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a b s t r a c t

A methodology based on Artificial Neural Networks (ANN) and an Analog Ensemble (AnEn) is presented

to generate 72 h deterministic and probabilistic forecasts of power generated by photovoltaic (PV) power

plants using input from a numerical weather prediction model and computed astronomical variables.

ANN and AnEn are used individually and in combination to generate forecasts for three solar power

plants located in Italy. The computational scalability of the proposed solution is tested using synthetic

data simulating 4450 PV power stations. The National Center for Atmospheric Research (NCAR) Yel-

lowstone supercomputer is employed to test the parallel implementation of the proposed solution,

ranging from one node (32 cores) to 4450 nodes (141,140 cores). Results show that a combined

AnEn þ ANN solution yields best results, and that the proposed solution is well suited for massive scale

computation.

Published by Elsevier Ltd.

1. Introduction

Building a sustainable society requires providing solutions that

meet societal needs and will last for generations to come. The

current reliance on finite environmental resources to meet the

power needs of the world's expanding population and economy is

not sustainable in the long term [18]. Renewable energy sources

provide a potential sustainable solution to meet societal power

needs. This article describes a methodology for generating deter-

ministic and probabilistic forecasts of photovoltaic (PV) power

generation, which are specific tasks required to rely on renewable

sources for a portion of the energy production requirements.

Becker et al. [6] analyzed 32 years of weather data investigating

the feasibility of U.S. reliance onwind and solar power to satisfy the

country's power requirements. They concluded that the U.S. has

adequate meteorological and terrain characteristics to suggest that

renewable sources can be successfully implemented. The Renew-

able Electricity Futures Study (RE Futures) used two power gener-

ation models to conclude that up to 80% of U.S. electricity demand

could be met through renewable resources [12]. Arent et al. [3]

drew upon RE Futures results to conclude that a high reliance on

renewable sources necessitates a number of structural modifica-

tions that positively affect both supply chains and the environment.

With respect to PV production in the U.S. the southwest has the

highest solar radiation and most areas of the country are viable

candidates, including regions like PA and NJ where the solar radi-

ation is comparable to northern Spain.

Brazil is an example of a country with significant potential for PV

penetration [19]. Distributed PV power can provide energy to

mitigate peak loads when air conditioning is greatest in urban areas

and minimize the energy loss caused by energy traveling longer

distances. PV presents an opportunity in the Brazilian Amazon

where connectivity to a main grid is not available and Diesel gen-

erators are the main power source for independent mini-grids.

Specifically, Lima et al. [19] studied Northeastern Brazil using
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numerical weather prediction (NWP) model output, ground ob-

servations, and a series of ANN to develop a methodology for

improving 24 h solar irradiance forecasts in the Northeastern re-

gion of Brazil. This methodology resulted in the identification of

spatial patterns in the data and an improvement in the solar irra-

diance forecasts when using ANN where the ANN reduces the

general overforecasting of solar irradiance in the NWP output.

Deep penetration of renewable energy in the existing power

grid, especially distributed PV systems, is needed to sustain our

society and its expanding economy [21]. Multiple challenges to

renewable energy integration exist including but not limited to:

power demand and supply fluctuations, meteorological conditions,

infrastructure challenges and spatial and temporal changes on both

demand/supply sides [5,19,22,33]. Several challenges of particular

relevance to this research are described in further detail. One of the

largest factors is the quantification of uncertainty associated with

the estimation of future power output, which unlike traditional

generators is variable and correlated to rapidly changing local at-

mospheric conditions [17,19,20,22,31].

Recent research investigates the optimization of fossil fuel po-

wer penetration by assuming an elastic production in response to

the variability of renewable sources [11,17]. Estimating this uncer-

tainty is paramount for the widespread use of PV system, especially

for distributed residential PV which are operated and maintained

independently [33]. This uncertainty can be quantified using

ensemble simulations which provide insights to the probability of

possible outcomes, and in turn quantify the uncertainty which can

help decrease costs [1,30].

In the immediate term (seconds to minutes), use of uncertainty

information is used to control smart inverters, which lower ramp-

events that can damage the grid, and are highly taxed in some

markets, thus reducing the profitability of the system [7,28,33]. In

the short term (24e72 h or the day ahead market), uncertainty is

used to compute the risk of over- or under- electricity production

with respect to demand [23]. Under-producing electricity means

that the power deficit must be satisfied by buying electricity from

the grid, by generating it using non-renewable sources or storage

facilities, or that the demand cannot be satisfied causing black-outs.

Similarly, over-producing electricity presents an opportunity loss

for electricity which could have been sold. This research addresses

precisely this challenge, and creates an advanced CyberInfras-

tructure (CI) solution based onmassive supercomputer simulations

required to address the day-ahead uncertainty problem for thou-

sands of PV stations.

The proposedmethodology, based on Artificial Neural Networks

(ANN) and the Analog Ensemble (AnEn), generates power forecasts

for PV farms as a function of meteorological and environmental

parameters. The ANN is used to generate a deterministic forecasts,

whereas the AnEn is used to generate both deterministic and

probabilistic forecasts. The major advantages of the AnEn method

are its ability to provide reliable and bias-calibrated forecasts, and

its computationally scalable algorithm is well suited for parallel

processing [10].

The proposed methodology is domain independent and is not

limited to the specific application presented. In general, the pro-

posed method can be applied to all situations where a set of

deterministic past forecasts and associated observations are

present.

This paper addresses two main scientific goals:

1. To test AnEn, ANN, and a combined AnEn þ ANN methodology

to assess the 72 h deterministic and probabilistic forecasts of

power generated by three PV stations.

2. To analyze and evaluate the computational efficiency of the

methodology performing massive scale simulations for thou-

sands of simulated PV stations using a supercomputer.

2. Data and infrastructure

The statistical analysis presented is based on real world obser-

vations of power generated by PV solar farms and atmospheric

NWP model data. Analysis of the complexity of the algorithm is

based on a synthetic data including thousands of simulated solar

farms. This synthetic dataset, described in Section 2.3, is used only

to test the scalability of the AnEn algorithm, and not to draw any

conclusions on the performance of themethodology. The scalability

of the AnEn algorithm for massively parallel applications is tested

using over 140,000 cores of the Yellowstone supercomputer.

The overall goal of this line of research is to create the energy

smart grid of the future that includes a significant fraction of energy

generation from renewable sources [32].

2.1. Observations

In-situ observations of power generated by PV stations were

collected at three plants located in different regions of Italy, Lom-

bardy (SL), Calabria (SC) and Sicily (SS), respectively (Fig. 1). Table 1

summarizes the main characteristics of the data collected for each

station in terms of length of the dataset, division of the training and

testing sets, amount of missing data, days with less than 4/8

percent cloud coverage (sunny days), and the ratio of mean to

nominal power.

SL and SS are nearly identical in terms of PV panels and elec-

tronic components and have a nominal power of 5.21 KW (roughly

a typical residential roof installation), while the SC PV solar farm is

Fig. 1. Map of Italy showing the location of the three solar power stations used in this

study. The SL station is located in the northern part of the country, the Lombardy

region. The SC and SS stations are located in the southern part of the country,

respectively in the Calabria and Sicily regions.
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much larger with a nominal power of 4.99 MW. Observations of

power metered (PM) are available as hourly averages but have

different temporal coverage at each station: SL from July 2010 to

December 2011, SC from April 2011 to March 2013, and SS from

January 2010 to December 2011. The SL station is missing about 9%

of observations, while SC and SS have no missing data.

Fig. 2 shows a statistical summary of the power generated by SL

(left), SC (center) and SS (right). While the axis for the stations are

different (SL and SS are in KW, while SC is in MW), all three stations

show very similar statistical behaviors. In the chart, the upper (UE)

and lower (LE) extremities are defined as

UE ¼ Q3þ 1:5� IQR (1)

LE ¼ Q1� 1:5� IQR (2)

where Q1 and Q3 are the first and third quartiles, and IQR is the

interquartile range. Naturally, there is a very strong diurnal

component with the majority of power generated between 06h00

and 18h00, with a peak at 12h00 (local solar noon).

The first station, SL, is located in the suburban area of Milan, in

the northern Lombardy region. This plant is characterized by high

concentrations of aerosol particulates due to anthropogenic emis-

sions, a colder climatewith several snow days, high cloud cover and

fog. The second station, SC, is located in the southern Calabria re-

gion and is the largest of the three. This station provides the most

reliable data due to its size, quality control, and for themaintenance

of the panels themselves. The third station, SS, is located in Sicily,

and the site is characterized by the presence of volcanic ash. Vari-

able amounts of volcanic ash are released by the nearby Etna vol-

cano. This variability influences the power production due to a)

atmospheric dimming of solar irradiance and b) deposition of ash

over the panels resulting in decreased efficiency. Numerical at-

mospheric weather models do not usually take volcanic ash emis-

sions into account, making power forecasting more difficult.

A climatic analysis based on meteorological observations

collected near the three solar power farms shows that the yearly

average of the fraction of days with an average cloud cover lower

than 4/8 is around 45% (SL), 60% (SC) and 66% (SS). This is reflected

in the ratio between mean power produced (MP) and nominal

power (NP) that equates to approximately 25% (SL), 30% (SC), and

35% (SS).

2.2. Model forecasts

The Regional Atmospheric Modeling System (RAMS), a meso-

scale atmospheric model, is used to generate deterministic weather

forecasts at the locations of the three solar power stations (Fig. 1).

The computational domain consists of two nested grids with hor-

izontal grids of 15� 15 km2 and 5� 5 km2. Eachmodel run starts at

00 UTC and is 72 h long. Therefore, each time the model is run,

RAMS generates forecasts for the following three days at hourly

intervals. RAMS is initialized with boundary conditions from the

ECMWF deterministic forecast fields starting at 00 UTC with 0.125�

spatial resolution. The Harrington parameterization is used for the

radiation scheme, and a bulk microphysics parameterization is

implemented, accounting for full moisture complexity [13].

Forecast data for each of the three stations is composed of five

predictor variables (three from RAMS and two computed), 72

forecast lead times (FLT) and a variable number of days as shown in

Table 1 for 2010 and 2011. The predictor variables computed by

RAMS are global horizontal irradiance (GHI), percent cloud cover

(CC) and air temperature at two meters above the surface (T2M).

Additionally, two predictor variables for solar azimuth (AZ) and

elevation (EL) are computed as function of time of day and day of

the year. These two predictors are fundamental for quantifying

seasonal variability of solar irradiance. The 72 FLTs correspond to

the forecast interval for the three day period.

Table 1

Characteristics of the three stations (SL, SC, SS) used in this study. CC stands for cloud covered days lower than 4/8 andMP/NP is the ratio for mean power over nominal power.

Station Total Days Train Days Test Days Missing Data Sunny Days % Nominal Power Ratio MP/NP

SL 549 365 184 9.5% 45% 5.21 KW 25%

SC 731 365 366 0.0% 60% 4.99 MW 30%

SS 730 365 365 0.0% 66% 5.21 KW 35%

Fig. 2. Statistical summary of power generated by SL (left), SC (center) and SS (right). UE ¼ Upper Extremity, 75% ¼ third quartile, M ¼ median or second quartile, 25% ¼ first

quartile, LE ¼ Lower Extremity.
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2.3. Synthetic data

A very large synthetic dataset is created to test the scalability of

the AnEn algorithm in amassively parallel environment. The data is

created using a statistical model based on observations and NWP

model data. The solar elevation and azimuth are computed for the

longitude and latitude location of each of the simulated station, and

are used to estimate the maximum theoretical power (MTP) pro-

duced. The PM value for each of the simulated stations is computed

by selecting a random day in the dataset from the closest of the

three observed stations, and adjusting the observed PM value tak-

ing into account the difference in MTP at the observed and simu-

lated station. This statistically consistent dataset is only used for

scalability performance evaluation, and not to test the statistical

performance of AnEn.

A total of 4450 stations were simulated at equally spaced loca-

tions throughout the Italian peninsula. Each simulated station data

contains six predictor variables and an associated PM variable. Each

station has a length of 1460 days and 72 FLTs. The simulated pre-

dictor variables include GHI;CC; T2M, and computed EL and AZ at

each location. An additional predictor variable is created using a

neural network in the same manner as is done for the real exper-

iments (see Section 3.1). A total of over 46 million values are

generated [4450 stations � 6 predictor variables � 1 output vari-

able � 1460 days] for this synthetic dataset.

2.4. Yellowstone supercomputer

The experiments presented are performed using the NCAR Yel-

lowstone Supercomputer, the fastest supercomputer designed

primarily for Earth and atmospheric science research. The super-

computer is physically located in Wyoming and is linked to the

main NCAR Boulder campus through a high speed network.

Yellowstone is a 1.5-petaflops high-performance IBM iDataPlex

cluster featuring 4536 nodes comprising of a total of 72,576 Sandy

Bridge cores and 144.6 TB of memory. Each node has a dual 2.6-GHz

Intel Xeon E5-2670 8-core processor, resulting in 16 available cores

per node. Furthermore, each core can be enabled for hyper-

threading computation, which simulates twice as many cores (32)

per node yielding 145,152 cores. Hyper-threading is a proprietary

Intel technology allowing each core to perform multiple tasks at

once, thus simulating double as many cores as is physically avail-

able. The benefit of hyper-threading varies from problem to prob-

lem and has been shown to greatly increase performance for multi-

media and general purpose applications. However, it has also been

shown to offer little to no improvement for intensive numerical

operations.

To test the scalability of the AnEn algorithm in a real world

scenario, the entire Yellowstone supercomputer was allocated to

perform tests using the synthetic data generated.

3. Methodology

3.1. ANN algorithm

Artificial Neural Networks (ANN) are a family of well-

established machine learning supervised classifiers inspired by

biological neural networks [14]. They require labeled data, which is

used to train a network that predicts the independent variable as a

function of multiple dependent input variables. The independent

variable is typically a continuous numerical variable. Once the

network is trained, it can be used to classify an unknown inde-

pendent variable as function of the input variables.

ANN are implemented as layers of interconnected nodes, also

called neurons. The number of layers is highly variable, and

depends on the characteristics of each problem. ANNs require a

minimum of three layers, one for the input nodes, one hidden, and

one for the output nodes (e.g. Fig. 3), which is also the configuration

used in this study. The number of input and output nodes are

defined by the problem, whereas the number of hidden nodes is a

crucial parameter which must be set and can be optimized. In this

study, the number of hidden nodes was optimized using a brute

force algorithm to test various network sizes. Additionally, bias

nodes are included in all layers, except the input layer, and are used

to control the overall behavior of the layer.

Connections between the nodes contain weights that are iter-

atively updated during a training phase. In this study, the back-

propagation (backprop) algorithm is used to train the ANN [25].

This is a stochastic algorithmwhich uses random initial weights for

the links between the nodes, and then iteratively updates the

weights to minimize the error between the input and network

prediction. Each network configuration is repeated 30 times with

different initial random seeds to account for the stochasticity of the

backprop algorithm.

The ANN is employed to generate deterministic forecasts of PM

at a specific lead time as a function of the six dependent variables

GHI;CC; T2M;AZ; EL, plus the lead time t.

PMt ¼ ANNðGHI;CC; T2M;AZ; EL; tÞ (3)

The original data for each station, comprised of the observed

independent variable (PM), the RAMS weather forecasts

(GHI;CC; T2M) and the two computed variables (AZ; EL) are repre-

sented as a two dimensional matrix with dimensions [DAYS � FLT,

VARS] where DAYS vary from station to station (see Table 1),

FLT ¼ 72, and VARS ¼ {GHI;CC; T2M;AZ; EL; PM; t}.

Therefore, for each day, the multi-variate time series of length

FLT ¼ 72 are transformed into a larger number of smaller time

series of length VARS ¼ 7. This lead time based representation of

the data improves ANN results because it provides a larger training

set for the ANN, and allows the output to be a single value (PM at a

specific time) instead of a time-series 72 points long. The diurnal

and seasonal signals of the data are captured by the computed

Fig. 3. ANN created for the SS station using 9 hidden layers. The left most layer of

nodes are the input (GHI;CC; T2M;AZ; EL; t), and the right node is the output (PM). The

H nodes are the hidden nodes and B nodes are the bias for the hidden and output layer.

Shading and thickness of the links are proportional to the weights learned by the

backprop algorithm.
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variables AZ and EL.

Fig. 3 shows the ANN generated for the SS station using an input

layer of six nodes (I1-I6), a hidden layer composed of nine nodes

(H1-H9), an output layer of one node (O1) and two bias nodes

(B1,B2). The grey shades and thickness of the links are proportional

to theweights assigned by the backprop algorithm. It is not possible

to analytically evaluate ANN accuracy just by inspecting the links

and weights, and it is in fact usually referred to as a ‘black box’.

Therefore, it is critical to test the predictive accuracy of the

network.

Fig. 4 shows a sample prediction made by the network in Fig. 3

for a specific day. The solid line indicates the ANN prediction and

the dots indicate the actual observations. The grey bars indicate the

foretasted cloud cover in percentage. This example shows how the

neural network grossly underestimates the PM in the first 24 h,

slightly underestimates between 24 and 48 h, and slightly over-

estimates between 48 and 72 h. The PM underestimation in the first

24 h can be easily explained by RAMS overestimating the CC (grey

bars). In fact, in correspondence of high foretasted CC, the neural

network consistently show a decreased PM estimate.

3.2. AnEn algorithm

The AnEn generates probabilistic predictions using a single

deterministic NWP, a set of past forecast predictions, and their

corresponding observations. The AnEn technique compensates for

the model bias by taking past errors into account. The main

assumption is that if similar past forecasts can be found, the model

error can be estimated. Specifically, the AnEn seeks to estimate the

probability distribution of the observed future value of the pre-

dictand variable given a model prediction, which can be repre-

sented as p(y ∽ f) where, at a given time and location, y is the

unknown observed future value of the predictand variable and f are

the values of the predictors from the deterministic model predic-

tion at the same location and over a timewindow centered over the

same time. Delle Monache et al. [10] describe several attractive

features of the AnEn including the use of higher resolution forecasts

and no need for initial condition perturbations, running multiple

model instances, or post processing requirements. The AnEn is able

to capture the flow-dependent error characteristics and show su-

perior skill in predicting rare events when compared to state-of-

the-art post processing methods [8e10].

Analogs are sought independently at each location and all

forecasts are initialized at 00Z. The best-matching historical fore-

casts for the current prediction are selected as the analogs. The best

match is determined by the metric described in Delle Monache

et al. [10] and Delle Monache et al. [9].

kFt ;At0k ¼
X

Nv

i¼1

wi

sfi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

~t

j¼�~t

�

Fi;tþj � Ai;t0þj

�2

v

u

u

u

t (4)

where Ft is the forecast to be corrected at the given time t and

station location At is an analog forecast at time t0 before Ft was

issued and at the same location, Nv and wi are the number of pre-

dictors and their weights, respectively; sfi is the standard deviation

of the time series of past forecasts of a given variable at the same

location; ~t is an integer equal to half the width of the time window

over which the metric is computed; and Fi;tþj and Ai;t0þj are the

values of the forecast and the analog in the timewindow for a given

variable.

The metric describes the quality of the analog chosen and is

based upon the similarity of the current forecast window to the

past forecast time windows available in the dataset. The top N

analogs are selected from past dates within the historical dataset.

Next, the verifying observation for each of the N best analogs is

selected. Together, the verifying observations generate the N

members of the ensemble prediction for the current forecast. In this

research, the AnEn is used to generate probabilistic forecasts, both

by itself and in combination with the ANN. The number of

ensemble members N is 21 for each station. As a general rule, the

number of ensemble members is set equal to the square root of the

training data. However, this value can be optimized, globally or as

function of the forecast lead time which has not been attempted in

this study.

Fig. 5 shows the PM probabilistic forecast (shades), ensemble

mean (dashed line), and observations (points) generated using

AnEn for the 41st test day at the SS station. In comparison with

Fig. 4, AnEn probabilistic forecasts are able to better predict the

observations.

3.2.1. Predictor weighting

The weights, wi, can all be set to 1 to weight each predictor

Fig. 4. PM power forecast (solid line) and observations (points) generatred using ANN

for the 41st test day of the SS station. The grey bars indicate the cloud cover in per-

centage. The three peaks correspond to the diurnal cycles for 72 h (three days).

Fig. 5. PM probabilistic forecast (shades), ensemble mean (dashed line), and obser-

vations (points) generatred using AnEn for the 41st test day at the SS station. UE ¼

Upper Extremity, 75% ¼ third quartile, M ¼ median or second quartile, 25% ¼ first

quartile, LE ¼ Lower Extremity.
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equally or they can be optimized. Junk et al. [16] have shown how

different weighting schemes for the AnEn metric can lead to

improved results. In this study a brute force algorithm is employed

ranging the weights between 0 and 1 and with a step increment of

0.1. Only combinationswhere the sum of theweights is equal to one

is considered, leading to 1002 combinations in case of the original

five variables, and 3004 when the ANN predicted PM is also

included. In both cases, the default case with each weight set to one

is also added for comparison purposes.

To determine the best weights, a leave-one-out methodology is

employed using only the training set because the test set is

assumed to be unknown and represents the future. Analogs are

computed by iteratively testing on a single day (the leave-one-out),

and using all remaining days as training. The error is defined as the

root mean squared error between the ensemble means and the

observations. The process is repeated for all days in the training set,

for all the weights combinations described above (1002 and 3004

combinations), and for each of the three stations SL, SC, and SS. The

weighting scheme that achieves best results on the training set is

used for performing all tests described in the results over a period

that does not overlap with the training.

3.2.2. Parallel implementation of AnEn

The AnEn code is well suited for parallelization because all

computations across locations and lead times are independent and

can occur in separate processes. It falls within the category of

‘embarrassingly parallelizable’ code because it naturally allows for

most processes to be run as parallel tasks. The AnEn algorithmwas

implemented in JAVA and Python to facilitate optimal use of mul-

tiple cores and multiple nodes. Specifically, JAVA multi-threading,

the ability to use multiple CPU cores, was used to parallelize the

code within a single node. Python was used to distribute the

computation across multiple nodes. Experiments testing the scal-

ability of the algorithm are performed using the NCAR Yellowstone

supercomputer.

Algorithm 1. Algorithm describing the AnEn implementation.

A typical AnEn execution consists of a series of five nested loops

(Algorithm 1). The first two loops are entirely independent because

analogs are computed separately for each station and each test day

and their parallelization does not present any difficulty. The

remaining three loops are necessary for computing the AnEnmetric

and can also be parallelized, but they require process synchroni-

zation because they read and write the same data. Additionally, for

each computation of the similarity metric, the standard deviation

must be calculated and results sorted. These are sequential tasks.

3.3. AnEn þ ANN

The algorithms are fused to determine if a combined method-

ology can produce a forecast with greater skill. Deterministic PM �

ANN output from the ANN is used as an additional predictor in the

AnEn. The AnEn uses the six variables (GHI;CC; T2M;AZ; EL; and

PM � ANN) to generate a probabilistic forecasts (ANN þ AnEn) of

PM. When not used in combinationwith ANN, the AnEn is executed

using five predictors: GHI;CC; T2M;AZ and EL.

4. Results

4.1. Deterministic forecasts

Both the ANN and AnEn are employed to generate deterministic

forecasts of power produced by the three PV stations as a function

of the predictor variables. Deterministic forecasts are created for

each of the three stations using the number of training and testing

days defined in Table 1.

For ANN, 17 different network sizes (number of nodes in the

hidden layer) are tested, from 4 to 20. The learning of each network

size is repeated 30 times with different initial random seeds. A total

of 1530 networks are learned [3 stations x 17 sizes � 30 times]. The

network achieving the best prediction over the training data is

selected to generate deterministic forecasts for the test period.

Specifically, for the SL, SC, and SS stations, the best network sizes

found are 8, 10, and 9, respectively.

Experiments are performed to identify the best weighting

scheme for the AnEn metric defined in Equation (4). Specifically, a

brute force algorithm tested all combinations, as described in

Section 3.2. The results of the brute force search are shown in

Table 2. The top three rows show the best weights when the

additional PM � ANN predictor is present. The bottom three rows

show the results with only the original five predictors.

Without exception, PM � ANN has an optimal weight of 0.5 (half

the weight of the entire metric) every time it is employed. This

suggests PM � ANN is an important predictor because it captures

the nonlinear interactions among the predictors. The other pre-

dictors are weighted more or less equally, with the exception of EL

which is always omitted (weight ¼ 0).

When PM � ANN is not used, GHI is the most important pre-

dictor for the two southern stations SC and SS. However CC is found

to be the most important predictor for SL. This is consistent with

the larger presence of cloudy days suggesting this parameter is

more important at this station.

Both deterministic and probabilistic forecasts need to be

assessed through the use of standard verification measures [15,24].

Table 3 shows results for both the deterministic and probabilistic

forecasts. The first column indicates the weighting scheme used,

where default means that all predictors are weighted equally, and

optimal uses the weights defined in Table 2. The second column

indicates the algorithm used, which include the ANN and AnEn if

Table 2

Optimal weights identified for the three stations using the AnEn methodology. The

top three rows show the best weights when using the PM � ANN as an additional

predictor and the bottom three rows when only the original five predictors are used.

Station GHI CC T2M AZ EL PM-ANN

SL 0.2 0.1 0.1 0.1 0.0 0.5

SC 0.3 0.2 0.0 0.0 0.0 0.5

SS 0.1 0.0 0.3 0.1 0.0 0.5

SL 0.2 0.5 0.2 0.1 0.0

SC 0.8 0.0 0.0 0.1 0.1

SS 0.6 0.4 0.0 0.0 0.0
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the algorithms are used individually or AnEn þ ANN when the PM-

ANN predictor is used.

Standard measures such as RMSE, CORR, and BIAS are used to

evaluate the deterministic forecasts. BIAS estimates the variation

centered about the mean identifying a general tendency of the

forecast system. In this study, BIAS reflects the tendency of the

ANN, AnEn or AnEn þ ANN to over or under predict PM. RMSE

identifies the standard deviation of the forecast error and aids in

accuracy determination. The correlation verification statistic will

determine forecast performance even if any systematic correction

or re-scaling has occurred, in this case potentially through

employing the ANN.

In terms of RMSE ANN outperforms all AnEn combinations for

the SC station, whereas a combination of AnEnþ ANNwith optimal

weights outperforms all other methods for the remaining two

stations. In terms of correlation, all AnEn results are very close and

outperform the ANN. Similarly for BIAS, all AnEn results outper-

form ANN. Beyond outperforming the ANN, the bias associated

with the AnEn results indicates a slight tendency of the

AnEn þ ANN (best solution) to under predict PM at the SL and SS

stations.

Fig. 6 shows scatter plots of observed vs. simulated PM values for

each of the three stations (SL top, SC center, SS bottom) for ANN

(left columns) and AnEnþ ANNusing the best optimal weights. The

correlation, along with the station ID, is indicated at the bottom

right corner of each graph. The dashed 45� line indicates a perfect

match between predictions and observations. A linear model (LM)

is fit to the data and shown with a dotted line. The intercept and

slope of the LM is shown in the caption of each figure. The figure

shows that all methods tend to underestimate high PM values.

This result can be explained with two main arguments. First,

that high values are harder to predict because they are most

affected by errors in the model forecasts. Second, the models are

likely to overfit the training data.

Overall, both ANN and AnEn (all combinations) perform very

similarly in terms of the deterministic measures employed, but

their combination (AnEn þ ANN) results in the best performing

method. Execution of the AnEn is much faster than the ANN, but an

in depth performance comparison of the two algorithms is not

performed because implementation details can greatly affect the

speed. Whereas the AnEn was specifically optimized to run on this

dataset, the ANN employed is a general purpose algorithm not

written by the authors.

4.2. Probabilistic forecasts

Probabilistic forecasts are generated using AnEn and

AnEn þ ANN, with default and optimal weighting. As discussed in

the previous section, the optimal weights are shown in Table 2.

Table 3 describes results obtained by the various tests performed.

Statistical verificationmeasures of probabilistic processes consist of

reliability, resolution and sharpness [15]. Several standard and

accepted verification measures can be used to determine the

properties of the probabilistic output investigated through this

research. Missing rate error (MRE), which is related to rank histo-

grams, continuous ranked probability score (CRPS), and spread skill

are three well accepted measures used in this study to verify the

ANN, AnEn and AnEn þ ANN forecasts.

The CRPS is the equivalent of the Brier Score integrated over all

possible threshold values. It compares a full probabilistic distribu-

tion with the observations where both are represented as cumu-

lative distribution functions (CDF). A lower value of the CRPS

indicates better performance [2]. Rank histogram diagrams provide

a means to determine the statistical consistency of an ensemble. If

the observation is indistinguishable from the ensemble member (a

requirement for a perfect ensemble) the rank histogram should be

flat with all bars indicating the same probability [2]. The MRE is

shown in Table 3 and Fig. 7 for each station. An ideal MRE is equal to

zero, and it identifies positive values with under dispersion and

negative values with over dispersion in the ensemble. The spread

skill diagram indicates the ability of an ensemble to quantify the

uncertainty of the prediction. The closer to the 1:1 line the better.

MRE values indicate that the optimized AnEn þ ANN algorithm

produced results with the least amount of dispersion and that

predictions tended to be over dispersive at SC and under dispersive

at SL and SS. CRPS indicates the AnEn þ ANN with optimal weights

produces the most skilled forecast of PM values. At SL, the AnEn

with optimized weights also shows significant promise with the

combination of MRE, CRPS and spread skill values. In terms of

spread skill, SC and SS both indicating the optimized AnEn þ ANN

provides the best results.

In Fig. 7, spread skill diagrams are depicted with 95% confidence

intervals for the ANN and the AnEn þ ANN computed by boot-

strapping. The 45� line indicates a perfect spread-skill line, and

depicts the spread skill of both the AnEn and the combination

AnEn þ ANN at each location. The rank histogram shows the sta-

tistical consistency of an ensemble, and both the AnEn and the

combination AnEn þ ANN have comparable results. The middle

Table 3

Summary statistics for the deterministic and probabilistic forecast experiments. Best results are shown in bold.

Weighting Algorithm Deterministic Measures Probabilistic Measures

Metric SL SC SS Metric SL SC SS

ANN RMSE
NP

8.10% 7.07% 8.88% MRE

Default AnEn 8.39% 7.89% 9.07% �2.78% 0.59% �1.75%

Optimal AnEn 8.21% 7.62% 8.97% �2.06% �0.53% �2.12%

Default AnEn þ ANN 8.27% 7.53% 8.83% �2.60% 0.70% �2.09%

Optimal AnEn þ ANN 8.09% 7.39% 8.66% ¡1.85% 0.38% ¡1.53%

ANN CORR 8.90 9.00 9.00 CRPS
NP

Default AnEn 9.30 9.40 9.40 2.78 2.44 2.77

Optimal AnEn 9.30 9.50 9.40 2.68 2.38 2.75

Default AnEn þ ANN 9.30 9.50 9.50 2.72 2.32 2.68

Optimal AnEn þ ANN 9.30 9.50 9.50 2.64 2.29 2.63

ANN BIAS
NP

�0.39% �0.61% �0.48% Spread Skill

Default AnEn 0.20% 3.53% 0.04% 9.58 9.84 9.77

Optimal AnEn �0.25% �0.11% �0.11% 9.84 9.67 9.71

Default AnEn þ ANN 0.12% ¡0.00% ¡0.03% 9.57 9.83 9.79

Optimal AnEn þ ANN ¡0.10% �0.34% �0.15% 9.52 9.85 9.82
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Fig. 6. Summary of the results obtained for the SL, SC and SS stations. Charts in the left column compare observations and PM predicted by the ANN while the right column

compares observations and PM predicted by the AnEn þ ANN with optimized predictor weighting.
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Fig. 7. Summary charts for all three stations depict spread skill score with 95% confidence intervals (left side) and corresponding rank histograms (right) The x-axis on the spread

skill denotes the ensemble members. The results are obtained using optimized AnEn metric weights.
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figure for SC shows that the combination of the methods exhibits

greater ability to quantify the prediction uncertainty than the AnEn

by its closeness to the perfect spread-skill line and refined confi-

dence intervals.

The diagrams also indicate that, at both SL and SC, the methods

are under dispersive when greater power is measured. SS exhibits

this characteristic as well however the spread skill for SS does not

indicate this until a higher threshold is reached. Rank histograms

are depicted for all three stations on the right hand side of Fig. 7. For

rank histograms, an even distribution indicates that there is an

equal likelihood for the observation to fall within any of the 21

members, meaning that one member is not biased over another.

Overall, statistically consistent forecasts are found at each site with

SC and SS exhibiting the most and least reliable behaviors

respectively.

The SC station produced the best results and is the largest site

where data is quality controlled and PV panels are well maintained.

Furthermore, it is in a location that it is not affected by poor air

quality, snow or volcanic ash as the other two stations are.

Overall, AnEn performs extremely well both when used in

combinationwith ANN andwhen used by itself. Without exception,

AnEn performs best with optimized weighting for the predictor

parameters.

4.3. Computation profiling

The AnEn methodology presents a computational advantage

because its efficiency can be enhanced through parallelization,

whereas ANN is primarily a sequential code not suited for parallel

computation.

The NetBeans profiler is employed to understand the compu-

tational behavior of the algorithm [27]. Fig. 8 shows output for the

computation of one year of analogs for the SS station. This

computation was run on a single node with four cores. Results for

the main program and one of the four identical threads are

expanded.

About 7% of the execution time is spent in I/O operations

(readDefaultFilesSolar, writeBinaryMatrix4D) while the remaining

93% is spent on computation of the analogs (computeAnalogs). This

latter task is fully parallelized and implemented using a Thread-

PoolExecutor [29], whose results are shown in pool-1-thread-X

where X is the code id and, for this case, ranges between one and

four. Because the four pool-threads are identical (reference total

execution time for each thread), only pool-1-thread-3 is expanded.

It shows that the first five calls have a Self time of 0 and are merely a

wrapper for the processCommand. This method has two main

operations:

1. computeMetric (84%) for the computation of the similarity

metric (Equation (4)).

2. quickSelect (16%) for sorting the metric results.

The computation of the metric, which dominates computation

in this part of the code, performs three main operations:

1. Self time (50%), consists in the three remaining loops of the AnEn

algorithm and computes the difference between past (train) and

current (test) forecasts for each parameter, for each training day,

and for each forecast lead time.

2. computeSdDim3 (33%) computes the standard deviation for each

day of the training day and for each forecast lead time, and it is

used as normalization in the metric. This operation cannot be

parallelized efficiently, however, it could be omitted entirely if a

different normalization scheme is chosen for the metric (see

Equation (4)), or it could be computed offline thus eliminating

the real time computation.

Fig. 8. Output of the NetBeans profiler for the AnEn algorithm for one year of tests for the SS station.
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3. diffCircular (1%) computes the difference between two variables

in the special case they are circular (e.g. solar azimuth and solar

elevation).

Sorting of the metric can occur in two different ways: PartialSort

and/or QuickSelect [4]. Once the metric between a current forecast

and all historical forecasts (training data) is computed, only a small

number of k ensemble members corresponding to the best metrics

are used. Therefore, it is not necessary to sort all the metrics

computed, a taskwith an average complexity of O(n log(n)) where n

is the size of training events (past forecasts). A PartialSort algorithm

returns only a list of k smaller metrics and is more computationally

efficient with an average complexity of O(n log(k)).

However, it is possible to further increase the computational

efficiency by not sorting the list of smaller k values. The QuickSelect

algorithm (also called nth_element) can return a list of lowest

metrics in linear time, thus achieving a complexity of O(n) [4]. The

tradeoff is that the smallest k metrics are not sorted, but only

guranteed to be smaller or equal to all remaining metrics. While

this does not affect the computation of the analogs, it might cause

problems when comparing results with other AnEn implementa-

tions that sort the calculated metrics. The AnEn implementation

presented in this paper has a toggle option between PartialSort and

QuickSelect.

4.4. Scalability of AnEn

The scalability of the AnEn algorithm was tested using an

increasing number of cores and nodes on the NCAR Yellowstone

supercomputer (see Section 2.4).

4.4.1. Multiple cores on a single node

The first tests are run to determine the scalability of the

methods on a single node using the data for the SS station in terms

of the time of execution and speedup as function of number of

cores. Each Yellowstone main node has 16 cores per node, which

can be simulated to 32 cores with hyper-threading enabled. The

time of execution TðnÞ is governed by Amdahl's law:

TðnÞ ¼ Tð1Þ

�

Bþ
1

n
ð1� BÞ

�

(5)

where B is the fraction of the algorithm that is strictly serial and n is

the number of parallel threads. The speedup for the parallel

execution is defined as:

SðnÞ ¼
1

TðnÞ
(6)

Amdahl's law states that the maximum theoretical speed up is a

function of the portions of code B that cannot be parallelized.

Therefore, if 5% of the run time is spent in the sequential portion of

the code, as is the case for the AnEn algorithm, the maximum

theoretical speedup that can be achieved through parallelization is

20�. This is a theoretical value that does not take into account in-

efficiency introduced by synchronization and data movements

which occur when the code is run in parallel.

Fig. 9 shows the time of execution and speedup for generating

analogs for the SS station as a function of the increasing number of

cores on a single Yellowstone node. The solid line shows execution

of the AnEn on real cores and the dashed line when hyper-

threading is in use. The dotted line shows the theoretical perfor-

mance of a 100% parallelization, and the alternating dash-dot line

shows the theoretical performance of a 95% parallelization.

The figures show that the AnEn algorithm scales very well as the

number of cores increases from 1 to 16. A speedup of approximately

14� is achieved which is only slightly less than the theoretical 100%

and 95% parallelization lines. The speedup decreases dramatically

after 16 cores, when hyper-threading is enabled. This is consistent

with findings that hyper-threading may not speed up intensive

numerical computations (e.g. Ref. [26]).

However, despite the diminishing rate of speedup increase, it is

nevertheless advisable to use hyper-threading on NCAR Yellow-

stone because of the supercomputer’s specific charging scheme. In

fact, for the regular queue, usage charges are applied on a node and

not on a core basis. Hyper-threading still yields a performance

speedup, albeit smaller than for real physical nodes, and it is

therefore still advisable because it does not cause a charge increase.

4.4.2. Multiple cores on a multiple nodes

The AnEn is run on amassive scale using 4450 available nodes of

the NCAR supercomputer which has 32 cores per node (141,140

cores). The missing 86 Yellowstone nodes were not available due to

maintenance issues. Specifically, the computation is distributed

such that each node computes analogs for an increasing number of

stations. The tests over multiple Yellowstone nodes were per-

formed using the synthetic data described in Section 2.3. Specif-

ically, for each station, one year of data was used for training, and

three years for the tests.

In order to perform AnEn computations at such a massive scale,

data must be properly prepared to increase overall efficiency. The

synthetic data reach nearly two terabytes in size and it would be

computationally inefficient if all nodes access the files at the same

time for two reasons. First, because each node determines analogs

only for specific stations and, consequently, each node only needs

to read data for the specific stations the node is generating analogs

for. Second, Yellowstone uses a shared Glade file system and I/O

operations decrease dramatically when a single file is accessed by

multiple nodes. To overcome this problem, data for each station are

stored in separate files and each node only reads data for the

specific station(s) it is processing. Although this action dramatically

increases the number of files (from a single file to several thou-

sands), the overall performance increases dramatically.

Fig. 10 (left) shows the histogram for the execution times ob-

tained using all 4450 available nodes. The median execution time

fluctuates around 70 s ± 15%. Execution times are multi-modal and

show four bell shape curves roughly centered at 60, 66, 72, 76 s.

These results can be explained by the specific network topology of

the Yellowstone supercomputer in which all nodes are arranged in

four clusters, each served by one infiniband switch. The four peaks

are due to different network speeds and latency associated with the

clustering of the nodes. The first peak is lower because some of the

nodes connected to this switch were unavailable at the time of the

experiment.

Fig. 10 (right) shows the total execution time (on a logarithmic

scale) as a function of a decreasing number of computation nodes.

The interval for each point represents variations in execution time

due to different node speeds. The dotted line shows the theoretical

performance by taking the average execution time of all 4450

nodes and multiplying it by the number of stations for the number

of nodes used. Generally, AnEn is able to scale well on Yellowstone

and the execution time ranges between a little over aminute to four

days, depending if 4450 nodes or a single node are used.

5. Conclusions

This paper presents a methodology based on ANN and the AnEn

technique to generate deterministic and probabilistic forecasts of

PV power produced using weather and astronomical predictions.

Themethodology was tested using observed PM data from three PV
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stations in Italy and weather forecasts from RAMS. Additional ex-

periments are performed using a very large synthetic dataset that

simulates thousands of stations to test the computational efficiency

and scalability of the proposed solution. Results are analyzed using

a series of deterministic and probabilistic statistical measures.

Generally, both the AnEn and ANN achieve comparable small

errors when generating deterministic forecasts. The AnEn gener-

ates reliable probabilistic forecast with a combination of

AnEnþ ANN yielding best results. Furthermore, tests show that the

proposed solution scales extremely well as the algorithm is

particularly suited for parallel computation. Experiments are per-

formed using the NCAR Yellowstone supercomputer with an

increasing number of nodes and cores. The elapsed time to

compute the tests on all 4450 stations ranges between an average

of 70 s when 4450 nodes (141,140 cores) are used, and over four

days when one node (32 cores) are used.

The computational efficiency shown is particularly suited for

real-time applications of distributed PV power production when

forecasts must be quickly run for thousand of stations. The AnEn

methodology is shown to scale extremely well for massively

parallel applications. Future work will include the comparison of

the proposed technique with other methodologies.
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Appendix A. List of acronyms

AnEn Analog Ensemble

ANN Artificial Neural Network

Az Solar Azimuth

Bias Deterministic Bias

CC Cloud Cover

CORR Correlation

ECMWF European Center for Medium range Weather Forecasting

EL Solear Elevation

Fig. 9. Time of execution (left) and speedup (right) for generating analogs for the SS station as a function of increasing number of cores on a single Yellowstone node. The solid line

is the AnEn on real cores, and dashed line when using hyper threading. The dotted line shows the theoretical performance of a 100% parallelization, and the alternating dash-dot

line shows the theoretical performance of a 95% parallelization.

Fig. 10. Histogram of the elapsed time when all 4450 nodes are used (left) and time of execution for generating analogs as a function of decreasing Yellowstone nodes using 32 cores

per nodes (right). Results are relative to the SS station. The dotted line shows the theoretical performance of a 100% parallelization.
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FLT Forecast Lead Times

GHI Global Horizontal Irradiance

IQR Inter Quantile Range

MTP Maximum Theoretical Power

MW MegaWatts

NWP Numerical Weather Prediction

KW KiloWatts

PM Power Measured

PM-ANN Power Measured estimated by the ANN

PV PhotoVoltaic

RAMS Regional Atmospheric Modeling System

RMSE Root Mean Squared Error

SL Station in Lombardy

SC Station in Calabria

SS Station in Sicily

T2M Temperature at 2 m

UTC Coordinated Universal Time
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