C , ψ (s ) = 
1 

s + α
. (9)

The Reynolds number is Re = L ∗2 ρk 1 /η2 , and W e = U p / has

the role of a Weissenberg number. The focus of this paper will be

on the case where Re and are small. 

Apart from , the only dimensionless model parameter is α.
More physically meaningful combinations of these parameters are
he ratio of yielded to unyielded (zero shear rate) viscosity, which

s (3 + α) 2 , and the ratio of the yield stress in fast yielding to the
nstantaneous elastic modulus, which is 

√ 
3 + α/ 2 . Hence a large

alue of αcorresponds to a high yield stress, while αclose to −3
orresponds to a low yield stress. Fits to wormlike micelles yield

ositive values of α, which are typically on the order of 1–10, the
atio of yielded to unyielded viscosity is on the order of 10 −3 –10 −2 .

n the other hand, soft glassy materials typically have a low yield

tress ( α< −2 . 5 ) and is extremely small (see [9] for some fits of
he model to experimental data). 

Our “base flow” is a steady parallel flow in the x -direction, with

 velocity that depends only on the vertical coordinate y and a

hear stress τis that is constant across the flow region. We be-
in by showing the single shear rate case, before defining the base

ow with two shear rates more precisely. 

In parallel shear flow, the components of the conformation ten-

or satisfy 

 ̇ 11 = 2(τ−ψ(s ) C 12 ) C 12 + (χ(s ) −φ(s ) C 11 ) , 
 ̇ 12 = τ−ψ(s ) C 12 − φ(s ) C 12 , 

 13 = C 23 = 0 , C 22 = C 33 = 1 . (10)

he shear rate is denoted 

= ∂ u/∂ y = τ−ψ(s ) C 12 , 

nd the trace of the conformation tensor is 

 = C 11 + 2 . 

 steady homogeneous shear flow solution is given by the velocity

 = ( κy , 0, 0), 0 ≤y ≤1, at the total shear stress τ. The conforma-
ion tensor satisfies 

 11 = 1 + 
2 κ(s ) 2 
2 φ2 (s ) 

, C 12 = 
κ(s ) 
φ(s ) 

= C 21 , (11)

he elastic contribution to the shear stress, T 12 , shear rate κ, and
ormal stress difference satisfy: 

 12 = 
1 

s + α

 

s −3 

2 
, (12)

κ
= (s + α) 

 

s −3 

2 
, (13)

 1 = T 11 −T 22 = 
s −3 

s + α
. (14)

Fig. 1 illustrates the total shear stress τ= T 12 + κas a function
f shear rate for steady solutions. The solutions on the decreasing

art of the curve are unstable. Moreover, this gives the range of

that forms shear banded flows with two different shear rates.

he base flow for two-layer parallel shear flow is given by v B =

(U(y ) , 0 , 0) where 

(y ) = 
κ1 y 0 < y < l 1 
κ2 (y −1) + U p . l 1 < y < 1 

(15)

he continuity of velocity at y = l 1 gives κ1 l 1 = κ2 (l 1 −1) + U p ,
hich determines U p once the shear rates are determined. The

hear rates are determined from the continuity of the total shear

tress. The base conformation tensor is given by (11) in each fluid.

he lower layer is denoted by subscript B 1, where s = s B 1 for the

ase flow (15) that produces the shear rate κ1 = κ(s B 1 ) . The upper
ayer is at the shear rate κ2 = κ(s B 2 ) , which defines the value of
 B 2 . These are shown in Fig. 1 where the dashed line guides the eye

t a constant τ, to its intersections with the curve on the increas-
ng branches. Physically, the plate speed controls the development

f shear banded flows by playing the role of the average shear rate.
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Fig. 14. Stream function of interfacial mode for Fig. 13 at l 1 = 0 . 7 . (a) base flow profile, (b) β= 5 . 6 . Contour values in units of 10 −5 . 

Fig. 15. Stream function of interfacial mode for Fig. 13 at l 1 = 0 . 5 . Contour values in units of 10 
−5 . (a) base flow profile, (b) β= 0 . 5 , (c) β= 2 . 7 , (d) β= 20 . 
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Fig. 16. Stream function of interfacial mode for Fig. 13 at l 1 = 0 . 2 . (a) base flow profile, (b) β= 1 . 8 . 

Fig. 17. Growth rate of unstable modes for α= −1 , τ= 0 . 22 , l 1 = 0 . 9 . 
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The first normal stress difference is N 1 = 
s B −3 
s B + α

, and we note from

(13) that the N 1 and the shear rate are both monotone functions

of s . Hence, the normal stress difference increases with shear rate.

In particular, the high shear rate region in a shear banded flow has

the higher normal stress difference. 

Altered PEC model with lower N 1 at higher shear rates 

To investigate an alternative model where the high shear rate

region has the lower N 1 , we modify the PEC model by keeping

φ(s ) = χ(s ) = s + α, but setting 

ψ(s ) = e −s . (16)

The base flow remains the same as (15) , with κ= U  (y ) . The for-
mula (11) for the base conformation tensor stays the same. The

total shear stress is now given by 

τ= T B 12 + S B 12 = κ
e −s B 

(s B + α) 
+ 1 . (17)

Fig. 2 (a) shows τ( s ) versus κ( s ) and displays the non-
monotonicity that leads to shear banding, and we see this also in
ig. 1 . The difference is that in Fig. 2 (a), the graph approaches a

ine τ∼κfor large s , irrespective of or α, because of the ex-
onential decay of ψ( s ). The two values of shear rates which sat-
sfy continuity of shear stress are found from drawing the dashed

orizontal line, as before. Fig. 2 (b) shows the normal stress differ-

nce, which is now lower in the high shear rate phase. For lack of

 more established name, we introduce this model as the “altered”

PEC model. 

. Linear stability of shear banded PECN flow 

We consider small two-dimensional perturbations of shear

anded flow (15) and linearize the governing equations. The per-

urbations are denoted by lower case variables, e.g., ( u, v, p ). The

nterface position is perturbed by h ( x, t ). We separate variables

nd seek solutions proportional to exp (σt + iβx ) . This results in
he following linearized system. The governing equations are the

omentum equations, 

e (σ+ Uiβ) u + Re v U  = −iβp −β2 u + u  + iβT 11 + T  12 , 

Re (σ+ Uiβ) v = −p  −β2 v + v  + iβT 12 + T  22 , (18)

here the perturbed extra stress components are 

T 11 = ψ (s B ) C 11 + C 11 B ψ  (s B )(C 11 + C 22 ) , 

 12 = ψ (s B ) C 12 + C 12 B ψ  (s B )(C 11 + C 22 ) , 

T 22 = ψ (s B ) C 22 + C 22 B ψ  (s B )(C 11 + C 22 ) . (19)

he incompressibility condition is, 

βu + v  = 0 , (20)

nd the constitutive equations are 

(σ+ iβU(y ) + (s B + α) + (C B 11 −1)) C 11 
 C 22 (C B 11 −1)−(2 iβC B 11 u+2 C B 12 u  +2 U  C 12 ) = 0 , 

(σ+ iβU(y ) + (s B + α)) C 12 + (C 11 + C 22 ) C B 12 
−(iβC B 11 v + C B 12 v  + C B 12 iβu + u  + U  C 22 ) = 0 , 

(σ+ iβU(y ) + (s B + α)) C 22 −(2 C B 12 iβv + 2 v  ) = 0 . (21)

et [[ ·]] denote the jump of a quantity across the interface lin-

arized at y = l 1 . In the base flow, the velocity gradient and first

ormal stress difference both jump across the interface. The lin-

arized interface conditions imposed at y = l are: continuity of
1 
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Fig. 18. Stream functions of unstable modes for Fig. 17 . (a) base flow profile, (b) β= 5 . 9 , (c) β= 13 , (d) β= 30 . Contour values in units of 10 −6 . 

Fig. 19. Growth rate of unstable modes for α= −1 , τ= 0 . 22 , l 1 = 0 . 7 . 
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elocity, 

[ u ]] + h [[ U  ]] = 0 , 

[[ v ]] = 0 , (22) 

ontinuity of stresses, 

iβh [[ N 1 B ]] + [[ T 12 + iβv + u  ]] = 0 , 

[[ T 22 + 2 v  −p ]] = 0 , (23) 

nd the kinematic free surface condition 

(σ+ iβU) h = v . (24)

The boundary conditions are no slip at the walls. At y = 0 and

 = 1 , the perturbed velocities vanish u = v = 0 . 
This completes the formulation of the eigenvalue problem, sym-

olically written L 1 [ v ] = σL 2 [ v ] , where the eigenfunction v consists
f { u, v, p, C 11 , C 12 , C 13 in layer 1}, { u, v, p, C 11 , C 12 , C 13 in layer 2},

nd h . The linear operators L 1 and L 2 depend on { α, β, , τ, Re,
 1 }. The spectrum consists of discrete and continuous parts, which

eed to be examined for the range of α> −3 , small Re , small ,
nd τsuch that the steady state shear rate shear stress curve is
on-monotone, and for 0 < l < 1. For each parameter set, the
1 
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Fig. 20. Stream functions of unstable modes for Fig. 19 . (a) base flow profile, (b) β= 1 . 5 , (c) β= 4 , (d) β= 10 . 1 . Contour values in units of 10 −5 . 

Fig. 21. Growth rate of unstable modes for α= −1 , τ= 0 . 22 , l 1 = 0 . 5 . 
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pectrum is calculated at all disturbance wavenumbers β. The flow
s unstable when there is an eigenvalue σof positive real part at
ome values of β. 

. Discrete spectrum in the long wave limit 

In the long wave limit, the wavenumber βis zero. The terms
hat contain U ( y ) disappear from the linearized equations, which

ecome a system with constant coefficients. In addition, the vari-

bles v and C 22 become zero in this limit. This system is solved in

losed form, and finally, a characteristic equation for σis derived.
his characteristic equation is solved analytically, and with Mathe-

atica, and our numerical results agree with the solutions. 

. Continuous spectra 

Stability problems in viscoelastic flows always involve continu-

us spectra. These continuous spectra arise because the equations

xpressing the constitutive law involve the material time derivative

f the stresses but no derivative of stresses across the flow direc-

ion. When the differential equations are combined into a single
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Fig. 22. Stream functions of unstable modes for Fig. 21 . (a) base flow profile, (b) β= 1 . 4 , (c) β= 6 . 3 . Contour values in units of 10 −5 . 

Fig. 23. Growth rate of unstable modes for α= −1 , τ= 0 . 22 , l 1 = 0 . 2 . 
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quation, there are certain values of σfor which the coefficient of
he highest derivative is zero, and these yield the continuous spec-

rum. We can determine these continuous spectra explicitly, and

hereby show that they are stable. These explicit formulas are a

seful tool for testing our numerical code that computes the en-

ire spectrum. 

We determined the continuous spectra in an analytical calcula-

ion performed with Mathematica, and we simply present the re-

ult. 

For the PECN model, the continuous spectrum is composed of

hree parts per fluid layer, making a total of six parts. One branch

s given by 

= −iβU(y ) − (s B + α) . (25)

he rest of the continuous spectrum is determined by the

uadratic equation 

 0 (σ+ iβU(y )) 2 + b 1 (σ+ iβU(y )) + b 2 = 0 , (26)

here 

 0 = −(s B + α) 2 , 

 1 = −3 −α− (s B + α) 2 (−3 + 3 s B + 2 α) , 

 2 = − (6 + α−s B )(α+ s B ) − 2 (α+ s B ) 3 (−6 + α+ 3 s B ) . (27) 
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Fig. 24. Stream functions of unstable modes for Fig. 23 . (a) base flow profile, (b) β= 1 . 6 , (c) β= 4 . 4 . Contour values in units of 10 −5 . 

Fig. 25. Growth rate of unstable modes for α= 5 , τ= 0 . 12 , l 1 = 0 . 9 . 
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For the altered PEC model with ψ(s ) = e −s , as in (16) , the con-
inuous spectrum (25) remains unchanged. In (26) , however, we

btain instead the coefficients 

b 0 = exp (s B ) , 

 1 = 4 −s B + exp (s B )(−3 + 2 α+ 3 s B ) , 

 2 = (s B + α)(7 −2 s B ) + 2 exp (s B )(s B + α)(3 s B + α−6) . (28)

. Numerical algorithm 

The Chebyshev collocation method [31] is used. The equations

re discretized by expanding each perturbation variable within

ach fluid in a series of Chebyshev polynomials of the first kind,

ultiplied by the factor e iβx + σt . For instance, the horizontal veloc-

ty in the lower fluid is represented as 

 1 = e 
iβx + σt 

n = N−1  

n =0 

a 1 n T n (y 1 ) , y = 
l 1 
2 
(y 1 + 1) , −1 < y 1 < 1 , (29)
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Fig. 26. Stream functions of unstable modes at growth rate maxima in Fig. 25 . (a) base flow profile, (b) β= 7 . 5 , (c) β= 11 , (d) β= 34 . 5 . Contour values are in units of 10 −7 . 

Fig. 27. Growth rate of unstable modes for α= 5 , τ= 0 . 12 , l 1 = 0 . 5 . 
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nd in the upper fluid by 

 2 = e 
iβx + σt 

n = N−1  

n =0 

a 2 n T n (y 2 ) , 

 = l 1 + 
1 −l 1 
2 
(y 2 + 1) , −1 < y 2 < 1 , (30) 

n each fluid, there are two velocity components, three conforma-

ion tensor components and the pressure. Together with the in-

erface position perturbation he iβx + σt , these constitute the eigen-

ector of 12 N + 1 unknowns, say a . Each equation is evaluated at

he N collocation points per layer: y 1 and y 2 at cos [ kπ/ (N −1)] ,
 = 0 , . . . N −1 . This generates a matrix equation of size 12 N + 1 ,

ay A a = σB a . The boundary and interface conditions are incorpo-
ated as follows. The momentum equations require the boundary

onditions. Therefore, the first and last rows of the u and v mo-

entum equations in each fluid are replaced by the four boundary

onditions and 4 continuity conditions at the interface. Finally, the

inematic condition for h is placed as the last row of equation of

he matrix equation. 



70 Y. Renardy, M. Renardy / Journal of Non-Newtonian Fluid Mechanics 244 (2017) 57–74 

Fig. 28. Stream functions of unstable modes at growth rate maxima in Fig. 27 . (a) base flow profile, (b) β= 1 . 2 , (c) β= 6 . 2 , (d) β= 6 . 8 . Contour values in units of 10 −6 . 

Fig. 29. Growth rate of unstable modes for α= 5 , τ= 0 . 12 , l 1 = 0 . 2 . 
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ode validation 

Our numerical results were checked against the continuous

pectra discussed above. For the case of a single fluid phase, we

ave also checked the consistency for different placements of the

rtificial “interface.” We also compared numerical results for small

with the asymptotic analysis for the limit β→ 0. 
Some care needs to be taken about the possibility of spuri-

us modes. As an illustrative example, we show a result with

= 0 . 001 , Re = 0 . 001 , α= −1 , β= 2 , τ= 0 . 22 and κ= 0 . 084 ,
 = 25 . 85 in both layers, but with an artificial interface b at z =

 1 = 0 . 7 . The computation shows an eigenvalue at approximately

= −0 . 03655 −0 . 103 i . This eigenvalue converges with increasing

 , but is not reproduced when we change l 1 . Fig. 3 is a plot of the

ressure field for the eigenfunction, which shows rapid oscillations

t every discretized point in the yielded phase, clearly revealing its

purious nature. The results reported below are converged not only

or the eigenvalues, but also the eigenfunctions. 

It is well known that the Chebyshev approximation used in our

umerical scheme yields rapid convergence for discrete eigenval-

es; the error decreases exponentially with N [32] . On the other
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Fig. 30. (a) Growth rate versus β. Re = 0 . 001 , l 1 = 0 . 7 , τ= 0 . 013 , α= −2 . 8 , = 0 . 001 . The interfacial mode is unstable for long waves. Another mode is unstable for shorter 
waves. The interval 0.2 < β< 5.2 is stable. (b) Magnification of long wave curve. (c) Emergence of short wave curve from the continuous spectrum. 
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and, the approximation of continuous spectra is not well under-

tood theoretically, and all prior experience with viscoelastic fluids

hows that they are approximated poorly. This poor approximation

f continuous spectra can lead to artificial “instabilities,” especially

or large β, and we shall see instances of this below. 

. Numerical results: yielded flow 

This section is focussed on the stability of one-fluid flows in the

ielded state, at shear rates chosen to correspond to those which

ill also arise later in shear banded flows. As discussed earlier in

ection 2 , we focus on small values of Re and . The numerical

esults throughout are therefore presented at Re = 0 . 001 , and =

 . 001 , unless otherwise stated. The effects of varying the following

arameters are studied: the ‘yielding parameter’ α, the total shear
tress τ, the perturbation wave number βand, for shear banded
ow, the interface position l 1 . 

The values α= −2 . 8 , α= −1 and α= 5 are chosen as a repre-
entative set to show the variety of possible behaviors. 

For α= −2 . 8 , we chose τ= 0 . 65 , κ= 0 . 5743 . This is in the
ielded phase, in the upper part of the range where shearband-

ng is possible. See Fig. 4 for the shear stress vs. shear rate curve.

o instabilities were found for single layer flow. 

For α= −1 , the behavior is exemplified by the shear rate κ=
 . 08397 , and shear stress τ= 0 . 22 , which also corresponds to the
ielded phase, in a range where shearbanding can occur. The con-

titutive curve for this case is shown in Fig. 1 . We find an unsta-

le mode roughly in the range 2.6 ≤β≤4.4. The eigenvalue cor-
esponding to this mode emerges from the continuous spectrum

oughly at β= 1 . 8 , then goes unstable near β= 2 . 6 . For β> 4.5,
he eigenvalue becomes stable again and eventually merges back

nto the continuous spectrum. Fig. 5 shows the growth rate as a

unction of βand the perturbation stream function for β= 3 . 6 ,
hich is roughly where maximum growth occurs. The stream func-

ions at other values of βlook similar. The flow pattern is symmet-
ic, with stream line contours slanted in the direction of the shear.

ig. 6 shows the overall spectrum at β= 3 . 6 . We see the single un-
table eigenvalue in the right half plane and the lines representing

he continuous spectrum in the left half plane, as well as a number

f other (stable) discrete modes, some of which are spurious. The

ontinuous spectrum consists of three lines, the one in the middle

orresponds to (25) and the outer ones to (26) . 

For α= 5 , the dependence of shear stress on shear rate is
onotone at = 0 . 001 , so we chose = 0 . 0 0 01 instead. The be-

avior of unstable modes is exemplified by the parameters τ=
 . 12 and κ= 0 . 0422 . We show the constitutive curve in Fig. 7 . 
We find several unstable modes, and a number of instances

here two modes merge and form a pair. 
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Fig. 8 shows the growth rates of unstable modes as a function

of β. The figure appears to show a cluster of eigenvalues with
small growth rate for β> 5. These actually result from poor ap-
proximation of the stable continuous spectrum. The discrete modes

shown in the figure are converged. Fig. 9 shows the full spectrum

for β= 5 . We see four unstable discrete eigenvalues. The contin-
uous spectrum, which should be a vertical line, bulges out to-

wards the right and will cross the axis for larger values of β. This
part of the continuous spectrum is the more unstable one corre-

sponding to (26) ; the second line comes from (25) . The second

line corresponding to (26) is further to the left, outside the win-

dow of the plot. As the number of modes is increased, approxima-

tion of the continuous spectrum slowly improves. In general, we

find that N = 20 or 30 is enough to capture the most unstable dis-

crete modes, for modes of very low growth rate higher values are

needed, on the order of 200 or 300. 

For β= 1 . 5 , there are two unstable modes. Their streamfunc-
tions are shown in Fig. 10 . Plot (a) shows the mode with the higher

growth rate, and plot (b) shows the mode with the lower growth

rate. Both modes are symmetric about the centerline. The mode

shown in plot (b) shows contours inclined in the direction of the

shear, while the mode in plot (a) shows no such inclination. 

Fig. 11 shows the stream function for the most unstable mode

at β= 4 . The streamline pattern is similar to the mode with
the lower growth rate at β= 1 . 5 . Indeed, the growthrate plot in
Fig. 8 shows that the two modes which are unstable at β= 1 . 5 es-
sentially cross over near β= 2 , with a small interval where they
form a pair. So it is natural to think of the more unstable mode at

β= 4 as a continuation of the less unstable mode at β= 1 . 5 . 
Fig. 8 shows several instances where two unstable eigenvalues

merge and form a pair. For instance, there is such an occurrence

for βjust above 5. The result of such pairings are asymmetric
modes. We show the stream function for one of the pair of most

unstable modes at β= 7 in Fig. 12 ; the other mode is symmetric
to it. 

8. Numerical results: shear banded flow 

In this section, we show stability results for shear banded flow,

with the same parameters for αand τwhich we used above for
single layer yielded flow. 

We begin with α= −2 . 8 , τ= 0 . 65 . For this case, we found no
bulk instabilities in the preceding section. For the two-layer case,

we investigate three different interface positions: l 1 = 0 . 7 , l 1 = 0 . 5

and l 1 = 0 . 2 . Fig. 13 shows the growth rate of an interfacial mode.

The instability shifts to longer wavelengths as l 1 is decreased. This

would be expected, since the same ratio of perturbation wave

length to the depth of the yielded fluid is reached at a smaller β.
The maximum growth rate is roughly at β= 5 . 6 for l 1 = 0 . 7 . For
l 1 = 0 . 5 , there are two maxima, at 0.5 and 2.7. For l 1 = 0 . 2 , maxi-

mum growth is at β= 1 . 8 . 
Figs. 14–16 show stream functions of the interfacial mode at the

growth rate maxima in Fig. 13 . Part (d) of Fig. 15 shows the stream

function for l 1 = 0 . 5 and β= 20 , which is in the range where the
mode is stable. It illustrates the interfacial character of the mode,

showing localization at the interface. 

For α= −1 , τ= 0 . 22 , we investigate four different depth ra-
tios between the unyielded and yielded phases: l 1 = 0 . 9 , l 1 = 0 . 7 ,

l 1 = 0 . 5 and l 1 = 0 . 2 . Fig. 17 shows the growth rates of unstable

modes for l 1 = 0 . 9 . There is a long wave instability for βless than
about 10. This is an interfacial mode. Then there are two unsta-

ble modes for higher β, which correspond to the bulk modes in
the single fluid case. Fig. 18 shows the stream function of each

mode, roughly at that value of βwhich corresponds to its maxi-
mum growth rate. Figs. 19 and 20 show the analogous information

for l = 0 . 7 . As the width of the yielded layer increases, the insta-
1 
ility shifts to longer wave length. For the other two depth ratios,

e find an interfacial long wave mode and one unstable bulk mode

t shorter wave lengths. The growth rates and stream functions are

hown in Figs. 21–24 . 

The long wave modes are “interfacial” in the sense that they

onnect to the neutrally stable interfacial mode at β= 0 . The
treamline pattern is more suggestive of an interface mode when

he yielded fluid is in a thin layer, see Fig. 18 (a) and 20 (a). For

maller values of l 1 , even this mode shows a streamline pattern

ominated by circulation in the yielded phase. The growthrate of

he long wave becomes much smaller as the width of the yielded

ayer is increased. The other modes are essentially bulk modes. In

erms of growth rates, one of these is dominant. 

We now turn to the case α= 5 , τ= 0 . 12 ; the corresponding
tability problem for the single layer yielded flow is analyzed in

he previous section. We investigate three positions of the inter-

ace: l 1 = 0 . 9 , l 1 = 0 . 5 and l 1 = 0 . 2 . Fig. 25 shows the growth rate

f unstable modes for l 1 = 0 . 9 . One of these is a long wave mode

hich connects to the neutrally stable interfacial eigenvalue at

= 0 . A new feature in this plot is that the modes seems to re-

ain unstable for large β; this is not observed in the single layer
ase. Fig. 26 shows streamline plots of the unstable mode at the

rowth rate maxima at β= 7 . 5 and β= 34 . 5 (uppermost curve in
ig. 25 ) and β= 11 (second curve from the top in Fig. 25 ). The
axima at 7.5 and 34.5 are on the same curve. The visual picture

f the stream function at β= 7 . 5 still suggests an interfacial mode,
hile the picture at β= 34 . 5 looks more like a bulk mode in the
ielded phase. This is also reflected in the wave speeds of the un-

table mode. For the parameters chosen, the fluid speed at the in-

erface is 0.00156, and the base flow speed in the middle of the

ielded layers is 0.00367. The mode at β= 7 . 5 has a wave speed
f 0.00279, at β= 34 . 5 it is 0.00309. So for higher β, the wave
peed shifts closer to the fluid speed in the center of the yielded

ayer, and the mode becomes more like a bulk mode. 

Figs. 27 and 28 show growth rates and stream function plots

or l 1 = 0 . 5 . As we saw above for α= −1 , the maximum growth
ate shifts to lower waves numbers as l 1 is decreased. The base

ow speed at the interface for this case is 0.0 0 086, and the bases

ow speed in the middle of the yielded layer is 0.0114. The wave

peeds of the unstable modes are 0.00225 at β= 1 . 2 , 0.0085 at
= 6 . 2 and 0.0086 at β= 6 . 8 . Again, the character of the unstable
ode becomes more like that of a bulk mode as βis increased.
ig. 29 shows the growth rate for l 1 = 0 . 2 . The overall pattern

s similar to the previous cases. The cluster near the axis which

merges for β> 12 is from poor approximation of the continuous
pectrum and should be ignored. 

. A more strongly shear thinning model 

For both the PEC and Johnson–Segalman fluid, the first normal

tress difference is larger in the yielded phase than in the un-

ielded phase. It is natural to ask whether this is crucial for creat-

ng instability of shear banded flow, since the normal stress jump

nters the interface conditions and plays a crucial role in driv-

ng the instability. For this reason, we investigate a model with

 structure similar to PEC, but with a lower normal stress in the

ielded phase. This model is given at the end of Section 2 by

qs. (16) and (17) . We find no instabilities for the case of a sin-

le layer in this model. However, there are instabilities in shear

anded flow. Fig. 30 shows growth rates computed for l 1 = 0 . 7 ,

= 0 . 013 , α= −2 . 8 , = 0 . 001 . Fig. 2 shows the steady state con-
titutive behavior for these parameters. We find instabilities for

hort waves, β> 5.2. There is also a narrow range of wave num-
ers for long waves, with very small growth rates. The instability

s interfacial; the long wave mode connects to the neutrally sta-

le mode at β= 0 , and for the short wave mode, the Im σis
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Fig. 31. Stream functions for unstable modes shown in Fig. 30 . (a) base flow profile, (b) β= 0 . 16 , (c) β= 10 . Contour values in units of 10 −6 . 

r  

l  

fi  

s

1

 

f  

α  

t  

b  

i  

n  

c  

a  

i  

i  

s  

P  

b  

a

 

i  

b  

t

A

 

N

R

 

 
 

 

 

 

 
 

oughly −iβU(l 1 ) . The short wave curve does not connect to the
ong wave curve, but emerges from the continuous spectrum at a

nite value of β; this is demonstrated in part (c) of Fig. 30 . Fig. 31
hows stream functions for the long and short wave modes. 

0. Conclusions 

We have investigated the linear stability of shear banded flows

or the PECN model. We investigated three representative cases:

= −2 . 8 , α= −1 and α= 5 . The model parameter αis related to
he ratio of the yield stress to the stress modulus, which is given

y 
√ 
α+ 3 / 2 . For α= −1 and α= 5 , we found bulk instabilities

n the yielded phase. These bulk instabilities become the domi-

ant mechanism of instability in shear banded flows, but interfa-

ial long wave instabilities are also present. Bulk instabilities are

bsent for α= −2 . 8 , but there are interfacial long wave instabil-
ties. We also investigated a more strongly shear thinning model

n which the first normal stress difference in the yielded phase is

maller than that in the unyielded phase, in contrast to both the

EC and Johnson–Segalman models. For this model, we found no

ulk instabilities, but there are interfacial instabilities for both long

nd short wave modes. 
All the cases of shearbanded flows that we investigated show

nstabilities. However, due to the presence of both interfacial and

ulk instabilities, the final picture is quite varied and depends on

he model in ways that are far from obvious. 
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